183 research outputs found

    AUTONOMOUS POWER DISTRIBUTION SYSTEMS

    Get PDF
    Using robotic systems for many missions that require power distribution can decrease the need for human intervention in such missions significantly. For accomplishing this capability a robotic system capable of autonomous navigation, power systems adaptation, and establishing physical connection needs to be developed. This thesis presents developed path planning and navigation algorithms for an autonomous ground power distribution system. In this work, a survey on existing path planning methods along with two developed algorithms by author is presented. One of these algorithms is a simple path planner suitable for implementation on lab-size platforms. A navigation hierarchy is developed for experimental validation of the path planner and proof of concept for autonomous ground power distribution system in lab environment. The second algorithm is a robust path planner developed for real-size implementation based on lessons learned from lab-size experiments. The simulation results illustrates that the algorithm is efficient and reliable in unknown environments. Future plans for developing intelligent power electronics and integrating them with robotic systems is presented. The ultimate goal is to create a power distribution system capable of regulating power flow at a desired voltage and frequency adaptable to load demands

    Optimization approaches for robot trajectory planning

    Get PDF
    [EN] The development of optimal trajectory planning algorithms for autonomous robots is a key issue in order to efficiently perform the robot tasks. This problem is hampered by the complex environment regarding the kinematics and dynamics of robots with several arms and/or degrees of freedom (dof), the design of collision-free trajectories and the physical limitations of the robots. This paper presents a review about the existing robot motion planning techniques and discusses their pros and cons regarding completeness, optimality, efficiency, accuracy, smoothness, stability, safety and scalability.Llopis-Albert, C.; Rubio, F.; Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences. 5(1):1-16. doi:10.4995/muse.2018.9867SWORD1165

    Object Conveyance Algorithm for Multiple Mobile Robots based on Object Shape and Size

    Get PDF
    This paper describes a determination method of a number of a team for multiple mobile robot object conveyance. The number of robot on multiple mobile robot systems is the factor of complexity on robots formation and motion control. In our previous research, we verified the use of the complex-valued neural network for controlling multiple mobile robots in object conveyance problem. Though it is a significant issue to develop effective determination team member for multiple mobile robot object conveyance, few studies have been done on it. Therefore, we propose an algorithm for determining the number of the team member on multiple mobile robot object conveyance with grasping push. The team member is determined based on object weight to obtain appropriate formation. First, the object shape and size measurement is carried out by a surveyor robot that approaches and surrounds the object. During surrounding the object, the surveyor robot measures its distance to the object and records for estimating the object shape and size. Since the object shape and size are estimated, the surveyor robot makes initial push position on the estimated push point and calls additional robots for cooperative push. The algorithm is validated in several computer simulations with varying object shape and size. As a result, the proposed algorithm is promising for minimizing the number of the robot on multiple mobile robot object conveyance

    A framework for roadmap-based navigation and sector-based localization of mobile robots

    Get PDF
    Personal robotics applications require autonomous mobile robot navigation methods that are safe, robust, and inexpensive. Two requirements for autonomous use of robots for such applications are an automatic motion planner to select paths and a robust way of ensuring that the robot can follow the selected path given the unavoidable odometer and control errors that must be dealt with for any inexpensive robot. Additional difficulties are faced when there is more than one robot involved. In this dissertation, we describe a new roadmapbased method for mobile robot navigation. It is suitable for partially known indoor environments and requires only inexpensive range sensors. The navigator selects paths from the roadmap and designates localization points on those paths. In particular, the navigator selects feasible paths that are sensitive to the needs of the application (e.g., no sharp turns) and of the localization algorithm (e.g., within sensing range of two features). We present a new sectorbased localizer that is robust in the presence of sensor limitations and unknown obstacles while still maintaining computational efficiency. We extend our approach to teams of robots focusing on quickly sensing ranges from all robots while avoiding sensor crosstalk, and reducing the pose uncertainties of all robots while using a minimal number of sensing rounds. We present experimental results for mobile robots and describe a webbased route planner for the Texas A&M campus that utilizes our navigator

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Behavioural strategy for indoor mobile robot navigation in dynamic environments

    Get PDF
    PhD ThesisDevelopment of behavioural strategies for indoor mobile navigation has become a challenging and practical issue in a cluttered indoor environment, such as a hospital or factory, where there are many static and moving objects, including humans and other robots, all of which trying to complete their own specific tasks; some objects may be moving in a similar direction to the robot, whereas others may be moving in the opposite direction. The key requirement for any mobile robot is to avoid colliding with any object which may prevent it from reaching its goal, or as a consequence bring harm to any individual within its workspace. This challenge is further complicated by unobserved objects suddenly appearing in the robots path, particularly when the robot crosses a corridor or an open doorway. Therefore the mobile robot must be able to anticipate such scenarios and manoeuvre quickly to avoid collisions. In this project, a hybrid control architecture has been designed to navigate within dynamic environments. The control system includes three levels namely: deliberative, intermediate and reactive, which work together to achieve short, fast and safe navigation. The deliberative level creates a short and safe path from the current position of the mobile robot to its goal using the wavefront algorithm, estimates the current location of the mobile robot, and extracts the region from which unobserved objects may appear. The intermediate level links the deliberative level and the reactive level, that includes several behaviours for implementing the global path in such a way to avoid any collision. In avoiding dynamic obstacles, the controller has to identify and extract obstacles from the sensor data, estimate their speeds, and then regular its speed and direction to minimize the collision risk and maximize the speed to the goal. The velocity obstacle approach (VO) is considered an easy and simple method for avoiding dynamic obstacles, whilst the collision cone principle is used to detect the collision situation between two circular-shaped objects. However the VO approach has two challenges when applied in indoor environments. The first challenge is extraction of collision cones of non-circular objects from sensor data, in which applying fitting circle methods generally produces large and inaccurate collision cones especially for line-shaped obstacle such as walls. The second challenge is that the mobile robot cannot sometimes move to its goal because all its velocities to the goal are located within collision cones. In this project, a method has been demonstrated to extract the colliii sion cones of circular and non-circular objects using a laser sensor, where the obstacle size and the collision time are considered to weigh the robot velocities. In addition the principle of the virtual obstacle was proposed to minimize the collision risk with unobserved moving obstacles. The simulation and experiments using the proposed control system on a Pioneer mobile robot showed that the mobile robot can successfully avoid static and dynamic obstacles. Furthermore the mobile robot was able to reach its target within an indoor environment without causing any collision or missing the target
    • …
    corecore