526 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Nonlinear control of a quad tilt-wing UAV

    Get PDF
    Unmanned aerial vehicles (UAVs) have become increasingly more popular over the last few decades. Their fascinating capabilities and performance in accomplishing a specific task have made them indispensable for various civilian/commercial and military applications. The remarkable progress in advanced manufacturing techniques and electronic components have rendered development of small, intelligent and low-cost UAVs possible. Consequently, a significant amount of research effort has been devoted to design of UAVs with intelligent navigation and control systems. This thesis work focuses on nonlinear control of a quad tilt-wing unmanned aerial vehicle (SUAVI: Sabanci University Unmanned Aerial Vehicle). The aerial vehicle has the capability of vertical takeoff and landing (VTOL), and flying horizontally due to its tilt-wing mechanism. Nonlinear dynamical models for various flight modes are obtained. A hierarchical control system that includes vertical, transition and horizontal modes flight controllers is developed. In order to design these controllers, the dynamics of the aerial vehicle is divided into position and attitude subsystems. Several nonlinear position control methods are developed for different flight modes. For the vertical flight mode, integral sliding mode and PID based position controllers via dynamic inversion method are designed. Feedback linearization and integral sliding mode attitude controllers are also proposed for the attitude stabilization of the aerial vehicle in vertical, transition and horizontal flight modes. Simulations and several real flight experiments demonstrate success of the developed flight controllers

    Trajectory Tracking Control of a Four Rotor Unmanned Aerial Vehicle Based on Continuous Sliding Mode Controller

    Get PDF
    In this paper, a nonlinear Continuous Sliding Mode control (CSMC) application is presented for trajectory tracking control of a four rotor unmanned aerial vehicle (UAV) called the Quadrotor, also known as micro helicopter. The proposed controller is tested with different time-varying reference routes to provide a stable flight for position control. To show the effectiveness of the designed CSMC, well-tuned PI controller is also applied to quadrotor for the same routes. The current position of the quadrotor is taken from accelerometer, gyroscope and ultrasonic sensors. The experimental results show that the CSMC is adequate to dealing with parameter uncertainties occur in the system dynamics while flying and has satisfactory performance in terms of robustness against to disturbances and error elimination when it compared with PI controller

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    Fault tolerant control of a quadrotor using L-1 adaptive control

    Get PDF
    Purpose – The growing use of small unmanned rotorcraft in civilian applications means that safe operation is increasingly important. The purpose of this paper is to investigate the fault tolerant properties to faults in the actuators of an L1 adaptive controller for a quadrotor vehicle. Design/methodology/approach – L1 adaptive control provides fast adaptation along with decoupling between adaptation and robustness. This makes the approach a suitable candidate for fault tolerant control of quadrotor and other multirotor vehicles. In the paper, the design of an L1 adaptive controller is presented. The controller is compared to a fixed-gain LQR controller. Findings – The L1 adaptive controller is shown to have improved performance when subject to actuator faults, and a higher range of actuator fault tolerance. Research limitations/implications – The control scheme is tested in simulation of a simple model that ignores aerodynamic and gyroscopic effects. Hence for further work, testing with a more complete model is recommended followed by implementation on an actual platform and flight test. The effect of sensor noise should also be considered along with investigation into the influence of wind disturbances and tolerance to sensor failures. Furthermore, quadrotors cannot tolerate total failure of a rotor without loss of control of one of the degrees of freedom, this aspect requires further investigation. Practical implications – Applying the L1 adaptive controller to a hexrotor or octorotor would increase the reliability of such vehicles without recourse to methods that require fault detection schemes and control reallocation as well as providing tolerance to a total loss of a rotor. Social implications – In order for quadrotors and other similar unmanned air vehicles to undertake many proposed roles, a high level of safety is required. Hence the controllers should be fault tolerant. Originality/value – Fault tolerance to partial actuator/effector faults is demonstrated using an L1 adaptive controller

    Disturbance observer-based backstepping control of tail-sitter UAVs

    Get PDF
    The application scope of unmanned aerial vehicles (UAVs) is increasing along with commensurate advancements in performance. The hybrid quadrotor vertical takeoff and landing (VTOL) UAV has the benefits of both rotary-wing aircraft and fixed-wing aircraft. However, the vehicle requires a robust controller for takeoff, landing, transition, and hovering modes because the aerodynamic parameters differ in those modes. We consider a nonlinear observer-based backstepping controller in the control design and provide stability analysis for handling parameter variations and external disturbances. We carry out simulations in MATLAB Simulink which show that the nonlinear observer contributes more to robustness and overall closed-loop stability, considering external disturbances in takeoff, hovering and landing phases. The backstepping controller is capable of decent trajectory-tracking during the transition from hovering to level flight and vice versa with nominal altitude drop.Web of Science106art. no. 11

    PID vs LQR controller for tilt rotor airplane

    Get PDF
    The main thematic of this paper is controlling the main manoeuvers of a tilt rotor UAV airplane in several modes such as vertical takeoff and landing, longitudinal translation and the most important phase which deal with the transition from the helicopter mode to the airplane mode and visversa based on a new actuators combination technique for specially the yaw motion with not referring to rotor speed control strategy which is used in controlling the attitude of a huge number of vehicles nowadays. This new actuator combination is inspired from that the transient response of a trirotor using tilting motion dynamics provides a faster response than using rotor speed dynamics. In the literature, a lot of control technics are used for stabilizing and guarantee the necessary manoeuvers for executing such task, a multiple Attitude and Altitude PID controllers were chosen for a simple linear model of our tilt rotor airplane in order to fulfill the desired trajectory, for reasons of complexity of our model the multiple PID controller doesnt take into consideration all the coupling that exists between the degrees of freedom in our model, so an LQR controller is adopted for more feasible solution of complex manoeuvering, the both controllers need linearization of the model for an easy implementation
    • …
    corecore