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Abstract: In recent years, research interest in Unmanned Aerial Vehicles (UAVs) has been
grown rapidly because of their potential use for a wide range of applications. In this paper,
we proposed a vision-based detection and position/velocity estimation of moving obstacle for a
UAV. The knowledge of a moving obstacle’s state, i.e., position, velocity, is essential to achieve
better performance for an intelligent UAV system specially in autonomous navigation and
landing tasks. The novelties are: (1) the design and implementation of a localization method
using sensor fusion methodology which fuses Inertial Measurement Unit (IMU) signals and
Pozyx signals; (2) The development of detection and estimation of moving obstacles method
based on on-board vision system. Experimental results validate the effectiveness of the proposed
approach.
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1. INTRODUCTION

Recently, Unmanned Aerial Vehicles (UAVs) attract at-
tentions both scholar and commercial interests within the
autonomous vehicles community as the real and potential
applications are numerous (F. Kendoul, (2012)).

Many studies of UAVs have emerged in the literature.
Some examples of its application can be found in au-
tonomous navigation of UAV in indoor environment (T.
T. Mac et al., (2018)), traffic monitoring (K. Kanistras
et al., (2015)), measurement and exploration in volcanic
environments (C.D. Melita et al., (2015)), fire detection,
monitoring, and extinguishing (L. Merino et al., (2015)),
habitat mapping (N. Dijkshoorn, (2012)). Catching a
falling object using a single UA, has been accomplished
in (P. Bouffard, (2012)) and for a group of UAVs in
cooperative formation in (R. Ritz et al., (2012)), where
high-speed external cameras were applied to estimate the
position of both the objects and UAVs.

In most applications, UAVs use Global Positioning System
(GPS)/Inertial Navigation System to obtain the absolute
positions, absolute velocities and attitude of the UAV in
the working space. However, GPS signals can be disturbed
easily, and cannot work when UAVs flying at low-altitude
such as urban, mountain, forests or indoor environment
(H. Chao et al., (2013)).
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Other sensors used for UAV obstacle avoidance include
multiple IR-UWB radars (Y. H. Shin et al., (2017)),
cameras (J. A. G. Pulido et al., (2017)), Light Detection
and Ranging (LIDAR) sensors (JS. Scherer et al., (2017)).
In Y. H. Shin et al., (2017), the methods for detect-
ing the ground (slope and roughness) and obstacles that
based on the signals acquired by multiple impulse radio
ultra-wide band are studied. An automatic expert system,
based on image segmentation procedures that assists safe
autonomous navigation through recognition and relative
orientation of the UAV and platform, is proposed in (J.
A. G. Pulido et al., (2017)). LIDAR sensors have been
extensively investigated for safe area determination for
small helicopters in (JS. Scherer et al., (2017)). Simultane-
ous localization and mapping (SLAM) is implemented to
navigate UAV in working space (H. Alvarez et al., (2015)).
In Mammarella et al., (2012); B. Herisse et al., (2012),
an optical flow is used in the vision-based navigation
approach. However, the UAV’s position estimates cannot
be obtained as optical flow can only measure the relative
velocity of features. Consequently, the optical-flow-based
navigation only works effectively in basic maneuvers, such
as takeoff, landing, and hovering.

In J.W. Langelaan et al., (2007), a vision-based navigation
system to enable a small UAV flight through a forest is
presented when the trees positions are provided roughly
by using a monocular camera and IMU. An unscented
Kalman Filter (UKF) is applied to estimate the UAV’s
states and the trees positions in the forest. Simulation
results for an UAV navigating through a 2D environment
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are implemented. However, the initial states of the UAV
(position and velocity) are assumed to be known in ad-
vance. In L. Huang et al., (2017), the vision inertial
absolute navigation system (VIANS) for an UAV using
landmarks is developed. Firstly, the model of the VIANS is
implemented. Secondly, Extend Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) are applied, respectively,
to estimate the absolute position, absolute velocity and
attitude of the UAV. Lastly, the influence of landmark
distribution on observability, convergence speed and es-
timation accuracy of the VIANS are validated through
simulations.

Current implementations of a UAV still require a robust
autonomous navigation algorithm in dynamic environ-
ments. Therefore, the knowledge of a moving obstacle’s
state, i.e., position, velocity, is a crucial issue to achieve
realizable performance from most UAV intelligent systems.
Several dynamic position and velocity estimation algo-
rithms have been proposed. It is possible with a system
based on vision or GPS (J. Cobano et al., (2008); S. H.
Liu et al., (2010)). In G. Farneback, (2010), a velocity
estimation algorithm which uses orientation tensors and
parametric motion models, is developed to provide accu-
rate results however the speed is somewhat slow.

In this paper, a proposed vision-based detection and es-
timation approach of moving obstacle for a UAV au-
tonomous navigation is presented. This work is an initial
step for the development of fully autonomous navigation
and landing of a UAV in dynamic environment. The main
contributions of this research are: (i) the development of a
position-estimation approach using sensor fusion method-
ology which fuses IMU signals and Pozyx signals; (ii) the
design and implementation of a vision-based detection and
estimation of moving obstacles for a UAV autonomous
navigation.

The paper is organized as follows. A brief description of
the Ar.Drone 2.0 platform used in this study is introduced
in section 2. System setup and localization method are
presented in section 3. Obstacle detection and estimation
are described in section 4. The experimental results are
provided in section 5. Finally, section 6 includes conclu-
sions and suggestions for further work.

2. AR.DRONE 2.0 QUADROTOR PLATFORM

An Ar.Drone 2.0, a commercial and low-cost micro UAV,
is used in this work. This drone includes four propeller
blades arranged symmetrically around a central unit which
includes the sensory equipment and the circuit board.
There are four basic motions of this quadrotor: pitch, roll,
throttle and yaw as shown in Fig. 1.

The sensor system of this drone consists of several motion
sensors which together form an IMU. The communication
between an Ar.Drone and a command station is performed
via Wi-Fi connection within a 50 meters range. The
Ar.Drone 2.0 is equipped with two cameras, one in the
bottom part and the other in frontal part. They have
resolutions of 320 x 240 pixels at 30 frames per second
(fps) and 640 x 360 pixels at 60 fps, respectively.

Several Software Development Kits (SDK) have been de-
veloped for Windows, Linux or iOS operating systems S.

Fig. 1. The movements of an AR.Drone 2.0.

Piskorski et al., (2012); T. Krajnik et al., (2011); (2013),
thus enabling the AR.Drone 2.0 to be manipulated from
a computer, smart phone or tablet. In this study, the
Ar.Drone 2.0 is controlled from a computer using Visual
Studio C++, OpenCV and cvdrone.

The developed SDK mode allows the drone to transmit
and receive the information of roll angle (rad), pitch angle
(rad), the altitude (m), yaw angle (rad) and the linear
velocities on longitudinal/ transversal axes (m/s). They
are denoted by {θout, φout, ζout, ψout, ẋ, ẏ} respectively.

The system is executed by four inputs {V x
in, V y

in, ζ̇in, ψ̇in}
which are the linear velocities on longitudinal/transversal
axes, vertical speed and yaw angular speed references
as depicted in Fig. 2. The control parameters given to
the internal controllers are floating point values between
[-1, 1]. Those parameters are not directly the control
parameters values, but a percentage of the maximum
corresponding values of the mentioned controller.

Fig. 2. Inputs and Outputs of a AR.Drone 2.0.

3. SETUP SYSTEM AND LOCALIZATION

The setup consists of a Lego Mindstorm that is driving
with a constant speed of 0.2 m/s and a hovering drone
that estimates the velocity of the bot using its bottom
camera as shown in Fig. 3.

The system setup and the proposed localization based on
sensor fusion are developed in a lab-scale environment. For
real-life application outdoors, wind gust and other issues
may arise, which are not discussed here.

In order to perform autonomous assignments, an accurate
position estimation is essential requirement. In outdoor
applications, GPS usually provides an estimation that is
accurate enough however, it is not an effective tool for
indoor applications. There are several options for indoor
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Fig. 3. The setup system.

position estimation such as: visual navigation, the on-
board IMU data or extra sensors. This section is concerned
with the state estimation of an UAV in indoor environment
using sensor fusion which fuses IMU signals and Pozyx
signals.

The IMU measures the roll, pitch and yaw angle of the
UAV. The velocity estimations are obtained by fusing the
information from a 3-axis gyroscope with the information
from a 3-axis accelerometer and a magnetometer. Position
estimations can then be obtained by integrating the ve-
locities. As the velocities are given in drone coordinates,
a coordinate transformation to real world coordinates is
required.

xk = xk−1 +

[
cos(yaw) − sin(yaw) 0
sin(yaw) cos(yaw) 0

0 0 1

]
· Vdrone ·∆t (1)

where:
Vdrone is velocity of the drone;
xk, xk−1 are position of the drone in x direction at sample
k, k − 1;
∆t is sample time.
The y position is calculated in the similar approach. The
better estimation of the height can be obtained by fusing
the velocity in z-direction with the information from the
ultrasonic sensor.

To use Pozyx for the localization of a Ar.Drone 2.0,
the position estimation is implemented by using ultra-
wide band technology. The position estimation accuracy
of this equipment is ±10 cm. Please refer to software,
(2013). Three anchors are placed in a room (see Fig. 4).
The anchors should not be placed on one line or on one
plane. The absolute position of these anchors needs to be
known in advance. By measuring the distance between the
Pozyx tag and each anchor, the position of the Pozyx
(UAV position) tag can be estimated. These were filtered
out by defining a maximum allowed deviation of the
current position compared to the previous one. When the
deviation exceeds the threshold value, the current position
is set equal to the previous one. The Pozyx offers a robust
position estimation. The results obtained by unfiltered and
filtered Pozyx is shown in Fig. 5.

To combine the advantage of the IMU and the Pozyx, we
fused these signals. A Kalman filter is used to combine the
information of different sensors. The state of the UAV is
(x, y, z, vx, vy, vz)T .

A Kalman filter consists of two phases: the prediction
phase and the update phase. In the prediction phase, the

Fig. 4. The Ar.Drone 2.0 equipped Pozyx and its anchor.

Fig. 5. Unfiltered compared to Filtered Poxyz signal.

Kalman filter estimates the position and its uncertainty
based on the physical model.

x̂k = A · x̂k−1 (2)

Pk = A · P ′k−1 ·AT +Q (3)

In the update phase the observed measurements are used
to find a new best estimate.

K ′ = Pk · CT (C · Pk · CT +R)−1 (4)

x̂′k = x̂k +K ′(zk − C · x̂k) (5)

P ′k = Pk −K ′ · C · Pk (6)

The transition matrix A was chosen as in (7). The variable
dt is equal to the mean execution time of the loop. With
the used sensors, it is possible to measure the state directly,
so the measurement matrix C is equal to an unity matrix.

A =


1 0 0 dt 0 0
0 1 0 0 dt 0
0 0 1 0 0 dt
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (7)

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (8)
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To design a Kalman filter, the process noise covariance Q
and the measurement noise covariance R are added. The
covariances of the Pozyx were then tuned manually until
the desired result was obtained.

Q =


0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.3 0 0
0 0 0 0 0.3 0
0 0 0 0 0 0.3

 (9)

R =


10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 0.05 0 0
0 0 0 0 0.05 0
0 0 0 0 0 0.05

 (10)

Fig. 6 illustrates an estimation of the position with sensor
fusion, Pozyx and IMU only. In the experiment, the UAV
starts at x ≈ 0 m, then goes around 21 seconds to x ≈ 1 m
and finally goes around 30 seconds to x ≈ 2m. It is obvious
to not only use the IMU for position estimation as it starts
to drift very quickly. The Pozyx has a robust position
estimation but it is noisy. The sensor fusion combines the
advantages of both signals. It provides a robust estimation
without noise.

Fig. 6. Comparison of the different localization methods.

4. VISION BASED OBSTACLE DETECTION

To recognize unknown moving obstacles, advanced sensors
are needed instead of the ones that are currently installed
on the Parrot Ar.Drone 2.0. It is not possible to install
extra sensors due to weight restrictions. That is why the
moving obstacles are marked so that they can be detected
with the bottom camera. To show the concept, the moving
obstacles are marked with colored paper. The obstacles are
then filtered based on their color. From this, the position
of the obstacles can be determined.

4.1 Obstacle detection and estimation

To be able to detect the position of the colored paper, each
pixel that has a certain HSV value should be converted to
a binary value that indicates if the obstacle (colored paper)
is present in that pixel. To perform this conversion, a range
of hue, saturation and value needs to be specified that

corresponds to the colored paper. To obtain a rectangle
that includes the object as shown in Fig. 7, the standard
contour tracing function of OpenCV is used.

Fig. 7. Color based tracking moving obstacle.

4.2 Conversion coordinates

It is possible to extract the pixel coordinates of the
obstacle based on the contour detection process. These
coordinates are converted to the real-world coordinates
to have an estimation of the position and the velocity
of the obstacle. The calculation is implemented based on
the diagram as shown in Fig. 8. In which M is center
point of the received image. P is the position of the Lego
robot in the image coordinates. AOVx is the angle of field
of view and D presents bottom camera of the AR.Drone
2.0. O is projection point of D in horizontal plane. W is
intersection point between DP and horizontal plane. The
following formulas are applied. |PM | presents |XP −XM |

Fig. 8. Conversion from point in pixel coordinates to real-
world coordinates in 1D

with XM is the x-coordinate of the M -the middle point of
the picture and XP the x-coordinate of P .

|DM | = |KM |
tan(AOVx/2)

(11)

α = arctan(
|PM |
|DM |

) (12)

β presents θ ± α, the sign depends whether XP>XM or
XP<XM therefore α′ is introduced.

α′ = arctan(
XP −XM

|DM |
) (13)

We have:

β = θ + α′ (14)

From which the x-coordinate in drone coordinates (with
respect to the drone) results:

xW = tan(β) · h (15)
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with DO = h
The absolute world x-coordinate of the object is then:

xobj = xdrone + cos(yaw) · xW − sin(yaw) · yW (16)

In the similar approach, the y-coordinate of the object
(moving obstacle) is:

yobj = ydrone + cos(yaw) · yW + sin(yaw) · xW (17)

5. EXPERIMENT RESULTS

For safe autonomous navigation/landing in presence of
moving obstacle, an essential requirement is perception
of the position and velocity of the moving object. To
validate our approach, the system setup consists of a Lego
Mindstorm that is driving with a constant speed of 0.2
m/s and an Ar.Drone 2.0 that estimates the velocity of
the robot using its bottom camera.

5.1 Position estimation of the moving obstacle

This subsection presents the results of position estimation
of the moving obstacle using bottom camera of the drone.
In Fig. 9, Fig. 10, the position of the drone, the position
of the robot with respect to the drone and the (absolute)
position of the robot are obtained. When the estimations
are equal to zero, the robot is not in sight of the drone. The
x-position is linearly dependent of time which corresponds
to a constant velocity. The y-position fluctuates between
zero and 0.1 m, which indicates that the real deviation of
the y-position is low. The fluctuations are mainly caused
by the imperfect localization of the drone, the delay be-
tween localization of the drone and the position estimation
of the robot by camera and the fact that samples are taken
in discrete intervals. These shortcomings mainly affect the
estimation when the drone is very dynamic.

Fig. 9. Position estimation of the robot in x-direction.

5.2 Velocity estimation

To obtain a proper velocity estimation, a cumulative
moving average filter is applied in this application. This
result shows that the measurement is reasonable at the
first stage (at 1.5 first seconds) as shown in Fig. 11.
Thereafter, the velocity estimation is quite accurate as
shown in Fig. 12. The experiment shows that velocity
estimations based on vision system is feasible from a drone.
Even considering delays, accurate velocity estimations of
moving obstacles are obtained.

Fig. 10. Position estimation of the robot in y-direction.

Fig. 11. Moving average filter that is applied on the
velocity measurements of the moving obstacle.

Fig. 12. Cumulative moving average filter that is applied
on the velocity measurements of the moving obstacle
after 1.5s.

6. CONCLUSION

This paper proposed a vision-based detection and esti-
mation moving obstacles of a commercial AR. Drone 2.0.
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The system is described from electromechanical point of
view. The knowledge of a moving obstacle’s state, i.e.,
position, velocity, assists the UAV navigate automatically
in working environment. The main contributions include
(i) The development of a localization methodology us-
ing sensor fusion technique which fuses IMU signals and
Pozyx signals; (ii) Design and implementation an effective
estimation of moving obstacle’s position and velocity based
on on-board vision system. The results indicate that the
obtained model fits properly to the measured data. The
designed strategy is able to detect and estimate accurately
the state of the dynamic obstacle. This research is the
first step to develop autonomous navigation and landing
of the UAV in a dynamic environment. Future work in-
cludes implementation the algorithm with multiple moving
obstacles with different speeds and multiple UAVs.
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