742 research outputs found

    Fast and Continuous Foothold Adaptation for Dynamic Locomotion through CNNs

    Get PDF
    Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain-awareness. However, robust dynamic locomotion on difficult terrains with real-time performance guarantees remains a challenge. We present here a real-time, dynamic foothold adaptation strategy based on visual feedback. Our method adjusts the landing position of the feet in a fully reactive manner, using only on-board computers and sensors. The correction is computed and executed continuously along the swing phase trajectory of each leg. To efficiently adapt the landing position, we implement a self-supervised foothold classifier based on a Convolutional Neural Network (CNN). Our method results in an up to 200 times faster computation with respect to the full-blown heuristics. Our goal is to react to visual stimuli from the environment, bridging the gap between blind reactive locomotion and purely vision-based planning strategies. We assess the performance of our method on the dynamic quadruped robot HyQ, executing static and dynamic gaits (at speeds up to 0.5 m/s) in both simulated and real scenarios; the benefit of safe foothold adaptation is clearly demonstrated by the overall robot behavior.Comment: 9 pages, 11 figures. Accepted to RA-L + ICRA 2019, January 201

    Detection and estimation of moving obstacles for a UAV

    Get PDF
    In recent years, research interest in Unmanned Aerial Vehicles (UAVs) has been grown rapidly because of their potential use for a wide range of applications. In this paper, we proposed a vision-based detection and position/velocity estimation of moving obstacle for a UAV. The knowledge of a moving obstacle's state, i.e., position, velocity, is essential to achieve better performance for an intelligent UAV system specially in autonomous navigation and landing tasks. The novelties are: (1) the design and implementation of a localization method using sensor fusion methodology which fuses Inertial Measurement Unit (IMU) signals and Pozyx signals; (2) The development of detection and estimation of moving obstacles method based on on-board vision system. Experimental results validate the effectiveness of the proposed approach. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved

    Stereo-vision-based navigation of a six-legged walking robot in unknown rough terrain

    Get PDF
    In this paper we presents a visual navigation algorithm for the six-legged walking robot DLR Crawler in rough terrain. The algorithm is based on stereo images from which depth images are computed using the semi- global matching (SGM) method. Further, a visual odometry is calculated along with an error measure. Pose estimates are obtained by fusing iner- tial data with relative leg odometry and visual odometry measurements using an indirect information filter. The visual odometry error measure is used in the filtering process to put lower weights on erroneous visual odometry data, hence, improving the robustness of pose estimation. From the estimated poses and the depth images, a dense digital terrain map is created by applying the locus method. The traversability of the terrain is estimated by a plane fitting approach and paths are planned using a D* Lite planner taking the traversability of the terrain and the current motion capabilities of the robot into account. Motion commands and the traversability measures of the upcoming terrain are sent to the walking layer of the robot so that it can choose an appropriate gait for the terrain. Experimental results show the accuracy of the navigation algorithm and its robustness against visual disturbances

    Visual-Inertial and Leg Odometry Fusion for Dynamic Locomotion

    Full text link
    Implementing dynamic locomotion behaviors on legged robots requires a high-quality state estimation module. Especially when the motion includes flight phases, state-of-the-art approaches fail to produce reliable estimation of the robot posture, in particular base height. In this paper, we propose a novel approach for combining visual-inertial odometry (VIO) with leg odometry in an extended Kalman filter (EKF) based state estimator. The VIO module uses a stereo camera and IMU to yield low-drift 3D position and yaw orientation and drift-free pitch and roll orientation of the robot base link in the inertial frame. However, these values have a considerable amount of latency due to image processing and optimization, while the rate of update is quite low which is not suitable for low-level control. To reduce the latency, we predict the VIO state estimate at the rate of the IMU measurements of the VIO sensor. The EKF module uses the base pose and linear velocity predicted by VIO, fuses them further with a second high-rate IMU and leg odometry measurements, and produces robot state estimates with a high frequency and small latency suitable for control. We integrate this lightweight estimation framework with a nonlinear model predictive controller and show successful implementation of a set of agile locomotion behaviors, including trotting and jumping at varying horizontal speeds, on a torque-controlled quadruped robot.Comment: Submitted to IEEE International Conference on Robotics and Automation (ICRA), 202
    corecore