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ABSTRACT

A Framework for Roadmap-Based Navigation and

Sector-Based Localization of Mobile Robots. (August 2004)

Jinsuck Kim, B.S., Inha University;

M.S., Purdue University

Chair of Advisory Committee: Dr. Nancy M. Amato

Personal robotics applications require autonomous mobile robot navigation

methods that are safe, robust, and inexpensive. Two requirements for autonomous

use of robots for such applications are an automatic motion planner to select paths

and a robust way of ensuring that the robot can follow the selected path given the

unavoidable odometer and control errors that must be dealt with for any inexpensive

robot. Additional difficulties are faced when there is more than one robot involved.

In this dissertation, we describe a new roadmap-based method for mobile robot

navigation. It is suitable for partially known indoor environments and requires only

inexpensive range sensors. The navigator selects paths from the roadmap and desig-

nates localization points on those paths. In particular, the navigator selects feasible

paths that are sensitive to the needs of the application (e.g., no sharp turns) and of

the localization algorithm (e.g., within sensing range of two features). We present

a new sector-based localizer that is robust in the presence of sensor limitations and

unknown obstacles while still maintaining computational efficiency. We extend our

approach to teams of robots focusing on quickly sensing ranges from all robots while

avoiding sensor cross-talk, and reducing the pose uncertainties of all robots while

using a minimal number of sensing rounds. We present experimental results for mo-

bile robots and describe a web-based route planner for the Texas A&M campus that
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utilizes our navigator.
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1

CHAPTER I

INTRODUCTION

There is an increasing number of potential applications for autonomous mobile robots

in indoor environments, ranging from cleaning, to surveillance, to search and rescue

operations in burning buildings or hostage situations, to assisting the handicapped or

elderly around the home. There are difficulties and challenges that must be addressed

before we can realize these applications. In particular, personal robotics applications

in indoor environments must be safe, robust, and inexpensive. Two requirements for

autonomous use of robots for such applications are an automatic motion planner to

select paths, and a robust way of ensuring that the robot can follow the selected path

given the unavoidable odometer and control errors that must be dealt with for any

inexpensive robot.

The mobile robot navigation problem is to first compute a route from the current

position to the destination and then to safely move the robot along that route while

interacting appropriately with other objects along the way. Among many issues

relevant to autonomous operation, we focus on two main computational issues: path

planning and localization. The path planning problem is to compute a valid (e.g.,

collision–free) path connecting the start and the goal configurations. The desired

trajectory can be viewed as a sequence of robot configurations, each of which describes

the robot’s location (x, y) and orientation (Θ) with respect to the world coordinate

system (see Figure 1(a)). When following the path, periodic localization is necessary

to reset odometer errors, e.g., due to wheel slippage. Since GPS signals cannot be

relied upon in an indoor environment, one low cost approach to gathering data for

The journal model is IEEE Transactions on Automatic Control.
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localization is to use sensors attached to the robot that find the range (distance)

to obstacles. An example of such a robot is shown in Figure 1(b). When there is

more than one robot, additional constraints are placed on the path planning and path

following problems.

X

Y

O

(x,y)

Q

(a) (b)

Fig. 1. (a) Three coordinates are used to represent the configuration of a mobile robot

in a planar environment, and (b) mobile robot with three sonar sensors mounted

on the pan/tilt head.

A. Global Navigation

Designing robust global navigation techniques for inexpensive mobile robots has been

a challenge for scientists for many years. Path planning is known to be NP–hard

in all but the most trivial situations [13, 67], and precise path following requires

precise localization which can require state–of–the–art sensors that are expensive and

sometimes reserved for military uses.

Our strategy is to address these issues simultaneously using a roadmap–based

global navigator that has a global understanding of the environment. This under-

standing will be exploited to select paths which are feasible in terms of localization
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costs and requirements. A roadmap for mobile robots is analogous to a map of the

highway system used by automobile drivers. It contains a representative set of feasible

paths, ideally covering the interesting regions of the environment. Using a roadmap,

moving a robot from a start to a goal position is composed of three steps: moving

from the start to a nearby node in the roadmap, traveling in the roadmap, and exiting

the roadmap and moving to the goal. The path planner employs a local planner to

connect the start (or the goal) to the roadmap, and the roadmap is typically explored

using some graph traversal method such as Dijkstra’s shortest path algorithm [36].

The main contribution of our work is to propose an integrated approach for

path planning and path following, and to design novel methods for path planning

and following that are sensitive to this interdependence. We believe an integrated

approach is appropriate for many reasons, the most obvious being that there exist

some cases where the independent execution of the path planner and path follower

could fail to solve the problem. For example, suppose the path planner selects a route

on which it is impossible to localize due to the physical limitations of the sensors. Our

navigator is based on the philosophy that the “path planner and the path follower

(localizer) should assist each other”, which we introduced in [38]. Similar concepts

were also proposed by Kuipers [47] in his “distinctive places” paper. Namely, the

path planner’s objective is to select paths that facilitate the localization and other

optimization criteria. For example, if there are certain regions in which localization

would not be possible, then the navigator should ensure the robot does not need

to localize in those areas. To aid this process, useful information for localization is

encoded in the roadmap and is used during path selection.

The navigator determines when to execute the path planning and path following

modules using its global understanding of the problem and the environment. When

a path is selected, the navigator also computes a subgoal: a node on the path that
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the robot is expected to be able to move to safely from the start, and where it will

localize and then wait for its next command. For example, the navigator may choose

to localize before approaching a door so that the robot can pass near the center of

the narrow region. Also, given a path, the robot could localize frequently or lazily

depending on mission requirements. For example, if it is important to stay on the

planned trajectory, then the subgoal must be placed so that the robot’s error is

kept small. Or if large clearances are important, then the path should be selected

appropriately and localization should be performed frequently enough to ensure the

required clearances are maintained.

An example is shown in Figure 2. Here, we have an artificial environment which

represents a room with a few pieces of furniture. Three paths (P1, P2, P3) and five

obstacles (O1 – O5) have been purposefully placed to show that in some circumstances,

a seemingly inefficient (long) path might be the only feasible path, and that in that

case our navigator should select it. First, a basic distance–prioritized path planner

will choose P1 which is the shortest. The path has little clearance from obstacles O1

and O2, and is thus not safe unless the robot has very accurate odometry. Second,

P2 could also be a safe path. However, if the robot has poor odometry and short–

range sensors, then it might not be able to follow the path because it might need to

localize for safety reasons in a region in the environment where no obstacles or walls

can be sensed. So, given these constraints, an intelligent navigator would choose P3

which provides good scannable obstacles along the path. The robot can localize in

the vertical direction when it is close to the upper wall so that its uncertainty region

does not grow too much.
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Fig. 2. Navigator chooses a good path for localization.

1. Roadmap–Based Path Planning

Path planning originated in robotics and has also been adapted to other areas such as

autonomous transportation systems for automobiles or aircraft, military unmanned

vehicles, and computer animations in the entertainment industry [10, 15, 43]. In

these applications, paths must be found quickly in large search spaces, often high

dimensional C-spaces (many degrees of freedom).

Roadmap-based path planning [49] is ideal for such scenarios [35]. The roadmap

can be viewed as a graph in the robot’s configuration space, where vertices correspond

to robot configurations and edges correspond to paths connecting the configurations

in the graph. The strength of roadmap–based planners is that the connectivity of a

good roadmap can approximate the connectivity of the planning space. Later, queries

can be processed quickly by connecting the start and the goal to the roadmap, and

searching the roadmap for a path connecting the two connection points. In this work,

we use roadmap–based path planners for our mobile robots, and focus on the issue of

extracting a quality path from the roadmap.
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There are two main issues that are of concern in searching for and following

paths in the roadmap. First, roadmaps contain many possible routes connecting two

different nodes. Depending on the graph search algorithm and the criteria applied,

different paths connecting the same start and goal nodes can be found. Second, a

path extracted from a roadmap is composed of multiple segments, and its quality

could likely be improved by “smoothing” it using numerical optimization techniques

[45, 48, 84]. These two properties are inherent in roadmap–based approaches. We call

the first a global property because the chosen search method can result in large–scale

changes in the path. We refer to the second as a local property because typically

there are no topological differences between the extracted path and the optimal path.

In designing our navigator, we take advantage of the global aspect of roadmaps which

enables quick searches in large environments. However, the local property is still useful

because it ensures that the robot can go back to the planned path after localization

as long as the amount of error is within the granularity of the roadmap.

In this work, we first apply roadmap-based methods that have been developed

for robotic manipulators with high degrees of freedom (see Chapter II Section F for

previous work [4, 79]) to mobile robot applications and analyze their strengths and

weaknesses. After that, we present a new approach for extracting an optimal path

in the roadmap. Since we focus on the global planning ability of the roadmap, the

paths are not smoothed.

2. Localization

Localization has received a tremendous amount of attention from researchers in mo-

bile robotics. The localization method used primarily depends on the sensors with

which the robot is equipped. Common sensor choices for mobile robots are optical

sensors such as cameras using CCD arrays, and range sensors such as laser, IR, and
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sonar sensors. Though recent research using a camera includes efficient localization

methods [8, 82], due to the wealth of information, efficient processing using limited

computing power is still not an easy task. In this work we use inexpensive range

finders. Compared to vision sensors, an advantage of range sensors is that they are

less susceptible to changes in lighting conditions due to, e.g., night, smoke from fire,

etc.

To determine what types of features in the environment can be used for localiza-

tion, we need to know the visibility model (or perceptual model) of the sensor. If the

sensor is perfect, then the visibility model is trivial because it can detect all visible

obstacles. Determining the visibility model for realistic sensors requires analyzing

physical sensor limitations such as determining their maximum and minimum range.

Since the information contained in the features is limited by the visibility model,

localization algorithms should be designed to work efficiently given the information

provided by the visibility model.

As the robot moves, a certain amount of potential error accumulates in the

robot’s knowledge of its position. The uncertainty region is a representation of the

current possible error. In particular, it is the set of all possible positions of the robot at

the given time. Localization is the process of reducing the robot’s uncertainty region,

usually using sensor measurements. There are many design factors such as on-line1

or off-line localization, statistics-based or geometric-based approaches, topological or

bitmap-based representations (maps) of the environment, whether the map of the

environment is known, partially known, or unknown2, the accuracy and resolution of

sensors, etc.

1Localizing while the robot is moving
2This is the SLAM (simultaneous localizing and map building) problem.
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In this work, we focus on sonar range sensors which are less expensive but also

less accurate than laser range sensors. We rely on geometric operations rather than

stochastic modeling, assume that the map is partially known (e.g., walls are known

but the location of furniture is not), and that the mission does not require on–line

localization (localize while moving). Building on previous work that assumed ideal

visibility [52], in this research, we propose two localization methods that are applicable

for more realistic visibility models. For each method we identify scannable features in

the environment, develop algorithms, prove feasibility and robustness, and perform

experiments. In addition, since we must deal with imperfect scan data, our methods

are inherently robust to unknown obstacles, and have the potential to be used in or

with map building algorithms.

B. Contribution

In this research, we make contributions in several areas relevant to mobile robotics.

• We describe a new roadmap-based method for mobile robot navigation that

integrates the path planning and path following operations. In particular, the

path planner selects feasible paths that are sensitive to the needs of the applica-

tion (e.g., no sharp turns) and of the localization algorithm (e.g., within sensing

range of two features).

• We present a new sector-based localizer that is robust to sensor limitations and

unknown obstacles while maintaining computational efficiency. Our method has

been verified by experiments with real mobile robots with sonar sensors.

• We describe an augmented version of Dijkstra’s shortest path algorithm that

is well suited for selecting paths from roadmaps that are sensitive to multiple
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optimization criteria. Our path planner has been tested with roadmaps con-

structed using several strategies and it is used in a web-based route planner for

the Texas A&M campus.

• We define and investigate two problems for multiple-robot localization: range

sensing without sensor cross–talk, and reducing the pose uncertainties of all

robots using a minimal number of sensing steps. We show both problems are

NP-complete and then identify approximation algorithms for them.

Portions of this work have been published in the IEEE International Conference

on Robotics and Automation (ICRA) and in the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS): multiple robot localization [37], global

planning [38], visibility sectors-based localization [39, 41] and path optimization [40].

C. Outline

This dissertation is organized as follows. We begin in Chapter II by discussing previ-

ous work related to our work. In Chapter III, our roadmap–based navigation strategy

is introduced, and our optimal path extractor is described. Next in Chapter IV, we

describe our sector-based localization methods that are sensitive to sensor limitations.

We consider two problems related to multiple robot localization in Chapter V. Exper-

imental results are presented in Chapter VI, including hardware experimental results

using a mobile robot with sonar sensors in an office environment. In Chapter VII, we

describe the ‘Campus Navigator’ which is a web–based application using our tech-

nique for extracting optimal paths from a roadmap subject to multiple optimization

criteria. Tables defining the campus navigator’s roadmap are described in Appendix

A.



10

CHAPTER II

RELATED WORK

In this chapter, we describe preliminaries and previous work on mobile robot naviga-

tion that are related to our work. We begin by describing the physical limitations of

odometry and range sensors, which are particular to mobile robotics. Then we dis-

cuss the mobile robot localization problem and present a summary of relevant related

work. After localization–related topics, previous work related to path planning and

roadmap methods is presented.

A. Odometry Error and Uncertainty Regions

The count of wheel revolutions provides positional information relative to the start

location. This kind of measurement is called dead–reckoning. Most mobile robots

have encoders to measure the rotation of their wheels. In the absence of odometer

error, based on its kinematics, the robot’s configuration can be precisely calculated

from the encoder readings. Unfortunately, encoder readings are error prone. The

causes of this error include issues such as wheel slippage, shifting payloads, inaccu-

rate turns, irregular floor surfaces, change of tire radius, etc. These errors render it

effectively impossible for a robot to precisely follow a planned path.

There are several algorithms that estimate the position and orientation uncer-

tainty of a dead-reckoning robot [44, 75]. One choice is to represent the robot’s posi-

tion by an uncertainty ellipse, which is a simplified version of statistics-based models.

The ellipse is centered about the nominal estimate and is the constant probability

contour for a multivariate Gaussian distribution [69]. Usually, it is a conservative

boundary containing all expected positions of the robot.

For a straight translational path, a simple way to represent the the robot’s po-
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sition uncertainty is to use two parameters corresponding to longitudinal and lateral

deviation to compute minor and major axes of an uncertainty ellipse centered at the

end of the path. As illustrated in Figure 3(a), actual parameters to compute an

ellipse can be obtained by experiments. The ellipse boundary becomes conservative

if the number of experiments are sufficiently large. In reality, it is more complex

because the trajectory may be slightly circular and the ellipse grows nonlinearly with

the robot’s travel distance.

In this work, we take the simple geometric approach by assuming that the ellipse

grows linearly. Exact uncertainty modeling is practically impossible, and is not a

focus of our work. However, this method is similar to the covariance propagation of a

Kalman filter since the elements of the covariance matrix (the square of the expected

error) is increased by the square of the state propagator matrix, which is constant

[61].

(a)

start

goal

actual path

command path

uncertainty ellipse

uncertainty region

(b)

Fig. 3. Modeling robot position uncertainty. (a) Estimating uncertainty ellipse from

a translation, and (b) uncertainty ellipses and region.

The uncertainty region is the union of the robot’s uncertainty ellipses as it moves

along a path, as shown in Figure 3(b). If the robot translates after rotation, the final

uncertainty ellipse depends on both the rotation angle and the translation distance.

This requires an uncertainty compounding technique [69] which is defined as follows.
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Given the uncertainties in two coordinate frames, compounding collapses them into

a single uncertainty that covers its components. This is different from uncertainty

merging which produces a single uncertainty that is less than any of its components. In

our work, we geometrically compound uncertainty ellipses by first identifying ellipses

resulting from translation and rotation error, and then by overlapping them and

finding an ellipse that includes all.

B. Sonar Sensor Limitations

Ultrasonic range finders detect proximity using the technique of time-of-flight mea-

surement. Polaroid modules are popular devices for inexpensive mobile robots because

of their ease of interfacing and relatively low cost. The amplitude profile in Figure 4

shows that the strength of the sonar signal is concentrated in the center of the beam

with some side lobes.
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Fig. 4. Typical signal strength pattern for sonar sensors.

The signal emitting from a range sensor is actually like a cone in space. Figure

5 illustrates the signal projected to a plane. Sonar sensors have wider cones than IR
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Fig. 5. Beam model of sonar wave. (a) Perpendicular case, (b) slight beam angle

returns strong echo and correct measurement, and (c) incidence angle is too

large.

sensors. For analytical purposes, we approximate this cone as a beam concentrated

on the center axis of the cone and represent it by a line segment as shown by the

strong signals in Figure 5(b). When the scan incidence angle is not exactly 90o, two

echoes can return (weak first and strong second) to the transmitter. Depending on

the calibration of the sensor, either the strong or weak signal can be processed. Our

equipment has been tuned to respond to the strong signal only so that the angle of

the beam is always roughly perpendicular to the sensor. When the sensor is rotated

with a small angular step to measure a wall, in theory, the scan data from an ideal

sensor plotted in Cartesian coordinates will align to a line segment.

Unfortunately, sonar sensors have several physical limitations that prevent them

from always reliably capturing geometric features from the environment.

Incidence angle limitation. This limitation arises because the sonar beam

does not return to the transmitter. For example, for our sensors, experiments indicate

that the angle between the beam and wall must be greater than 80o to successfully

identify the obstacle. This angle depends on the surface of the obstacles. Figure 5(c)
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illustrates the case where the incidence angle is less than 80o and no return signal

is received by the sensor. As a result of this limitation, only a small part of the

wall can be correctly measured. Figure 6(b) shows an actual scan of the hallway

shown in Figure 6(a). Taking these limitations into account, the scannable part of

the environment (walls and corners) is indicated in Figure 6(c).

(a) (b)

convex
corner

wall

wall

concave
corner

(c)

Fig. 6. Effect of sonar sensor incidence angle limitation. (a) The hallway environment

in our lab. (b) Actual scan data from the hallway environment using sonar

sensors. (c) Geometric features that can be scanned when taking the incidence

angle limitation into account.

Range limitation. These are the limits on the minimum and maximum dis-

tances to the obstacle that can be measured by the sensor.

Sensing time. For inexpensive applications, we limit the number of range sen-

sors installed on a robot. If the sensors have pre-determined angles of attachment

as opposed to being mounted on a rotating head, the robot must rotate its body to

align to a desired direction and take measurements. The time spent for a localization

depends on whether the robot must be stationary when scanning, the number of mea-

surements and rotations required to scan the region of interest, and if it is impossible

to scan at an arbitrarily high resolution.

In general, the accuracy of measurement is decreased when the distance to the
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obstacle is increased. Also, some sensors have an option to adjust the maximum

range, such that the sensor resolution varies inversely with the maximum range. Since

such properties are hardware–dependent, we do not consider the effect of distance on

accuracy in our range sensor model, but we do assume each sensor has a minimum

and maximum feasible range.

C. Mobile Robot Localization

Depending on the magnitude of the position uncertainty allowed, two variants of the

localization problem have been studied. One is known as “pose maintenance” or “local

localization” where a priori knowledge of the robot’s approximate position is assumed

[19]. The other approach is known as the “kidnapped–robot situation” or “global

localization” where the pose uncertainty of the robot may not be known. Though the

details of the estimation formula vary depending on the type of localization, practical

localizers have three components in common: a component for extracting geometric

features from sensor data, a high–level robot state estimator and propagator, and

information about the environment’s spatial data.

Feature extractor. In terms of low-level feature extractors, most previous work

focuses on the nonlinear behavior of range sensors and filters the data based on the

sensor’s perceptual model. These methods recognize the shapes of obstacles such as

walls, corners, doors, etc., in known environments [24, 27] or in unknown environments

[30]. Such work assumes that the environment is piecewise linear and takes advantage

of the knowledge that common geometric features exist in most indoor environments.

The filtering methods can range from simple least–squares fit to more sophisticated

techniques such as principal component analysis [58], Dempster’s rule of combination

[86], model matching by coordinate transformation [1], or Kalman filters [7].
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Uncertainty reducer. There are several high–level localization methods based

on probabilistic modeling of pose uncertainty, motion, and perception. It is commonly

assumed that the environment is Markovian (Defined in [74] as “past and future data

are conditionally independent if the current state is known”). Due to the soundness

in theory and ease of implementation, the Markov assumption is popular for research

and practical applications. A well-known implementation is Monte Carlo localization

which is based on particle filters [18].1 One advantage of this approach is that, if global

localization of the robot is possible, then particles are allowed to be uniformly spread

over the entire free space. Some variants were designed to track multiple targets [65]

and multiple robots [21]. Kalman filters are also widely used due to their ability to

optimally track the path in the presence of Gaussian noise [61]. It was mentioned

in [25] that according to experiments, general grid-based Markov localization is more

robust than Kalman filtering while the latter can be more accurate than the former.

A fundamental weakness of Kalman filters is that the initial state must be known

within a given error range.

Environment subdivider. The third component of the localizer is the knowl-

edge of the environment. Often this information is stored in some data structure

representing a spatial decomposition or environment subdivision. The motivation is

that (1) the robot’s possible configurations in the environment can be mapped from

continuous space to a discrete space so that localization is performed in a finite spa-

tial set and (2) data structures representing decompositions are often convenient to

search and construct. Examples include uniform meshes (or occupancy grids), non–

uniform meshes represented by quadtrees, binary space partitioning trees (BSP), and

non–hierarchical exact methods [19]. Evidence grids for sonar sensors [64, 85] have

1Each particle represents the expected pose of the robot at a specific time.
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been favored for their simplicity, and proved to be useful when the environment is

relatively small and simple. These approaches are resolution dependent. An example

of an exact method which is not resolution–dependent is the visibility cell decomposi-

tion [24]. In this method, each cell is defined based on what region of the environment

can be seen by the robot.

To simplify our presentation, we define two classes of localizers. The first group

is the feature–based methods, which only use two components: the feature extractor

and the uncertainty reducer. The second group is the sector–based methods, which

use all the three components. In general, we note that sector–based methods can

be more efficient than feature–based methods because they can take advantage of a

convenient representation of the environment.

The feature–based localizers improve on brute–force localization by using a ge-

ometric or statistical feature extraction module to avoid processing raw scan data.

During preprocessing, features in the map that can be identified from sensor data are

estimated and stored. A pseudo code description of the localization process is shown

in Figure 7(a). In step 3 in the pseudo code, the robot’s pose uncertainty is reduced

by matching the scanned features and the preprocessed features. If the environment

has a large number of features, searching through all preprocessed features can be

computationally demanding.

To match features more efficiently, approximate knowledge about the robot’s

configuration can be utilized to restrict the search to a subset of the preprocessed

features. The sector–based localization methods do this by combining environment

subdivision and feature extraction techniques (see Figure 7(b)). During preprocessing,

the environment is subdivided into sectors. Each sector contains a set of features

that can be used for reducing the robot’s uncertainty. During actual localization, the

sectors intersecting the robot’s possible positions (represented, e.g., by an uncertainty
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Feature–Based Localization
1. Scan the environment
2. Identify features in the scan data
3. Reduce uncertainty using features

by matching with map data

(a)

Sector–Based Localization
1. Scan the environment
2. Identify features in the scan data
3. Localize to sectors S using features
4. Reduce uncertainty using features

in sectors S

(b)

Fig. 7. Pseudo-code for (a) feature–based localization, and (b) sector–based localiza-

tion.

ellipse) are selected. Next, the features associated with those sectors are considered

for matching (step 4 in Figure 7(a)). An example of sector–based localization is

illustrated in Figure 8.

For ideal range sensors with no physical limitations such as incidence angle re-

strictions or range limits, Lee et al. [52] proposed a method to construct visibility

sectors for efficient localization. That work was inspired by an earlier method of

Guibas et al. [24] that used the concept of visibility cells2 but did not address the

issue of efficiently matching the scanned features with the preprocessed features.

D. Sensor Cross–Talk

Sensor cross–talk is electrical interference caused by electromagnetic or electrostatic

coupling between nearby conductors or external sources. An example is shown in

Figure 9 where two robots simultaneously scan when they are within sensor range

of each other. If the sensing procedure is not carefully coordinated, then the sensor

signal fired from one robot might be received by other robots and cause incorrect

readings. There are several previous studies that approach this problem from a low–

2Polygons whose edges delineate visible regions (or features) of the environment
for a robot positioned in a cell.
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Feature 1 Feature 2
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Uncertainty region

Visibility
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(a)

Feature 1 Feature 2

Uncertainty regions

(b)

Feature 1 Feature 2

Uncertainty region
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Fig. 8. An example of sector–based localization. (a) Before localization. The sectors

A and B correspond to the features 1 and 2, respectively. (c) The result of

localization to sectors, and (c) the result of localization to configuration (in

the sector). Between the two sectors, the correct one is chosen (explained in

Chapter IV).
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robot A

robot B

(a)

robot A

robot B

(b)

robot A

robot B

(c)

Fig. 9. An example of sensor cross–talk. (a) Robot A fires a sonar beam toward robot

B first, (b) Robot B also fires a sonar beam before the signal from robot A gets

to robot B, and (c) The signal from robot B is received by robot A, causing

robot A to read incorrect distance.

level such as timing emitted bursts [31] and smoothing distance values of sonar sensors

[20].

E. Multiple Robot Localization

Most previous work related to multi–robot localization focuses on collaboration among

the robots to reduce their uncertainties. A probabilistic approach suggested by Fox

et al. [21] is a multi–robot version of Monte Carlo localization. This combines the

pose belief of one robot with those of other robots using rules based on statistics. A

similar technique has been applied to Kalman filters where other robots are tracked

if they are within sensor range [61, 62, 63], and a bounded uncertainty approach

using linear programming techniques [72]. Some previous work deals with the issue

of synchronizing sensor signal firing to avoid interferences [20, 29, 31]. Our work for

multiple–robot localization focuses on high–level coordination, and is different from

low–level approaches where localization is combined with trajectory following [60, 71].
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F. Roadmap Methods

In terms of spatial representation, existing planners can be divided into two groups:

those that search in a continuous space using analytical functions, and those that use

a discrete approximation of the environment, e.g., a roadmap. A popular method

for searching a continuous space is to use potential fields. Due to the existence

of local minima, these methods are most commonly used for local planning [19].

A discrete representation of the environment can be constructed deterministically

(e.g., visibility graphs [17, 84] and Voronoi diagrams [17]) or probabilistically (e.g.,

probabilistic roadmaps [35] or rapidly-expanding random trees (RRT) [50]). A well–

known method which minimizes the Euclidean path length is to use a visibility graph

and Dijkstra’s algorithm [17]. However, this works only in ideal situations where

the robot has perfect odometry; an actual robot’s position uncertainty renders such

roadmaps infeasible.

The particular planners used in our implementation are representatives of a class

of roadmap–based planning methods called probabilistic roadmap methods (prms )

[35]. prms have proven to be very successful in efficiently solving high–dimensional

problems in complex environments. prm roadmaps are constructed by randomly

sampling configurations and retaining those that are determined to be valid, and

then connecting nearby pairs of nodes using so–called local planners.

A basic method to generate sample configurations is uniform sampling. In the

narrow passage situation3, with uniform sampling, it is unlikely that sufficiently many

nodes will be sampled in the corridor. Intuitively, narrow corridors in configuration

space may be characterized by their large surface area to volume ratio. Several

methods have been proposed that attempt to solve this so-called narrow passage

3a corridor with small clearance to the robot
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problem [4, 12, 28, 79] and prm variants have been proposed with various sampling

schemes, metrics, and local planners [3, 4].

In our experiments, we have used the medial axis prm (MAPRM) [53, 79, 80]

which samples nodes on the medial axis of the free space, and obstacle–based prm

(OBPRM) [4, 83] which samples nodes on or near to the surface of C–space obstacles.

The medial axis has been used extensively in motion planning [49]. Paths based on

the medial axis are generally considered desirable because they maximize clearance

from obstacles. The medial axis is also interesting because the medial axis is a strong

deformation retract (SDR) of the free space [81]. This means that the free space can

be continuously deformed onto the medial axis while maintaining its topological struc-

ture. In general, computing the medial axis is expensive unless the environment is low

dimensional, because it is only one dimension lower than the original space. MAPRM

computes samples on the medial axis in feasible time, even in high–dimensional space,

by random sampling and then moving the nodes to the medial axis [53].

Obstacle–based PRM is another method targeted at the narrow passage problem

[4]. It uses several techniques to generate random nodes that are on or near constraint

surfaces. Another PRM variant is based on Gaussian sampling [12]. This approach

uses a Gaussian sample distribution that is sensitive to the cross-section of the C-space

and translational degrees of freedom.

In addition to efforts to solve the narrow passage problem, several techniques have

been proposed to improve basic prms. A weakness of roadmap-based methods has

been noted by Smith et al. [68] that they capture only coarse connectivity information

about the environment. To compute the best path in the presence of small unknown

obstacles that can be detected during navigation, a fuzzy logic-based local planning

method that corrects the path using sensor measurements was suggested [68]. In

Vallejo’s work [6], the roadmap building and query processing are merged into a
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single shot method. This is useful when the preprocessing time has to be as short

as possible or the environment is subject to frequent change. To take advantage of

human insight for difficult problems, a technique for allowing the user to manually

input additional nodes using a haptic input device (a force feedback input device) is

proposed in [5]. The results in [34] provide some guidance about how many nodes need

to be sampled to guarantee a given probability of success for a particular problem.

G. Dijkstra’s Shortest Path Algorithm.

Dijkstra’s algorithm searches for shortest paths in a weighted directed graph. It

maintains an explored and an unexplored set of vertices. Figure 10 shows the pseudo

code for Dijkstra’s algorithm. In the unexplored set, each vertex maintains a dist

value which is the shortest distance from the start to that vertex known so far. A

priority queue PQ keeps unexplored nodes sorted by their dist values. Initially, the

dist value of the start node is 0 and the dist value of all other nodes is ∞ and they

are inserted into the PQ. At each search step, the algorithm first pops a vertex v

from the top of the PQ. The vertices also have parent information, which is used

to obtain the shortest path by tracing the vertices back from the goal to the start.

The vertex v is added to the explored set by setting its parent pointer and updating

its dist value. A technique to compute the correct shortest path is relaxation, which

decreases the known shortest distance of the vertices in PQ adjacent to v when a new

lower–weighted path is found.

The shortest path from the start to the goal is computed in the pseudo code

shown in Figure 11 where Dijkstra’s algorithm is used as a subroutine. The key

to computing the correct solution is the relaxation in line 8 –9 of Figure 10 which

repeatedly decreases an upper bound on the weight of the vertices in PQ when a new



24

lower–weighted path is found.

DIJKSTRA(V,E, start, goal)
1. for each v ∈ V
2. dist[v] ← ∞
3. dist[start] ← 0
4. PQ← PriorityQueue of V ordered by dist
5. while (PQ 6= ∅)
6. u← PQ.dequeue
7. for each v ∈ PQ adjacent to u
8. if (dist[v] > (dist[v] + weight(u, v))
9. dist[v] ← dist[v] + weight(u, v)
10. parent[v] ← u
11. end for
12. PQ.reorder
13. end while

Fig. 10. Pseudo code for Dijkstra’s algorithm

ShortestPath(V,E, start, goal)
1. parent← DIJKSTRA(V,E, start, goal)
2. path← ∅, u← goal
3. while (suffix of path 6= start)
4. append u to path
5. u ← parent[u]
6. end while
7. reverse path

Fig. 11. Pseudo code for shortest path algorithm

H. Robot Path Optimization

Previous research shows that applying common optimization techniques to robotics

is not straightforward because the collision–free requirement renders it difficult to

solve optimization constraints analytically or numerically [2, 77]. In particular, the

discontinuity of the search space makes it difficult to find the optimal path. Figure

12(a) shows a path extracted from a roadmap (p2) and paths generated by general
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optimization techniques (p1, p3, p4). Figure 12(b) shows two regions separated by an

obstacle. To solve two–point boundary value optimization problems, an initial guess

of the solution must be given [42]. If the initial guess is p4, then the solution cannot

be improved beyond p3 without understanding the discontinuity of the search space.

However, the suboptimal path p2 can be transformed to the optimal p1.

roadmap
goal

start

p
p

p

p

2

1

3

4

(a)

goal

start

r

r

1

2

(b)

Fig. 12. Applying optimization techniques to robot path planning. (a) Optimizing

path with initial guesses, with or without using roadmap, and (b) two separate

regions that initial guess can select.

Many recent methods for motion planning are based on roadmaps, and paths

extracted from roadmaps often need to be improved because they are composed of

many line segments. Recently, two different approaches have been developed to obtain

optimal paths for robotics applications: motion planning-based and optimal control-

based.

The first approach is based on motion planning in robotics, and relies on tech-

niques to improve the quality of the path. In Konkimalla’s work [45], the optimal

path of a nonholonomic robot is found by iteratively growing the computed region of

optimal control points from the goal configuration using a cost–to–go function. At

each step of the iteration, a cost–to–go function is computed in barycentric coordi-

nates which evenly subdivide the environment. To find optimal motions for human
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figures, Shiller’s work [66] uses Dijkstra’s shortest path algorithm in grids with edge

weights reflecting the clearance and rotation of the body parts. A dynamics filter was

used to compute feasible human postures while maximizing safety and minimizing un-

necessary movements. For 2D environments with polygonal obstacles, in Yamamoto’s

work [84], a roadmap from the visibility graph is computed by computing the con-

nectivity graph (connecting middle points of the edges in the visibility graph) and

finding combinations of the edges from start to goal. The final path is optimized

using B–splines for kinematic constraints and driving torque.

All of the approaches above use deterministic roadmaps and do not address

the issue of computational feasibility when the search space is large. Probabilistic

roadmaps encoding physical constraints have been studied by Song et al. where the

roadmap is customized for various applications, and paths are improved by itera-

tive refinement in the query step [70]. This relies on the global property explained

in Chapter I Section 1. Many techniques have been proposed for locally improving

path quality, often called smoothing. Common approaches for path smoothing in-

clude converting to a curve, moving existing nodes, or adding additional nodes to the

suboptimal path [48, 84].

The second approach is to modify general optimization or optimal control tech-

niques for robot motion planning. Because the methods are not based on roadmaps,

collision checking needs to be geometrically and/or mathematically formulated, and

is relatively complex and inefficient. The constraints of the optimization problem are

extended to AND and OR logic, which are referred to as generalized constraints and

deal with polygonal obstacles [77]. Modification of genetic algorithms was attempted

in [26] to improve the path using using Gram–Schmidt orthogonalization.

To optimally coordinate multiple robots with specified trajectories, Akella et

al. used MILP (mixed integer linear programming) where the collision between two
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robots is formulated as a δ function [2]. It is difficult to apply these techniques to

the paths extracted from the roadmap due to the discontinuities in the search space.

Our work extracts an optimal path from among the paths in the roadmap using a

cost function from optimal control theory.
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CHAPTER III

ROADMAP-BASED NAVIGATION

This chapter describes our roadmap-based global navigator which integrates the path

planning and path following components. We first present the navigator’s general

strategy, and then describe the details of our methods for computing the best path

among the candidate paths stored in the roadmap.

A. General Strategy

There are two main components to mobile robot navigation: path selection and path

following. Path selection is assisted when the environment is represented by a sim-

plified data structure such as a roadmap. A naive navigator would call the path

selector and then the follower, and expect that the path follower will ensure the robot

reaches the goal. In this case, the robot should localize as frequently as necessary to

follow the pre-determined path from the start to the goal. This works if the robot

can localize anywhere along the path. Unfortunately, determining this a priori would

require complete knowledge about the environment before the path follower is exe-

cuted. Since we assume that the environment is partially known, it is not possible

to select a path which is guaranteed to be feasible or on which it is guaranteed that

localization can be done everywhere. So, it must be possible to dynamically re-plan

after localization.

Our global navigator has the same general strategy as the method proposed in

[52], and its pseudo code is described in Figure 13. The first step in the main loop is

to extract a path from the roadmap connecting the start and the goal nodes. In this

step, the planner is responsible for performing any global optimization. For example,

if sensing and localization is a time consuming operation, and speed is a concern, then
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the navigator must consider both the length of the path and the number of localization

operations required when selecting a route. It will aid the navigator’s task if the path

planning module is capable of providing multiple paths from the start to the goal.

This is one reason we favor roadmap–based path planning algorithms.

When planning a new path from the current position, the nominal position which

is the center of the robot’s uncertainty region is used as a new start position. This

is one way to take advantage of the assumption that the robot’s position is roughly

known and bounded. The size of the ellipse is assumed to be reasonably small, and

its maximum size can be controlled by the navigator depending on the situation. If

the robot’s initial position is not known, then a global localizer would need to be

executed to determine it; this is beyond the scope of this work.

Next, a subgoal is determined. A simple way is to use the longest “safe” prefix

of the path, i.e., the subpath such that the uncertainty region does not intersect any

obstacles as the robot moves along the subpath. This implements a basic requirement

— the robot must be able to move to the subgoal without collision. In addition, if

the localization algorithm has any special requirements, then the navigator must also

be sure that the uncertainty regions on the trajectory could not place the robot in a

situation where it needs to localize and localization is not possible. Conditions mak-

ing localization difficult are discussed in Chapter IV Section B.4. Furthermore, the

subgoal might need to satisfy mission–specific requirements such as “do not localize

in a certain area”, “localize before entering a certain area”, or “position uncertainty

must be smaller than certain bound”. The main intelligence required by the navigator

is to determine a good subgoal.

Once the subgoal is computed, the robot is commanded to move, stop there,

scan and then localize. While the robot is moving, it has to use its sensors to detect

dynamic or unknown obstacles. The robot has to wait or plan a detour if unexpected
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obstacles emerge. After successful localization, the uncertainty ellipse at the subgoal

is reduced and the path is dynamically re-planned. These steps are repeated until the

robot reaches the goal. The step 5 calls the sector-based localizer that was described

in Figure 7(b).

Navigator(start, goal, roadmap, sectors)
1. while goal is not reached
2. extract the best path from start to goal
3. determine localizable subgoal in the path
4. drive robot to subgoal and stop
5. scan and localize using sectors
6. set start to current configuration
7. end while

Fig. 13. Pseudo-code for our navigator

In the following sections, our method for extracting optimal paths from the

roadmap (line 2 in the pseudo code) is presented. We first describe it at a concep-

tual level, and then present our new techniques, and finally show several examples.

Simulation results are shown in Chapter VI.

B. Selecting Optimal Paths from a Roadmap

Our approach to designing an intelligent navigator is based on cost function–based

optimization techniques and is different from logic–based methods popular in the

artificial intelligence community. From the mathematical point of view, there is no

fundamental difference from shortest-distance path planning since the process of min-

imizing path cost is the same. The difference is that we facilitate the application of

multiple optimization criteria depending on mission requirements.

Our goal is to apply the cost function for general optimization theory to mobile

robotics without losing the computational efficiency of roadmap–based methods. This

requires some trade offs between exactness and efficiency. The remainder of this
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chapter presents the following: the general cost function that we desire to minimize,

the manner in which we discretize the cost function so that is it applicable to the

roadmap, issues with the Markov property for robot paths, and finally, an augmented

version of Dijkstra’s algorithm that finds paths according to our cost function. In

addition, we discuss our techniques for flexibly representing the goal state as a subset

of configurations as opposed to a unique goal configuration. We formally define the

problem using both mathematical and graph–specific terms (see Section C.1). The

resulting path is composed of a discrete set of segments in the roadmap, and can be

post-processed to improve path quality if desired. Path smoothing is not considered

in this work.

1. Standard Cost Function

The optimization of certain values for a physical system that moves from an initial

state at time 0 to a final state at time Tf , while subject to constraints, is described by

the problem of minimizing a cost function. The standard cost function J in optimal

control theory [42] is described by

J =
∫ Tf

0
g(x(t), u(t))dt + h(x(Tf )) (3.1)

where g() is the cost at time t, x(t) is the state at time t, and u(t) is the control input

at time t. The necessary condition at the final time Tf is described by h(x(Tf )).

This form of the cost function has been used in [45] and optimizes the path

of a car–like robot by subdividing configuration space and linearly interpolating.

In general, an optimal path satisfying Equation 3.1 with initial and final boundary

conditions can be computed using several numerical methods [42].
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2. Non–Markov Optimization Criteria

Compared to our approach, previous work based on roadmaps lacks two properties

needed for real applications. The first is the need for non–Markovian states, i.e.,

states which depend on information from a range of previous states.

For example, to maximize clearance, it is clear that a cost function g will contain

the reciprocal of the clearance if the optimizer minimizes J . We denote the reciprocal

of the clearance as 1
cl(x(t))

. If we let g(x(t), u(t)) = 1
cl(x(t))

in Equation 3.1, then the

resulting path will maximize the accumulated 1
cl(x(t))

from the start to goal. In most

cases, the objective is to optimize the path for maximum safety and the proper crite-

rion is to maximize the minimum path clearance, not to maximize the accumulated

clearance. This requires a modified cost function

J =
∫ Tf

0
g(x(t), u(t))dt + h(x(Tf )) +

1

cl(x(tm))
(3.2)

where tm ∈ [0, Tf ] such that cl(x(tm)) is minimum, and maximizing cl(x(tm)) is

equivalent to minimizing 1
cl(x(tm))

. The term cl(x(tm)) is non–Markov, and we force

the state to be Markovian.

3. Goal Sets – Flexible Final States

The second issue that has not been addressed explicitly in previous mobile robotics

is a flexible definition of the final goal configuration. Describing the final condition

at Tf using an equality condition changes Equation 3.1 to

J =
∫ Tf

0 g(x(t), u(t))dt

h(x(Tf )) = 0

(3.3)
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where the problem is now minimizing J with h(x(Tf )) = 0 satisfied. This is identical

to one of the boundary conditions of the optimal control formulation where Tf is free

and x(Tf ) is moving on the surface, h(x(t)) = 0. In a graph–search based path planner

such as Dijkstra’s algorithm, it is difficult to find a node that satisfies h(x(Tf )) = 0

unless some of the nodes are generated exactly on the surface where h(x(t)) = 0. So,

we modify the surface to be more inclusive by using an inequality condition.

J =
∫ Tf

0 g(x(t), u(t))dt

h(x(Tf )) ≤ cf

(3.4)

The final necessary condition h(x(Tf )) ≤ cf is used to terminate the graph search if

any node satisfying h(x(Tf )) ≤ cf is reached. We call this set of nodes a goal set, and

its size is determined by the constant cf . Note that Dijkstra’s algorithm requires two

cost functions corresponding to g and h in Equation 3.4.

C. Augmenting Dijkstra’s Shortest Path Algorithm

Our path optimization system is based on a roadmap-based path planner and Di-

jkstra’s shortest path algorithm. To address the issues mentioned in the previous

section, we design an augmented version of Dijkstra’s algorithm and cost computa-

tion.

1. Problem Formulation

Before explaining the details of our framework, we reformat the mathematical de-

scription (in Equation 3.4) to a pseudo–code friendly version. Figure 14 describes

our path optimization problem of minimizing the cost of a given path p. Operators

start(ei) and end(ei) denote the start and end vertex of edge ei, respectively, and the

cost functions costg and costh denote the functions g and h in Equation 3.4, respec-
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Given environment, start, costh, and cf ,

find a path p = {e1, e2, . . . , ef} such that

minimize cost(p)

where cost(p) =
∑

costg(ei) under the constraints

start(e1) = start

clearance(ei) > 0, i = 1 . . . n

others (e.g., time, energy, . . .)

and the final condition

end(ef ) ∈ goalset

where goalset = {end(ei)) | costh(end(ei)) ≤ cf}

Fig. 14. Path optimization problem

tively. Start is a node in the roadmap, and the final condition specified by a constant

cf is internally transformed to a goal set, goalset, that will terminate the search when

reached. In Section 4, pseudo code is used to describe this in detail.

Note that we do not use the approach of iterative improvement of J , such as

hill climbing and steepest descent. Like dynamic programming methods in optimal

control, we compute the solution in one shot using Dijkstra’s algorithm.

2. Markov–like Optimization

Ideal Markov Function. The issue of maximizing minimum clearance was intro-

duced in Section B. The cost function including a non–Markovian state is

J =
∫ Tf

0
g(x(t), u(t))dt + h(x(Tf )) + m(x(tm)), tm ∈ [0, Tf ] (3.5)
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where m(x(tm)) is a general non–Markovian cost function. In Equation 3.2, m(x(tm))

was 1
cl(x(tm))

with tm the time when the clearance is lowest. This formulation is not

tractable for common optimization solvers. Our approach to this problem is to modify

g(x, u) or costg(ei) in Figure 14 so that m(x(tm)) is eliminated in the cost function.

An example of such a cost function is shown in Figure 15(c) where the cost depends

on the path clearance (Figure 15(b)).

Discretization. Since we are using a graph search algorithm which is similar to

dynamic programming in classic optimization theory, Equation 3.5 can be represented

by a discretized version

J =
∑i≤Nf

i=0 g(xi, ui) + h(xNf
) + m(xim), im ∈ {0, 1, . . . , Nf}

xi = a(xi−1, ui−1)
(3.6)

where Nf is the total number of time steps, im is the time step corresponding to tm,

and a is a discrete time state update equation of the system dynamics. An example

illustrating the edge/node weights along a path is shown in Figure 15.

Using the Previous State. Now, we replace g(xi, ui) with g(xi, xi−1, ui) so

that both previous and current states are used for computing the cost. The previous

state is obtained by using the parent data structure in the search tree of Dijkstra’s

algorithm. The vertex corresponding to xi−1 can be quickly obtained from the parent

data structure and the vertex corresponding to xi. We note that this is similar to

converting a continuous time state ẋ to a discrete time state composed of xi, xi−1 and

∆t using Taylor’s series expansion. Many optimization values such as the turning

angle can be computed from ẋ (or xi, xi−1 and ∆t if in discrete time). In this case,

using g(xi, xi−1, ui) in Dijkstra’s algorithm can be regarded as applying a standard

discrete time optimization to a graph search technique. This does not exhaust the

possible applications of our optimizer.
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Fig. 15. Edge weights for path clearance. (a) A straight line path from the start to the

goal and roadmap nodes, (b) the path clearance, (c) the path cost (inversely

proportional to the path clearance), (d) the cost of the roadmap nodes, and

(e) the edge weight (Equation 3.10) at the nodes are shown.
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Markov–like Cost Function. An example of an optimization value that can-

not be computed from ẋ is minimum clearance, which will be computed from xi and

xi−1. There are other optimization values such as a localization success ratio that

can be formulated using xi and xi−1. So, our motivation for using g(xi, xi−1, ui) is

not from discretizing g(x, ẋ, u), but to extend the ability of the graph search based

path optimizer using current and previous states. We call this approach Markov–like

because xi−1 is not Markov in a strict sense but xi and xi−1 can be considered as a

compound state xi. The general cost function is

J =
∑i≤Nf

i=1 g(xi, ui) + h(xNf
) + m(xim), im ∈ {1, 2, . . . , Nf}

xi =

 xi

xi−1


(3.7)

New State Update Equation. We added xi−1 to the cost function with the

intention of eliminating m(xim), and the state equation a(xi−1, ui−1) needs to be

changed accordingly. The idea is that xi should contain the entire history of the

non–Markovian property. For example, to maximize the minimum path clearance, an

element in xi will indicate the minimum clearance from start to time step i. Now, we

denote the minimum clearance state by xcl
i and add it to xi.

J =
∑i≤Nf

i=1 g(xi, ui) + h(xNf
) xi

xcl
i

 =

 a(xi−1, ui−1)

acl(xi, x
cl
i−1)


xi = [xi xcl

i xcl
i−1]

T

(3.8)

The state equation acl returns xcl
i which is lower than xcl

i−1 only if cl(xi), the

clearance of xi, is smaller than xcl
i−1. Otherwise, xcl

i must equal xcl
i−1 because the
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clearance of the current state is not smaller than the minimum clearance discovered

so far (see Figure 21). It is clear that acl must contain a Boolean operator.

acl(xi, xcl
i−1) =


cl(xi) if cl(xi) < xcl

i−1

xcl
i−1 otherwise

(3.9)

New Cost Function. Next, we focus on gcl(xcl
i , xcl

i−1) which is a part of g(xi, ui)

and corresponds to the state xcl. It compares the difference between xcl
i and xcl

i−1,

and should return a nonzero positive value if xcl
i < xcl

i−1. Otherwise, it returns zero

so that J does not increase. So, we have

gcl(xcl
i , xcl

i−1) =


c · (xcl

i−1 − xcl
i ) if xcl

i < xcl
i−1

0 otherwise
(3.10)

where c is a constant. This technique for minimum clearance can be applied to other

non–Markovian optimization values with the superscript cl changed in Equations 3.8,

3.9 and 3.10. Figure 15(e) shows the node weights corresponding to the environment

in Figure 15(a). The edge weight is same as the node weight at the edge’s endpoint.

3. Flexible Final Condition

We apply the modified final condition shown in Equation 3.4 to our new cost function

in Equation 3.8, which is the final form of the cost function that we seek.

J =
∑i≤Nf

i=1 g(xi, ui),

xi = a(xi, ui−1)

h(xNf
, uNf

) ≤ cf

(3.11)
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4. Augmented Dijkstra’s Algorithm

Dijkstra’s algorithm is augmented to reflect the changes in Equation 3.11, and its

pseudo code is shown in Figure 16. To use Markov–like states, the weight function

that corresponds to costg in Figure 14 is changed so that three adjacent vertices are

used. The cost function costh checks if a node is in the goal set using cf .

Augmented DIJKSTRA(V,E, start, cf )
1. for (each v ∈ V ) dist[v]←∞
2. dist[start]← 0
3. PQ← PriorityQueue of V ordered by dist
4. while (PQ 6= ∅)
5. u← PQ.dequeue
6. for each v ∈ PQ adjacent to u
7. if (dist[v] > (dist[v] + weight(u, v, parent[u]))
8. dist[v]← dist[v] + weight(u, v, parent[u])
9. parent[v]← u
10. if (costh[v] < cf ) return
11. end for
12. PQ.reorder
13. end while

Fig. 16. The augmented Dijkstra’s algorithm

D. Mobile Robot Applications

In this section we provide some robotic examples that benefit from the path opti-

mization methods described. They utilize our roadmap–based mobile robot system

described in [38, 39, 51]. A T–shaped environment and roadmap are shown in Figure

17 where five nodes in the goal set are marked. Since the mobile robot moves in

2-dimensional space, the nodes in a goal set comprise a set of robot positions (x, y)

and orientation (Θ). The nodes parent[u], u, and v in Figure 16 correspond to the

left vertex of ei−1, the vertex connecting ei−1 and ei, and the right vertex of ei in

Figure 17, respectively.
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Fig. 17. Environment, roadmap and path searching.

The diagram shown in Figure 18 has two components, Dijkstra’s algorithm and

weight computation. In this section, we will show that various optimization values

can be computed by using different weight computations in the common framework.

In the diagram shown in Figure 18, we compute the shortest distance path using

cost(ei) = length(ei) (3.12)

Dijkstra’s
Algorithm

Weight
FunctionOptimal Path

edge 

cost(    )

start, goal ei

ei

Fig. 18. Diagram of shortest path computation.

1. Minimizing Travel Time

The path extracted from a roadmap consists of a series of translations and rotations

(unless converted to a curve). The time for travel is approximated by the time required
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for translation and rotation. In this section, we assume that the rotation time can

be approximated by a constant value and the translation time is proportional to the

length of the edge. In Figure 18, travel time is minimized by using

cost(ei) = c1 · length(ei) + c2 (3.13)

where c1 and c2 are constants. To compute the rotation time as a function of the

rotated angle, the technique explained in Section 3 is needed.

2. Avoiding Localization Failure

In this case, we assume that the robot’s sensors have range limits and always fail

to localize if no feature exists within the range. The locations of all features in the

environment are assumed to be known. In Figure 18, we use

cost(ei) = c3 · f1(visibility of ei) (3.14)

where ‘visibility of ei’ determines if the robot can successfully scan one or more

feature(s) on the edge ei. The function f1(ei) converts the visibility of edge ei into

a scalar as shown in Figure 19(a). Note that the optimal path can traverse a region

with no features if necessary.

3. Kinematic Constraints

If the robot has constraints on its turning radius, two adjacent edges ei and ei−1 are

needed to compute the required turning radius to obtain the cost of ei. The weight

function now uses two edges (or three vertices) as shown in the pseudo code in Figure

16. In Figure 20, which reflects the modified weight computation, we use

cost(ei) = c4 · f2(turn radius of ei−1 and ei) (3.15)
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Fig. 19. Cost functions, (a) for features and (b) for turning radius.
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Fig. 20. Weight function with two adjacent edges.

where f2 is an appropriate linear or nonlinear function.

Figure 19(b) shows an example of a nonlinear function that maximizes the turn-

ing radius (region A) and prohibits ei from being used if it violates the kinematic

constraint of a turning radius of less than 10 meters (region B).

4. Maximizing Minimum Clearance

As discussed in Section 2, the minimum clearance xcl is a non–increasing variable and

is shown as a solid line in Figure 21. To implement this in the augmented Dijkstra’s

algorithm framework, we add the new variable as auxiliary data as in Figure 22.

The data is maintained according to the rule shown in Equation 3.9. The edge cost
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computation equivalent to Equation 3.10 is described by

cost(ei) =


c5 · (clmin − cl(ei)) if cl(ei) < clmin

0 otherwise
(3.16)

where clmin is the auxiliary data and cl(ei) is the clearance of edge ei. Initially, clmin

is set to the clearance of the start node.

Weight

Auxiliary data

Function

data

Optimal Path

edges 

edge 

cost(    )

start, cf

e , e

e

i i−1

i−1

ei

Dijkstra’s
Augmented

Algorithm

Fig. 22. Weighting with two adjacent edges and related data.

5. Minimizing Localization Attempts

We assume that each localization takes a significant amount of time due to slow–

rotating sensors, etc., and that the number of localizations should be minimized.

For simplicity, we assume the following. First, the robot localizes only when its
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uncertainty ellipse intersects an obstacle. In other words, no preventive localization

is performed. Second, the uncertainty ellipse grows linearly as the robot moves and

rotates. Third, after attempting to localize, the ellipse shrinks to a point. Our

approach is to compute uncertainty ellipses for all nodes in the roadmap during path

planning. This is computationally expensive compared to other path optimization

cases, and an alternative is to approximate ellipses with simple polygons such as

boxes.

The cost of edge ei depends on the history from the start, but the ellipse of ei

can be obtained from the ellipse of ei−1 only. In Figure 22, we use

cost(ei) =


c5 if collision detected

0 otherwise

6. Combination of Criteria

Combining various costs into one function results in an optimization for multiple

values, and is useful in many applications. The combined edge cost is expressed by

cost(ei) =
∑
j

wj · costj (3.17)

where wj is an appropriate weight and costj is cost(ei) in Equations 3.12 –3.16.

The issue of how to select weight values to obtain desired paths is not covered in

this dissertation. Automatic determination of weight values might be achieved using

machine learning techniques. In this case, training data must provide a characteriza-

tion of the environment, desired path, and working weight values. Recent work [68]

used a fuzzy logic-based technique to adaptively modify a path locally while satisfying

multiple optimization values.
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CHAPTER IV

SECTOR–BASED ROBUST LOCALIZATION

In this chapter, we describe our method for localization of a mobile robot using

realistic range sensors in partially known indoor environments. Since our work builds

on previous work considering ideal sensors, each section first describes the ideal case

before discussing our new methods. Simulation and hardware experimental results

are presented in Chapter VI.

A. Overview of Sector–Based Method

This section describes our methods conceptually, without formal definitions. The

feature–based and the sector–based localization methods have been introduced in

Chapter II Section C. It was mentioned that visibility sectors subdivide the envi-

ronment and contain preprocessed feature information. We assumed that the robot’s

pose is roughly known. Our method constructs resolution–independent sectors in two

steps — identifying primitive sectors and performing geometric operations.

A primitive sector is a planar region from which a particular feature can be

scanned, and a visibility sector is a region from which a particular set of features can

be scanned. These two concepts will be formally defined in the following sections.

Figure 23 shows the relation among geometric features, primitive sectors, and visibil-

ity sectors. Sector A is the subtraction of the polygon for feature 2 from the polygon

for feature 1, and only feature 1 is visible. In sector C which is the intersection of

two primitive sectors, two features are visible.

The pseudo code shown in Figure 24 provides a high-level overview of sector–

based localization. In this approach, the robot’s pose uncertainty is reduced in a

hierarchical way, making it more efficient than non–sector–based approaches. The
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Fig. 23. Conceptual view of sectors. (a) A primitive sector corresponding to a geo-

metric feature, and (b) visibility sectors for two features.

step of localization to a sector is added which uses the robot’s uncertainty region (line

4) and scanned features (line 6) to select the sector containing the robot. The robot’s

uncertainty region often intersects more than one sector, and our algorithm selects

the correct one by matching features. Note that geometric features are used for two

purposes, for localizing to a sector and for localizing in a sector.

Sector–Based Localization
1. scan the environment
2. Fscan ← features in the scan data
3. for each sector ∈ all sectors
4. if sector matches the robot’s uncertainty
5. Fsector ← features in sector
6. if Fsector matches Fscan

7. reduce uncertainty using Fscan and Fsector

8. end if
9. end if
10. end for

Fig. 24. Pseudo-code for localization based on geometric features and visibility sectors.

B. Constructing Visibility Sectors

We organize the following subsections according to the level of abstraction — from low

level components focusing on geometric features to high level components requiring
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global knowledge. Design of each component depends on the sensor measurement

models and the output requirements for localization. In this section, we consider

two sensor models and two output requirements that produce three combinations.

Finally, the time complexity of sector computation is analyzed to show the feasibility

of our methods.

1. Visibility Models

The visibility information from a single range sensor measurement is the distance

from the sensor to a part of the environment. A set of distance values are converted

to a geometric feature if they form a pattern, providing a means to connect hardware

(sensors) and software (localizers). For a polygonal environment in which all obstacles

are represented by simple polygons, there are three kinds of features that can be

extracted and used for reducing the uncertainty region: walls, convex corners, and

concave corners. Convex corners are identified by a local maximum in the scanned

data. Figure 25(a) shows an ideal scan with local minimum (m) and maximum points

(M). Based on the local minimum and maximum points, we define two instances of

features for two visibility models.

First, if the sensors are perfect and have no range limits, then both local min-

imum and maximum points can be scanned and identified. It is also possible to

distinguish between the local minimum points from the walls and from the corners.

Convex corners (local maximum) are attractive features for localization because their

coordinates are fixed in space and the robot’s coordinates can be computed [52]. In

this case, it is possible to perform localization to a configuration.

In practice, however, range sensors have physical limitations which result in

restricted visibility, and it is important that localization methods are designed to

work with these. In this case, local maximum points cannot always be scanned and
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Fig. 25. Range sensor data for (a) perfect visibility and (b) limited visibility.

two possibilities are suggested: estimating invisible features (local maximum points

in this case) using visible features (local minimum points in this case), or reducing

the uncertainty region using local minimum points.

A simple way of estimating the coordinates of a local maximum point is to extract

features from scanned adjacent local minimum points and then to intersect scanned

walls. For example, in Figure 25(a), two walls on the left and the bottom can be

scanned and the corner M is obtained by intersecting the scanned walls. This process

is described in the pseudo code in Figure 26.

Another method employs local minimum points as features. Localization using

a local minimum feature does not precisely determine the robot’s configuration, but

it might still reduce the region known to contain the robot. This reduced uncertainty

region might be sufficient to enable navigation to the goal if the navigator is designed

to incorporate this situation. We call this relaxed localization. In Figure 25(b), five

features can be potentially scanned given the position of the robot. However, because

the sensor’s minimum range is larger than the distance to the wall on the left in this

case, the m to the left cannot be scanned.
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Estimate Corner
1. for 3 ∼ 5 times (depending on sensor calibration)
2. MS ← unprocessed scan, minimum range
3. check a few scans around MS
4. if they form line segment (L)
5. repeat
6. LS ← left scan adjacent to MS
7. if LS is farther than MS
8. move LS to be on the line L
9. MS ← LS
10. end if
11. until no farther LS found
12. do the same for right direction
13. end if
14. end for

Fig. 26. Pseudo code for estimating a corner from two walls.

In reality, not all walls are linear. For curved walls, it is possible to define a

corresponding feature using its length and curvature. Figure 27 shows arc features

where the robot can scan local minimum or maximum features depending on its

distance to the wall. Such features are not considered in this work since the linear

wall assumption holds for most actual indoor spaces and can be extended if needed.

Also, designing features in three dimensional space is not prohibitive.

2. Primitive Sectors

To compute visibility sectors, a data structure that relates the robot’s position and

expected visible features needs to be constructed first. This is fundamentally different

from previous approaches like evidence grids [64] which answer “given a robot posi-

tion, what part of the environment is visible?” This is not only inefficient but also

resolution–dependent. Instead, visibility sectors are generated based on the query

“given a part of the environment (i.e., a feature), from which region can the robot

see this feature?”
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Fig. 27. An arc–shaped wall can be a feature (depending on the distance to the wall,

local maximum or minimum feature is scanned).

A primitive sector represents a region in the free space from which the robot can

scan a particular feature, i.e., there is one sector for each feature. For range sensors

and polygonal environments, primitive sectors were introduced in [24] as “visibility

polygons” which could be scanned by a robot with ideal or perfect sensors. We

describe two kinds of primitive sectors for the features discussed previously.

For a local maximum feature with perfect visibility, we have a primitive sector

as shown in Figure 28(a). To compute the exact position of the corner using a finite

number of scans, in [52], four scans (p1 – p4) were used as shown in Figure 28(b). The

sensor maximum range limitation is illustrated in Figure 28(c). With incidence angle

limitations, as shown in Figure 28(c), the area close to a corner cannot be measured

if the robot is close to the adjacent walls. However, such primitive sectors are not

well–defined, and directly scanning a convex corner with restricted visibility is often

impossible.

Using realistic sensors with min/max range and incidence angle limitations, only
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Fig. 28. Primitive sectors for range sensors. (a) Sectors with perfect visibility. (b)

Computing M with four adjacent scans. (c) Sectors with incidence angle limi-

tation, and (d) Sectors with maximum range limitation.

local minimum points can be reliably scanned. One solution estimates the corner

feature using two local minima as mentioned in Section 1. A primitive sector is

shown in Figure 29(a) where two walls (upper and right) must be scannable to obtain

the corner feature. If local minimum points serve as features, and relaxed localization

is allowed, then the corresponding primitive sectors are shown in Figure 29(b). Using

the visibility model that has been experimentally obtained (see Figure 6 in page 14),

two features are used — concave corners and walls.
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Fig. 29. Finding features with restricted visibility. (a) Estimating M from two m’s if

only local minimum are visible. (b) Visibility polygons for two local minimum

points (wall and concave corner).

3. Identifying Sectors

A visibility sector is a planar region in the environment in which the same set of

features is visible from every point in the sector. A basic requirement of valid sector

subdivision is that there are no neighboring sectors with the same feature set. This is

the same concept as visibility cells in [24]. Based on the primitive sectors, we present

three different sector subdivision methods.

In [52], ideal sensors with perfect visibility are assumed and the environment

is subdivided into sectors by intersecting all primitive sectors for local maximum

features and identifying simple polygons. In Figure 30, nine sectors are created from

six primitive sectors. Each line segment between sectors denotes a difference in the

visible feature set. For example, sectors 6 and 9 are differentiated by the top left

corner in the environment, which is same for sectors 7 and 8.

In the second method, we improve on the previous approach by allowing for

sensor limitations which result in limited visibility. If a localization algorithm requires

that a feature provide two dimensional information, then one way is to use primitive
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Fig. 30. Visibility sectors for perfect sensors

sectors that enable estimating a corner, as shown in Figure 29(a). Though it might

be possible to compute visibility sectors from such primitive sectors in simple cases,

we propose a more general method that is based on a sector merging technique. The

idea is that sector subdivision for ideal sensors is a superset of the subdivision for

limited sensors. In other words, not all sector boundaries for perfect visibility are

valid for restricted visibility.

Our approach for removing unnecessary sector boundaries is to merge adjacent

sectors. Figure 31 shows the pseudo code for computing sectors based on this merging

technique. To merge two adjacent sectors, we propose two heuristics.

Merging Sectors
1. compute visibility sectors for perfect sensors
2. for adjacent pairs of sectors
3. if differentiated by un-scannable features
4. undo the sector division (merge)
5. end if
6. end for

Fig. 31. Computing sectors for limited visibility and incomplete feature set.

Merge rule #1. Merge adjacent sectors that can see the same closest feature.
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The result is shown in Figure 32(b) which was obtained from the visibility sectors

in (a). The only feature in this case is M that can be estimated from two m points.

Note that it resembles a Voronoi diagram where the regions are centered around the

corner features. Rule #2 is the counterpart of rule #1, and the result is shown in

Figure 32(c).

Merge rule #2. Merge adjacent sectors that share some common visible feature.

This rule is an extension of rule #1 and provides flexibility in choosing the

localization feature, which may enable a greater reduction in uncertainty. In real

situations where the the closest feature may not be scanned due to sensor noise,

merge rule #2 should be used.

Finally, if relaxed localization is preferred, then sectors are identified from local

minimum points. With sensor maximum and minimum range limitations, primitive

sectors have different shapes than for ideal sensors; see Figure 33(a) and 33(b). From

a computational point of view, generating visibility sectors in this case is essentially

the same as the perfect sensors case. The resulting visibility sectors are shown in

Figure 33(c).

4. Information in Sectors

We need to store enough information in the sectors so that localizing to a sector is

possible: the selectivity of a sector depends on the uniqueness of the feature set with

which it is associated. Also, the features are used for reducing the robot’s uncertainty,

but often a smaller number of features can be used for this task.

For perfect sensors, in this section, we define two features in addition to M and

m. Previous work [52] suggested using D and c (discontinuity and connection points)

which are always used in conjunction. As shown in Figure 34, features Dc and cD



55

obstacle

(a)

M M

M

M

MM

(b)

M

M

M

(c)

Fig. 32. Sector merging heuristics. (a) Visibility sectors (before merging), (b) after

merging with merge heuristic #1, and (c) after merging with merge heuristic

#2.
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Fig. 33. Visibility sectors for local minimum point features. (a) Primitive sector for a

concave corner and (b) a wall. (c) Visibility sectors.
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Fig. 34. Range measurements for perfect sensors.

scan label is a string composed of the features visible from a sector, and it is computed

and stored for all sectors during preprocessing. Figure 35 shows the pseudo-code

for constructing scan labels. In the pseudo code, R denotes range measurements,

◦ denotes string concatenation, and `R is the scan label. The threshold value for

determining discontinuity is denoted by εT . In addition to the labels, the global

coordinates of features (M points in this case) are stored because they are needed for

the localization. For the visibility sectors shown in Figure 30, scan labels are shown

in Figure 36.

In certain situations, the pseudo code in Figure 35 does not generate the sector

boundaries that we desire. Figure 37(a) shows an example where sector boundaries

perpendicular to obstacles (such as the segment labeled a in Figure 37) would be

required as well as the sector boundary b. With such sector boundaries, labels differ



58

Construct Scan Label(R)
1. `R := ∅
2. for i := 0 to N
3. if (ri − ri+1 > εT ) then `R := `R◦ cD
4. else if (ri+1 − ri > εT ) then `R := `R◦ Dc
5. else if (ri−1 > ri and ri < ri+1) then `R := `R◦ m
6. else if (ri−1 < ri and ri > ri+1) then `R := `R◦ M
7. end if
8. end for

Fig. 35. Pseudo-code for scan label construction.

mDcmMmMmMmM

mDcMmMmMmMmM

mMmMmMmMmMmM

mMmDcMmcDmM

mMmDcMmMcDmM

mMmDcmcDmM

mMmDcmMcDmM

mMmMmMmMmMcD

mMmMmMmMmcD

Fig. 36. Visibility sector labels (Robot’s initial heading is to the right).

only by inclusion or exclusion of local minimum characteristic points. Since local

minimum points are not useful for precise localization, we choose to eliminate such

sector boundaries by modifying ConstructScanLabel (see Figure 38).

In the restricted visibility case, we suggest a merge–based method where the

robot can estimate a local maximum using two local minima. A merged sector has

at least one common feature M visible from all points in the sector. However, there

might be additional M features which are not guaranteed to be scannable in the sector.
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Fig. 37. Sector boundary with local minimum point. (a) Using the pseudo code shown

in Figure 35, scan labels obtained from the positions A and B are mDc and

Dc, respectively. Because they are different, a sector boundary a is needed.

(b) Using the modified pseudo code shown in Figure 38, the same scan label

is obtained from the positions A and B.

Construct Scan Label(R)
1. `R ← ∅
2. for i← 0 to N
3. if (ri − ri+1 > εT )
4. if (ri+1 < ri+2) `R ← `R◦ cDm
5. else `R ← `R◦ cD
6. else if (ri+1 − ri > εT )
7. if (ri < ri−1) `R ← `R◦ mDc
8. else `R ← `R◦ Dc
9. else if (ri−1 > ri and ri < ri+1 and ri−1 − ri < εT ) `R ← `R◦ m
10. else if (ri−1 < ri and ri > ri+1 and ri − ri−1 < εT ) `R ← `R◦ M
11. end if
12. end for

Fig. 38. Modified pseudo-code for scan label construction.
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Fig. 39. Visibility numbers for each sector.

In this case, we prefer retaining all possible features since it maximizes the chance of

localization in the presence of sensor noise and unknown/moving obstacles.

If only m points are used as features, then sector merging is not required because

the features for sector subdivision and localization are the same. The visibility number

of a sector is the number of features visible from the sector (Figure 39). With this

information, we can easily see where the robot can effectively localize with sensor

limitations. Figure 40(a) shows the region that the robot’s uncertainty can be reduced

to a smaller region, and (b) shows the region where the exact pose of the robot can

be computed.

Ambiguous sectors are a set of sectors that have cyclically identical labels [52].

Two examples are shown in Figure 41 where (a) and (b) have labels mMmMmMmcDmDcmMmM

and mMmMmMmMcDmDcmM, respectively. These sectors cannot be distinguished by labels

if the robot’s heading or some other additional information is not known.
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(a) (b)

Fig. 40. Regions with different numbers of visible features. (a) One or more, and (b)

two or more local minimum points for limited visibility.

(a) (b)

Fig. 41. Two examples of ambiguous sectors

5. Geometric Operations

In Figure 23(b), two primitive sectors yield three visibility sectors. Let s and p denote

visibility sectors and primitive sectors, respectively. Computing s from p requires

three Boolean polygon operations.

• sA = p1 \ p2

• sB = p1 ∩ p2
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• sC = p2 \ p1

Computing the visibility sectors sA, sB and sC from primitive sectors p1 and p2

is described in the pseudo code in Figure 42. During the computation, generalized

polygons are used because sA, sB and sC can be empty, or consist of one or more

components. Examples are shown in Figure 43 where (a) sA and sC have two com-

ponents, (b) sB has two components, (c) sA is empty and sC has a hole and (d) sB is

empty.

Compute Visibility Sectors(p1, p2, SA, SB, SC)
1. sA ← p1, sB ← p1 ∩ p2, sC ← p2

2. if sB = ∅
3. SA ← SA ∪ {sA}
4. SC ← SC ∪ {sC}
5. else
6. for each component sBi ∈ sB

7. sA ← sA \ sBi

8. sC ← sC \ sBi

9. SB ← SB ∪ {sBi}
10. SA ← SA ∪ sA (for each component of sA)
11. SC ← SC ∪ sC (for each component of sC)
12. end for
13. end if

Fig. 42. Pseudo-code to compute visibility sectors from two primitive sectors.

primitiveprimitive
sector 1sector 2

(a) (b) (c) (d)

Fig. 43. Sectors represented by generalized polygons.

The algorithm sketched in Figure 44 constructs all the visibility sectors in the

environment. It uses the ComputeVisibilitySectors subroutine shown in Figure
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42. The input is a set of primitive sectors P = {p1, p2, . . . , pnp}, and the output

is a set of visibility sectors S = {s1, s2, . . . , sns} where np and ns are the number

of primitive sectors and visibility sectors, respectively. In the pseudo code, t is the

primitive sector that will be partitioned into visibility sectors in each iteration. For

example, in Figure 45, t is initially set to p7 and it is eventually divided into three

components (s8, s9, s10).

Construct Visibility Sectors(P, S)
1. S = {p1}
2. for i = 2 to np

3. t ← pi, St ← ∅
4. for each component si ∈ S
5. ComputeVisibilitySectors(si, t, SA, SB, SC)
6. St ← St ∪ SA (for each component of SA)
7. St ← St ∪ SB (for each component of SB)
8. t ← SC

9. end for
10. S ← S ∪ t (for each component of t)
11. S ← S ∪ St (for each component of St)
12. end for

Fig. 44. Pseudo-code to compute visibility sectors from primitive sectors.

s

s
p

s s1 4

2
7

3

(a)

s

s

s

s s

s

s

s

ss1 4

8 9

10

5

6

2

37
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Fig. 45. Six visibility sectors are added by a new primitive sector. (a) Before subdi-

viding and (b) after subdividing.
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6. Time Complexity Analysis

The basic strategy for accelerating the actual localization is to do as much computa-

tion as possible during preprocessing. Nevertheless, it must be shown that construct-

ing the sectors is feasible, i.e., the time and storage requirements are reasonable. In

this section, we analyze the time required for constructing the sector boundary. In

[24], it was shown that the number of visibility cells (nvs) is O(n2r) and that the num-

ber of line segments composing a sector boundary is O(nr), where n is the number of

line segments in the environment and r is the number of reflex vertices.1 It has been

proven in [24] that the visibility cell decomposition can be computed in time O(n2r).

In the following we analyze the time complexity for merging sectors. A polygonal

environment can be represented by a planar graph G = (V, E). To merge, we eliminate

the edge(s) common to the sectors and take the union of the remaining edges. The

adjacent sectors can be found in linear time using G’s adjacency list. In most cases,

the number of adjacent sectors is small, and the search takes almost constant time.

Thus, a merge operation will take O(mbe) time, where mbe is the number of bounding

edges of a sector.

The value of mbe varies as merging progresses, and we consider best and worst

cases for our analysis. In the worst case, sectors share only one or very few edges. As

a result, mbe is almost doubled after merging. The best case is when the sectors share

as many edges as possible so that mbe does not increase much or even decreases. An

example of the latter case is shown in Figure 46 where the number of edges of sector

1 is decreased from 16 to 4.

Whether a merging process is close to the best or the worst case does not mainly

depend on environment or sensor properties; for any merging process, mbe might

1 a vertex which subtends an angle greater than 180o inside primitive sector
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Fig. 46. Merging sectors resulting in smaller number of edges. (a) Before merging, (b)

after merging sector 2 into sector 1, and (c) merging all sectors into one.

increase and then decrease, or vice versa. The worst case usually occurs in the

beginning part of a merging process because the (original) visibility sectors are convex

and they share only one edge. In the middle or in the later part of the merging process,

the situation may be closer to the best case, as illustrated in Figure 46.

To express the upper bound on mbe in terms of n and r, we assume that the

worst case dominates the merging process. This means that after merging k times,

mbe is O(nr 2k) since mbe = O(nr) in the beginning. If all the sectors are involved

in merging at each step, i.e., the sectors are finally merged into one, then there are

a total of nvs − 1 merges. In this case, we refer to a merging step as finding all pairs

of sectors to be merged and then merging all the pairs, resulting in doubled mbe for

all sectors and halved total number of sectors. The total number of merging steps

nk can be as large as dlog(nvs − 1))e, but in practice, nk is smaller because we don’t

always obtain a single sector after merging.

In the first merging step, at most nvs/2 sectors are merged, and at the kth

merging step, at most nvs/(2
k) sectors are merged. So, the total time for merging
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sectors is

Trs = 2nrnvs

2
+ 4nrnvs

4
+ · · ·+ 2knrnvs

2k

= nr dlog(nvs − 1))e

= O(nr log(n2r))

7. Space Complexity Analysis

In this section, we analyze the size of the sector data structure when the sensors have

a range limitation. Based on the previous result for ideal sensors, we compute the

upper bound on the number of visibility sectors for realistic sensors.

To obtain the upper bound on nvs, the first step in [24] was to show that there are

O(nr) lines introduced in the interior of the environment. Though an obvious upper

bound on the number of sectors is O(n2r2), the structure of the sector subdivision

problem was exploited and a tight upper bound on nvs was shown to be O(n2r). With

limited sensor maximum range, the interior lines become shorter but additional lines

are introduced due to the sector boundaries representing the range limit.

If the sensor range is shorter than the walls (see Figure 47(a) as an example),

then each wall introduces between 1 and 3 interior line segment(s). Also, each concave

corner (a reflex vertex) introduces two interior line segments and a curve. The lower

bound on the number of interior lines introduced is Ω(n+ r) which is the same as the

upper bound on the number of primitive sectors for wall and corner features. The

lower bound on nvs is also Ω(n + r) since each pair of overlapping primitive sectors

generates a new visibility sector. When the sensor range is increased, the number of

sectors is increased accordingly (Figures 47(b) and (c)). However, the upper bound

on O(nvs) is same as the ideal sensor case, O(n2r); the number of interior lines can

be at most three times larger and O(3nr) = O(nr).

Now that nvs is shown to be bounded by Ω(n + r) and O(n2r), we are interested
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(a) (b) (c)

Fig. 47. Visibility sectors with maximum sensor range limitation.

in describing nvs as a function of the sensor maximum range (M) as well as n and

r. The exact value of nvs depends on the shape of the environment, which is hard to

parameterize. Our approach is to consider a simple case for analysis and to compare

with the result from a real environment. In this section, we use an environment that

is symmetric, convex, and can be represented by a simple polygon.

In Figure 48(a), only adjacent sectors overlap and nvs is 12 or 2n where n = 6

(hexagon). If the sensor maximum range M is longer than R arccos(θ)/2 (see Figure

49(a)), then nvs is increased to 24 (see Figure 48(b)). If M is longer than R cos(π/n)

(see Figure 49(a)), then primitive sectors on opposite walls overlap and nvs is 31 (see

Figure 48(c)).

Equation 4.1 shows five different numbers of sectors depending on the sensor

range in the hexagon environment. The corresponding graph is shown in Figure 50,

which is similar to the simulation results for our real office environment shown in

Chapter VI Section B.2. From these, we observe that nvs tends to increase with the

sensor range, and reaches its maximum value when the sensor maximum range M

is between the radius and the diameter of the environment, and then nvs drops if it

nears or exceeds the size of the environment.



68

(a) nvs = 12 = 2n (b) nvs = 24 = 4n (c) nvs = 31 = 5n + 1

(d) nvs = 37 = 6n + 1 (e) nvs = 37 (same as (d)) (f) nvs = 13 = 2n + 1

Fig. 48. Visibility sectors for hexagon environments.
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Fig. 49. Conditions for sector intersections. (a) Definitions of R, θ, and M . (b) A

primitive sector intersects with its adjacent sector (I = 1), its next adjacent

sector, and next (I = 2, 3 . . .). (c) A primitive sector passes through its

adjacent sector (I = 4).

nvs =



2n if M < R arccos(θ)
2

4n if R arccos(θ)
2

< M < R cos(π/n)

5n + 1 if R cos(π/n) < M < R arccos(θ)

6n + 1 if R arccos(θ) < M < 2R cos(π/n)

2n + 1 if 2R cos(π/n) < M

where θ = 30o and n = 6

(4.1)

Though it is difficult to capture the parameters for computing nvs based on the

shape and size of general environments, we can investigate the relation between nvs

and M in more detail. A general observation is that nvs increases as more and more

primitive sectors overlap. Figure 49(b) introduces a new variable I which denotes the

number of primitive sectors that simultaneously intersect. The smallest I is 1 where

only adjacent primitive sectors overlap (M < R arccos(θ)/2). The value is increased
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Fig. 50. Number of sectors for M (sensor maximum range) in five regions.

to 2 if the primitive sectors overlap the sectors adjacent to their neighboring sectors.

In the hexagon case, I becomes 3 if a sector intersects the opposite primitive sector,

and 4 if it passes through its adjacent sector.

The number of features in the sectors is another factor that affects the size of

the sector data structure. In general, the average number of features in the sectors

increases with I. In Figure 51, the average number of features is 1.5, 1.75, 3.09, 3.08

for I = 1, 2, 3, 4, respectively. In particular, if the opposite primitive sectors meet,

the maximum number of features jumps from 3 to 6.

C. Localization Algorithm

In this section, our methods for localization using visibility sectors are presented. The

application of visibility sectors to particle filters and Kalman filters is conceptually

described. After that, we analyze the properties of our sector-based methods from

a theoretical point of view. This, together with the experimental results presented

in Chapter VI, supports our claim that our sector-based localization methods are
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Fig. 51. Visibility numbers for sector intersection patterns
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efficient and robust.

1. Localizing to a Sector

Figure 52 shows the pseudo code for sector–based localization which implements the

concept introduced in Section A. The first step narrows down the search space using

the information from the robot’s odometry. After that, steps from 3 to 6 attempt

to reduce the number of possible sectors to one. In line 5, the Cartesian product of

the scanned and preprocessed features is computed to form feature pairs. The pair

is stored in Fmatch only if the two features in the pair are matching. The subroutine

Reduce Uncertainty is called when Fmatch is not empty for a sector s.

Sector–Based Localization(unc reg, scans)
1. S ← sectors intersecting with unc reg
2. Fscan ← features in scans
3. for each s ∈ S
4. Fsector ← features in s
5. for each (fscan ∈ Fscan)
6. Fsector−match ← Fsector matching fscan

7. Reduce Uncertainty(unc reg, Fsector−match, fscan)
8. end for
9. end for
10. return unc reg

Fig. 52. Pseudo-code for localization based on visibility sectors.

When visibility is perfect with complete environment knowledge, the process of

matching a feature pair is a simple string comparison as in [52]. Since the robot’s

heading is not known in general, cyclic matching is needed. Figure 53(a) shows an

example where five M’s are 1–to–1 matched after rotating the scanned label to the

left four times. The robot’s orientation can be roughly computed by counting the

rotations, but a more precise value can be computed when reducing the uncertainty.

When only partial sector labels are obtained due to restricted visibility, exact
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Fig. 53. Matching features after localized to a sector. (a) using complete scan label

[52], and (b) with limited visibility, using local maximum points estimated

from local minimum points.

cyclic string matching does not work. One way to overcome this difficulty is to

get additional information from the robot’s odometry. If the robot’s orientation

is known approximately, then the scanned label can be rotated accordingly before

the string matching is performed. Depending on the angular range of the robot’s

known heading, there might be 1–to–1 or 1–to–many matching. Figure 54 shows the

geometric process of feature matching that was used in our navigator implementation

(Chapter VI). The robot’s position uncertainty is shown in Figure 54(a) and its

intersection with the sectors results in three pieces (Figure 54(b)). The expected

feature boundary for Figure 54(c) is shown in Figure 54(d), and is characterized by

three measures: two distances A, B and an angle C. The A and A + B are the

minimum and maximum distances between the uncertainty region and the feature,
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respectively. These determine the minimum and maximum possible distances to the

scanned feature. The angle C corresponds to the orientation uncertainty of the robot.

In this case, the robot’s angular range is small enough to allow 1–to–1 matching. If

the angle C is as large as 180 degrees, then the upper and lower walls cannot be

distinguished.

(a)

s

s1

2

3s

(b)

s2

wall features

B

A

(c)

actual robot
position

C

A

B

boundary of
expected
feature position

(d)

Fig. 54. Matching scanned and preprocessed features using the robot’s pose uncer-

tainty. (a) An uncertainty ellipse and wall features with corresponding sec-

tors. (b) Three pieces of an ellipse intersecting sectors with feature(s). (c) A

portion of a sector intersection and features. (d) Expected boundaries for two

wall features.

Another method would be to use the “minimum string edit distance” to find a

close match. This works even if the lengths of the scanned label and the preprocessed

label are different. A unit string edit adds a new character, deletes a character, or

changes a character in the label. Each editing operation adds one to the distance

value. The total edit distance of two strings can be quickly computed using dynamic

programming [16].

Due to many reasons including sensor limitations and unknown/moving obsta-

cles, it is often impossible to get 1-to-1 matching of scanned and preprocessed features.
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A practical localizer must try all possible pairs of features and verify later. (A ver-

ification method is discussed in the next section.) Note that trying multiple feature

pairs is still more efficient than raw scan data matching because the union of all

scanned features is the subset of the entire scan data. An example for this case is

shown in Figure 53(b).

2. Reducing the Uncertainty Region

In this section, three ways of using visibility sectors for localization are presented.

First, using a particular position uncertainty representation (an uncertainty ellipse),

we explain a complete localization algorithm. The uncertainty ellipse is centered

about the nominal estimate and is the constant probability contour for a multivariate

Gaussian distribution [69]. In our framework, it is a conservative boundary containing

all expected positions of the robot.

If we explicitly compute the precise configuration of the robot, then the ellipse is

reduced to a point. We call this localizing to a configuration. In [52], it was assumed

that local maximum points are scanned or correctly estimated. Let (XM , YM) and

(xM , yM) denote the coordinates of the scanned local maximum points in the global

and the local coordinate systems. The coordinates in the real scan (in the robot’s

local coordinates) and in the map data (in global coordinates) are equated to compute

the robot’s configuration. The robot configuration (xo, yo, Θo) denotes the linear

transformation from global to local with translation (xo, yo) and rotation (Θo) using

Equation 4.2.
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
− cos Θo sin Θo XM

− sin Θo − cos Θo YM

0 0 1




xM

yM

1

 =


xo

yo

1

 (4.2)

If a local minimum point is scanned, then we have only one dimensional informa-

tion and Equation 4.2 is undetermined. In this case, we can shrink the uncertainty

region to an uncertainty line segment whose direction is perpendicular to the sensor

beam (Figure 55(b)). If the sensor’s Gaussian noise is not small enough to be ne-

glected, then instead of using an uncertainty line segment we use a thin ellipse or

a thin rectangle instead (Figure 55 uses a thin ellipse). This is relaxed localization

using a local minimum feature.

With two or more local minimum features, we can localize to a configuration by

combining the information from each feature. One way of combining two ellipses is by

geometrically intersecting the ellipses; a rigorous method based on grids is explained

in [32]. However, if the walls are parallel to each other, then the feature information

is linearly dependent and cannot be used for localizing to a configuration.

After attempting to reduce the uncertainty region, a confirm step is required to

choose the correct result. Using the robot’s pose uncertainty information, a necessary

(but not sufficient) condition is that the computed robot’s configuration must be

inside the uncertainty ellipse. In Figure 55(c), if the two ellipses do not overlap, then

it indicates that the result is invalid. A sufficient condition to verify the localization

is to use a synthetic scan which is a software scan of the model environment. After a

configuration is determined from the localization, if the synthetic scan and the actual

scan are close enough to each other, then the verification is complete. This step is

computationally expensive and should be used after computationally simpler checks
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Fig. 55. Relaxed and precise localization. (a) Sensing a wall. (b) Uncertainty ellipse

is reduced to a thin ellipse or a line segment. (c) Sensing two walls. (d)

Uncertainty ellipse is reduced to a small circle or a point.

have been satisfied. The pseudo code in Figure 56 shows the algorithm for reducing

an uncertainty ellipse and confirming the result.

Second, we consider feature–based uncertainty reduction for Monte Carlo lo-

calization. Particle filters use sets of samples to represent the belief of the state

xt = < x, y, θ > [22]. After computing the next state xt from odometry and the

previous state xt−1, we need a perceptual model describing the likelihood of an ob-

servation yt given that the robot is at location xt. In [22], the probability p(yt | xt)

is computed by ray–tracing using a sensor uncertainty model. Using features such as

local minimum and maximum points, an easy way to obtain p(yt | xt) is to compute
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Reduce Uncertainty(unc reg, Fsector−match, fscan)
1. for each (fsector−match ∈ Fsector−match)
2. unc regscan ← reduce with fscan, fsector−match

3. if unc regscan ⊂ unc reg
4. if confirm unc regscan with synthetic scan
5. unc reg ← unc reg ∩ unc regscan

6. end if
7. end if
8. end for

Fig. 56. Pseudo-code for reducing uncertainty region.

a reduced uncertainty ellipse and then to check if each particle is inside the ellipse

or not. More sophisticated methods of computing p(yt | xt) based on a Gaussian

distribution are possible.

A benefit of visibility sectors is that the probability can be obtained quickly.

For instance, in Figure 23, xt in sector A will attempt to match yt with Feature

1, sector C with Feature 2, and sector B (which is A ∩ C) with Features 1 and 2.

Visibility sectors also help to decide how many actual and synthetic scans are required

to compute p(yt | xt) with a specified confidence.

Third, feature–based methods can help to efficiently compute extended Kalman

filters. For sensors with limited visibility, the uncertainty must be encoded as a

nonlinear function in the measurement model. In discrete extended Kalman filters,

the measurement model z(k) = h(x(k)) +w(k) describes the sensor observation z(k)

computed by a nonlinear function h and the state x(k) [61]. A valid linearization of

h at the estimated x(k) can be modeled depending on the features expected from the

preprocessed data. Or, if explicit linearization of h is not necessary as in [32], then

visibility sectors can help decide which feature(s) should be used for computing the

mean and variance of z(k).
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3. Efficiency and Robustness

The primary advantage of sector–based methods is computational efficiency: the

sector information enables one to restrict the search for matching scanned and known

features. Visibility sectors enable localizers to exploit spatial locality when matching

features in the environment. Once localized to a sector, only a small set of features

needs to be processed when reducing the uncertainty region. Moreover, since they are

resolution independent, visibility sectors do not sacrifice accuracy as do some other

subdivision methods.

The secondary benefit of sector–based localization is related to robustness. First,

after scanning, the localizer can easily estimate if the scanned data contains enough

information for successful localization. The robot might need to scan again, or move

a short distance to look for other features. In this process, searching neighboring

sectors is more efficient than searching the entire environment.

Due to sensor limitations which sometimes render areas in the environment fea-

tureless, it has been observed that determining good subgoals is sometimes more

important than sophisticated feature identification methods. For this purpose, we

have suggested an integrated roadmap-based path planner and localizer. Given a

path selected from the roadmap, a good subgoal is the farthest node from the start

at which successful localization is expected. This requires knowledge of the visible

features for each node on the path, which is facilitated by the sectors data structure

which records the feature visibility from a sector.

One way to guarantee feature visibility along any path is, when constructing the

roadmap, to generate random nodes in sectors that have one or more visible features.

Such a roadmap may provide increased robustness for localization, but it may not

be good for efficient navigation. Given a roadmap that can satisfy robust localiza-
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tion and efficient navigation, our path planner selects a path that simultaneously,

e.g., maximizes the number of visible features and minimizes the distance traveled.

Visibility sectors help the path planner to quickly evaluate feature visibility and the

roadmap provides a way to determine path length.

Additionally, visibility sectors help estimate the chance of successful global local-

ization. Here, we assume that given perfect visibility and no ambiguous sectors, the

robot can localize to a configuration without any prior knowledge of the robot’s pose.

As the relative area of the ambiguous region increases, global localization becomes

difficult. Figure 57(a) shows an ambiguous region whose area is 26% of the entire

environment. Such regions are ambiguous due to non-unique sector labels, which we

can decrease by extending feature sets. A new feature l, which means ‘long distance

between two features’, has been added. The result is shown in Figure 57(b) where

all sectors have unique labels. In this case, the ambiguity was caused by the vertical

symmetry of the environment. It has been resolved since the new feature determines

if the discontinuity is before or after a long wall. Note that the role of visibility sectors

is not to create robustness but to facilitate localization when one has some idea of

the correct location.

Finally, visibility sectors can deal with dynamic environments where new features

can appear and known features can disappear. If changes are not very significant,

then it may be sufficient that many original features are visible so that navigation can

proceed using only those features. Otherwise, when feature information is changed,

the corresponding sector should be inserted or deleted. The most expensive step in

this process might be updating sector boundaries, which involves dividing or merging

simple polygons. Updating scan labels is straight forward. This is more efficient

than grid–based methods where the number of affected grid cells will often be larger

than the number of sectors that need to be modified. So, in addition to localization,
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Fig. 57. Removing ambiguous regions. (a) Ambiguous region (union of 8 sets of am-

biguous sectors). (b) New feature l added, and the ambiguity is resolved.

visibility sectors have potential application in map building algorithms (or SLAM).

The two major issues — efficiency and robustness — are competing and repre-

sent trade-offs that may not be achieved at the same time. For example, defining

complex features and accurately modeling the environment results in a large sector

data structure with ample feature information. A general rule in designing features

and sectors is that robustness should be maximized to the extent that is required, i.e.,

sectors should have adequate size and an appropriate number of features to satisfy

mission requirements. An example of such a decision is presented in Section 2 using

simulation results.
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CHAPTER V

MULTIPLE ROBOT LOCALIZATION

In designing practical mobile robot systems, we often desire scalable systems that can

be dynamically extended and configured to address the current needs. For example,

a mobile robot designed to carry a small and light payload might be teamed together

with additional robots to carry heavier items. Or, a surveillance robot that patrols a

designated area might need to coordinate with other surveillance robots to effectively

cover an entire shopping mall. In such cases, the algorithms used to coordinate the

system should be easily extensible to accommodate different numbers of robots.

In this chapter, we define, analyze the complexity, and propose approximate solu-

tions for two problems related to multi–robot localization. The difficulty of solutions

for this problem depends on the capabilities of the robot and the sensors. For ex-

ample, Kalman filters and particle filters focus on state estimation and often require

omni-directional sensing capability. We aim to effectively localize multiple robots

using a minimum number of sensings, assuming that the robots have a small number

of inexpensive range sensors. We formulate this problem using a particular position

uncertainty representation (uncertainty ellipses), but our approach can be applied to

other methods as well.

A. General Assumptions

We investigate the localization problem for systems of multiple mobile robots that

satisfy the following assumptions.

Indirect localization. When multiple robots are localizing, some robots may

reduce their position uncertainty by sensing known obstacles (direct sensing) or other
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robots (indirect sensing or also called cooperative localization [60]). Localizing mul-

tiple robots with known obstacles can be handled simply by applying a traditional

localization algorithm for each robot. Our interest here is on indirect localization

only.

Shared information. Each robot has a unique ID and can communicate with

the other robots. This can be realized by peer–to–peer messaging or by a client–server

network configuration with wireless communication devices.

Stop all and localize. All robots must stop moving while any robot is scanning

features. This is to ensure that there is no discrepancy in the positions of the other

robots obtained by sensing and information sharing. In fact, this can be relaxed so

that only the robots within sensor range must remain stopped.

Interaction among robots. We consider scenarios where robots interact with

other robots by scanning other robots, as well as by direct communication. One

condition for this is that the distances between the robots are loosely bounded so that

there always exists at least one robot within sensor maximum range. One example is

flocking where robots move together.

No omni-directional sensor. Each sensor has a limited angular range of

view, and sensing the entire environment requires rotating the sensor. To measure

the distance to the other robots, since the direction to the feature is not exactly

known, several measurements must be taken. The time required to sense a feature

depends on the sensor angular range, the time required to rotate the sensor, the pose

uncertainty of the robots, the diameter of the robots, and the time needed to take

one measurement.

Fast communication. The time spent communicating with other robots is in-

significant and can be neglected. In our algorithm, the majority of the communication



84

among robots involves sharing uncertainty region information.

Sensor crosstalk model. Depending on the type of sensors, many different

factors can cause cross–talk. We assume that such reasons are well modeled and can

be computed, i.e., in this work, we do not explain how to model cross–talk.

No Gaussian noise. We do not consider the effect of Gaussian sensor noise

when sensing ranges. In reality, several measurements of a fixed object increases

confidence, and might overcome the effect of Gaussian noise. However, for clarity in

analysis, we assume that the uncertainty region is reduced to the smallest size after

scanning once.

Sequence–independent uncertainty reducing. We assume that uncertainty

reducing is associative, i.e., the order of processing the features does not matter. For

example, localizing with feature A and then feature B results in the same reduced

uncertainty as localizing with feature B and then feature A.

The first step in localization is sensing the distances (ranges) from the robot to

objects in the environment. If the robot does not have enough sensors to provide

a 360o view, it might rotate (its sensors or itself) so that it can sense all necessary

directions.

B. Avoiding Crosstalk

One difficulty in localizing multiple robots in the same environment is to avoid cross–

talk while sensing. One solution is to allow only one robot to sense at a time. We

attempt to improve this by assigning the robots to groups which can safely sense

simultaneously. We will show that minimizing the total number of sensing rounds is

NP–complete by reducing a known NP–complete scheduling problem to it.
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Fig. 58. Examples of sensor cross–talk. (a) Two robots are located within maximum

sensor range and can sense each other, (b) the signal from a robot bounces

from a wall, and (c) the signal from a robot bounces from another robot.

1. Problem Definition

Definition: A cross–talk graph (CTG) is an undirected graph where the vertices are

robots, and each edge connects two robots that can cross–talk if they sense simul-

taneously. That is, robots connected by an edge in CTG cannot safely sense at the

same time.

To construct the graph, we need to know the possible robot positions bounded

by their uncertainty region, the maximum sensor range, and other objects that can

bounce sensor signal. Ray–tracing based techniques can be used to compute the

possibility of cross–talk between two robots, and this determines if an edge for the

robots exists in the graph. Figure 58 shows three possible robot configurations that

can experience sensor cross–talk. For five robots, an example cross–talk graph is

shown in Figure 59.

Definition: The unit sensing time ts is the time spent by a robot sensing its envi-

ronment. We assume that ts is constant and is the same for all robots. The sensing

process consists of sensing rounds.
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Fig. 59. An example of cross–talk graph. (a) An environment with five robots and no

wall, and (b) the corresponding cross–talk graph.

Any group of robots between which there are no edges in the CTG form an

independent set and can sense simultaneously without cross–talking. So, if we can

partition the robots into k such groups, then we can sense in k rounds, which takes

k · ts time.

Definition: Given a cross–talk graph and a positive integer k, the Range Sensing

problem (RS) is to schedule the robots so that they can all safely sense the environ-

ment in k rounds.

A solution of RS is a sensing schedule which assigns the robots to rounds so that

no two robots adjacent in the CTG are assigned to the same round. An optimal

schedule will minimize the number of rounds. The decision problem for RS is to

determine if all robots can sense in k rounds. An optimization version of the problem

is to minimize the number of sensing rounds, which has the same complexity as the

decision version in terms of membership in P and NP.
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Fig. 60. A solution to a simple RS problem. (a) A solution of graph coloring problem,

and (b) a valid cross–talk–free sensing schedule.

2. Graph Coloring

Given a undirected graph G = (V, E) and an integer k, the graph coloring problem

is to find, if one exists, a coloring of V using at most k colors so that no two vertices

with the same color are joined by an edge in E. A valid coloring for the graph in

Figure 59(b) is shown in Figure 60(a).

This problem is known to be NP–complete [23]. The complexity of NP–complete

problems is unknown but in general they are believed to be intractable, i.e., that it

is unlikely that they can be solved in polynomial time.

3. Proof that RS is NP–complete

We claim that RS is NP–complete. The proof follows the standard reduction tech-

nique which reduces a known NP–complete problem to RS.

RS is in NP. To verify a solution to RS, we check that each sensing round does not

contain any two robots that share an edge in the CTG. This takes O(n2) time, where

n is the number of robots.
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RS is NP–hard. We show this by reducing graph coloring to RS. Given a graph

coloring instance, a graph G = (V, E), and an integer k, we construct an RS instance

that has cross–talk graph G and integer k.

Figure 60(b) shows a solution that has been transformed from a valid colored G.

If we can solve RS, then we obtain at most k groups of robots such that no two robots

in any group are adjacent in G. Hence, an assignment of a different color to each

group will result in a valid k–coloring of G. Thus, since k–graph coloring is known

to be NP–Complete, RS is also NP–Complete.

C. Coordinating Reducing Ellipses

When localizing multiple robots in the same environment, the next step after sensing

is to reduce our uncertainty in the previous positions of the robots (the ellipses). We

aim to use a minimal number of total sensings, and this is shown to be NP-complete.

1. Issues

An example of ellipse reducing using a feature is shown in Figure 61. Robot 1 is

localized using robot 2 because d1 > d2. Robot 1 attempts to sense in several direc-

tions since the relative position of the robot 2 is not exactly known. Here, d1 and

d2 are measured along the line that connects the two robots. The reduced ellipse in

Figure 61(c) is shaped using the four points intersecting two line segments and the

large ellipse.

Each robot can sense all its visible features after a round of sensing. In this

section, we define a round of localization as the process of reducing uncertainty using

only one feature. Some localizers reduce the uncertainty region using several features

simultaneously, but we observe that such localizations can usually be divided into
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Fig. 61. Reducing ellipse after range sensing. (a) The robot 1 senses the robot 2. (b)

Reducing ellipse: before reducing, and (c) the ellipse of robot 1 is reduced.

several atomic rounds, each dealing with one feature.

We assume that reducing the position uncertainty of a robot using one feature

takes time tr, and we assume that it is the same for all robots. Our interest is in

efficiently localizing multiple robots, and the efficiency can be measured in several

ways. We aim to reduce the total time needed to reduce the ellipses, which is the

same as minimizing the number of required rounds. To achieve this, parallelism must

be increased (we must allow more than one robot to localize simultaneously in each

round) and the number of localizations for each robot must be decreased.

A simple approach to reduce the ellipses of all robots is to repeatedly localize a

random robot using a random feature until no further improvement is obtained. This

is not necessarily the worst, but has room for improvement. An intuitive approach

for efficient localization might be, at each round of localization, to find a robot with

the smallest uncertainty and localize its neighboring robot(s). Our approach is to use

ideas similar to those used in job scheduling.
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2. Problem Definition

Definition: The feature–visibility graph (FVG) is an undirected graph where vertices

correspond to robots, and an edge connects two robots if they can sense each other.

We store the uncertainty ellipse for the corresponding robot in the node.

Definition: The Uncertainty Reducing problem (UR) is, given a feature–visibility

graph and a positive integer l, compute a schedule so that all robots’ position uncer-

tainties are completely reduced in l rounds.

Here, we call a position uncertainty completely reduced if d1 = d2 for all robots

adjacent to each other in FVG. A trivial lower bound on l is the number of robots

that have neighboring robots with smaller uncertainty regions. In the ideal case,

every robot completely reduces its uncertainty region by sensing only one feature. In

practice, robots often need more than one round of localization to completely reduce

their uncertainty.

After localizing a robot using a feature, it is clear that an efficient solution of

UR should avoid localizing the robot using the same feature again. This condition

is illustrated by the three robots shown in Figure 62. If we localize in the order of

increasing ellipse size, i.e., robot 2 and then robot 3, then all robots are localized

in two rounds (Figure 62(b)). However, if robot 3 is localized first (Figure 62(c)),

then robot 2 and 3 need to be localized again. From this we observe that if the

robots can be arranged in a tree-like structure according to increasing ellipse size,

then an upperbound on l is the height of the tree. Indeed, it is not hard to show

that in the special case in which the FVG forms a tree, and if it further satisfies the

monotonically increasing ellipse size, then the optimal l is equal to the height of the

tree. In an optimal solution to UR, a robot is often localized more than once. Figure

63 shows an example where the robots are arranged in an alpha shape.
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Fig. 62. Localizing three robots takes two steps. (a) Before localization, (b) localizing

robot 2 and then 3, and (c) localizing robot 3 first (need to localize robot 2

and 3 again).
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Fig. 63. An optimal solution to UR requires one robot to be localized twice (horizon-

tally and then vertically).



93

j1 j2 j4j3 j5

(a)

j1 j2

j4

j5

j3

(b)

Fig. 64. Precedence–constrained job scheduling problem. (a) Five jobs with prece-

dence constraints, and (b) DAG representation of scheduling problem.

3. Precedence–Constrained Job Scheduling

The precedence–constrained job scheduling problem is often studied in the areas of op-

erating systems, compiler design, production/project management, etc. Given n jobs

under m precedence constraints and p identical parallel processors, the precedence–

constrained job scheduling problem is to assign jobs to processors while satisfying the

constraints [9] (also called DAG scheduling). In a feasible schedule, each processor

executes only one job at a given time, and the execution is non–preemptive. A simple

case is illustrated in Figure 64 where five jobs with precedence constraints are repre-

sented by a directed acyclic graph with n nodes and m edges. Jobs {1, 2} and {3,

4} can be executed simultaneously if two processors are available.

The makespan of a schedule is the elapsed time between the time when the first

task starts execution and when the last task finishes execution. Determining the

optimal (minimal) makespan for a job scheduling problem is NP–hard for arbitrary

p, but becomes feasible if the constraints are tree–structured or if p = 2 [9].
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4. Proof that UR is NP–complete

UR is in NP. To verify a solution to UR, we can verify that each round is feasible

and that the number of rounds in the schedule is at most l.

UR is NP–hard. We reduce from the NP–complete precedence–constrained schedul-

ing problem. Given an instance of job scheduling represented by a directed graph

G = (V, E), we can transform it into an instance of UR as follows.

1. Each job in the job scheduling problem corresponds to a robot.

2. The size of the uncertainty regions for the robots increases according to the edge

directions in G so that precedence constraints are mapped to the UR problem.

3. Because robots corresponding to starting jobs in the scheduling problem don’t

have any feature, additional features are needed. For this, sensor–visible obsta-

cles or new robots with very small uncertainty regions are added in appropriate

positions.

An example of the UR problem corresponding to the job scheduling problem

shown in Figure 64(b) is shown in Figure 65. Robots 6, 7, and 8 have been added so

that five robots corresponding to jobs 1 — 5 are all localized. Though the FVG is

undirected, we added arrows in the figure so that the relative size of the uncertainty

ellipses for each pair of robots can be easily seen.

The solution to UR provides an optimal localization sequence. It can be trans-

formed into a job execution sequence (solution of job scheduling) by reversing the

transformation explained above. That is, jobs can be created for the robots to be lo-

calized, and precedence constraints can be determined according to the relative size of

uncertainty regions. This takes linear time in the number of nodes and edges in FVG.

Thus, since job scheduling is known to be NP–complete, UR is also NP–complete.
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Fig. 65. Transforming into an instance of UR. (a) An instance of uncertainty reducing

(UR) at an intermediate step, and (b) three robots are added according to

rule 3 of transformation.

D. Approximate Solutions

Though it is believed to be impossible to compute optimal solutions for the two multi-

robot problems in polynomial time, heuristics for graph coloring and job scheduling

can be employed to obtain approximate solutions for the two multi–robot problems.

Our goal is to reduce the number of total steps in RS and UR given the CTG and

FVG, respectively, using reasonably simple algorithms.

1. Range Sensing

Many polynomial–time approximation algorithms for graph coloring have been pro-

posed, e.g., Wigderson [78], Blum [11], Karger et al. [33], and Zwick et al. [87]. The

problem has been applied to several other research areas. For example, the method

for efficient channel assignment for mobile cellular communication systems [73]. For
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Fig. 66. Choosing the robot to localize using embedded tree. (a) Given a FVG, (b)

removing two edges and a node R3 that do not belong to the embedded tree,

and (c) the nodes are rearranged to be seen like a tree.

range sensing, any existing approximation algorithm for graph coloring can be applied

without further modification. We do not discuss the details here.

2. Uncertainty Reducing

Approximate solutions for job scheduling have been researched for a number of ap-

plications. For parallel database and scientific applications, [14] considered two con-

straints — the volume of the resource time product and the critical path.

For the UR problem, we propose two heuristic approaches. The first approach

is based on rooted embedded tree which is defined to be any maximal tree structure

that is a subset of the FVG. After a rooted embedded tree is found, the first robot

to localize is the child vertex of the root in the tree; the root robot has no feature

and its uncertainty cannot be reduced. An example is shown in Figure 66 where the

robot to be localized first is R2. We call this the rooted tree method.

The second approach is an extension to the first approach and useful when the

problem size is large. In case there are several embedded trees with similar size,

this method selects the robot with the smallest uncertainty region to localize first.
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This is based on the concept of the critical path that is often used to calculate the

lowerbound on total execution time. However, we do not compute the tree height to

identify a critical path but estimate it using the robot’s uncertainty region. There are

two reasons for this. First, choosing the tallest embedded tree in the FVG does not

guarantee the minimum total time. This is because critical path–based scheduling

does not always yield the best performance when the task graph is dynamic and the

FVG in UR is dynamic, i.e., subject to change during localization. Second, explicitly

computing the height of embedded trees takes longer than comparing the size of

uncertainty regions. We call this approach the uncertainty–based method. Simulation

results in a more complex environment are presented in Chapter VI Section F.
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CHAPTER VI

EXPERIMENTAL RESULTS

In the previous chapters, we have described our methods for path planning and lo-

calization. In this chapter, we examine the performance of our methods through

simulation and test the entire navigation system using a real mobile robot in our of-

fice environment. Some simulations were performed in simple artificial environments

to clearly evaluate particular aspects of our methods. In other cases, including the

hardware experiments, we used office and hallway areas of our lab which are meant

to represent typical indoor environments for personal mobile robot applications.

This chapter is organized as follows. First, we describe implementation issues

and assumptions related to our experimental setup. Then we present experiments

that were designed to enable us to study the following issues.

1. Localization in Partially Known Environments: How robust and fast is the

localizer?

2. Path Planning: How safe and efficient are the paths provided by our path

planner?

3. Global Navigation System: How do the localizer and the path planner work

together?

4. Practicality: How does our navigator work with a real mobile robot?

5. Multiple Robots: How effective are our methods for multi–robot localization?

Simulation results for multi–robot localization are presented in a separate section

since the algorithm is different from the single robot case.
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A. Implementation Details

1. Assumptions

We assume that a model of the environment is provided a priori, that the portion

of the workspace relevant for navigation can be considered to be planar, and that

obstacles can be modeled by simple polygons. Walls, doors, and big stationary objects

such as tables and book shelves are recorded in the map while small uncertain objects

such as chairs or trash cans may not be charted. The height of the robot is ignored

and any obstacle that lies above the robot is not considered.

2. Code and System

We implemented our navigator in C++ using the LEDA [57] library for geometric

primitives. Simulation and hardware experiments were done using Pentium 4 PCs

running Linux and the SAPHIRA [46] package was used for hardware communication

with an AmigoBot [54].

The path planner employs several strategies for building probabilistic roadmaps

including basic prm [36], obstacle–based prm [4, 12, 28, 79] and medial axis prm

[53, 79, 80] To generate roadmap edges, each node was attempted to the k closest

nodes in the roadmap; generally we used k = 7. For local planning, we used only

straight–line planners.

3. Robot

The AmigoBot has eight sonar sensors — four in the front, two in the back, and one

each on the left and right. We have used only the left and the right side sensors for

localization. The amount of odometry error depends on the speed of moving, and we

limited its speed to be similar to a human’s walking speed. This is slower than the
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robot’s maximum speed but this allowed us to safely operate the robot with some

people moving around.

To represent the position uncertainty of the robot, ellipses were used where the

major and minor axis represent lateral and longitudinal errors, respectively. Our

method for compounding ellipses after translation and rotation has been explained

in Chapter II.

When performing simulations, we tried a variety of robot parameters including

varying sensor minimum/maximum ranges and the accuracy of odometry measure-

ment. Small sensor maximum range and large odometry error, which characterize

inexpensive systems, were used to test the robustness of our methods. By incremen-

tally relaxing the limitations, i.e., by increasing the sensor maximum range and the

odometry accuracy, we observed their effects on the efficiency of navigation.

4. Environments

Environments were represented with polygons, with one describing the boundary of

the environment, and additional polygon(s) used to represent other obstacles. For

geometric computations such as intersecting polygons, we have used the LEDA li-

brary [57]. Since LEDA does not support the representation of curves, curves were

approximated with a sequence of line segments.

Two real environments have been measured to create map data (see Figure 67).

One is the lab environment. It has a total area of 24.2 square meters (260 square feet)

and contains several desks and room doors. The other is the hallway environment

outside our lab. Obstacles inside the environment often consists of small tables,

chairs, and other small objects that are stationary and whose positions are known.

We tried adding varying number of obstacles to the lab environment to see its

effect on localization. Depending on the number of obstacles present, such envi-
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Fig. 67. Environments for simulation and hardware experiments.

ronments can be grouped to free, mostly free, moderately cluttered, and cluttered.

Cluttered environments might not be often used in real applications but they are

useful in studying visibility sector properties.

B. Localization in Partially Known Environments

This section describes localization simulation results focusing on exploring the ro-

bustness of our methods in the presence of imperfect map knowledge and limited

feature visibility. First, we will analyze the effects of varying the maximum range of

the sensors. We consider how this affects the sector properties and also our general

ability to perform global localization. Second, we will show how we can augment the

localization algorithm so that it can handle additional scenarios.

Limited storage and computing power are other design constraints that are im-

portant for inexpensive mobile robot systems. We analyze the storage and computa-

tion requirements of our methods for different subdivision methods and for varying

sensor limitations.
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1. Sector Construction Time

Depending on how features will be defined and identified, there are two ways to

compute sectors. The first method was explained in Section 4 and uses a “synthetic”

scan around a point in each sector. This is often used for perfect visibility cases

because some of the features can be identified only by synthetic scanning (e.g., Dc

and cD).

The simulation results presented in Table I show that the feature identification

step is responsible for essentially the entire sector construction time (3.3 seconds).

Visibility sectors in this case are convex simple polygons and very efficient geomet-

ric operations are permitted. When generating synthetic scans, the angular step of

sensor rotation must be small enough to detect all features in the environment. The

minimum necessary angular step depends on the maximum distance to a feature, the

minimum feature size (e.g., wall length), etc.

We have suggested a way to extend the synthetic scan approach to compute

features while accounting for limited visibility. Table I shows results for our merging

based method. It is seen that the reduced visibility case requires additional time over

the perfect visibility case. During the merge process, sectors need to be represented by

generalized polygons because they may have holes inside. Since the size and shape of

visibility sectors are variable, our approaches have advantage over grid-based methods

in efficiently subdividing the environment.

Another method of computing sectors avoids synthetic scans and instead adds a

feature (a character) to the label at each step of sector subdivision. This is possible

only if each primitive sector is related to a unique feature and no additional features

are used. For the same lab environment, the time for identifying primitive sectors is

significantly longer than the perfect sensor case (5.7 sec vs. 0.1 sec) because the prim-
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Table I

Sector construction time

perfect visibility limited visibility

m,M,D,c M only m

number of sectors 254 13 122

primitive sector 0 0 2.2 sec

sector boundary 0.1 sec 0.1 sec 3.5 sec

computing features 3.3 sec 3.3 sec 0

merging N/A 2.1 sec N/A

total time 3.4 sec 5.5 sec 5.7 sec

Sensor maximum range was set to 50 inches for the limited visibility case. The lab

environment was used.

itive sectors are more complex, having concave portions and curved edges. Since they

often cause numerical instability, our implementation includes additional routines to

deal with degeneracies.

The sector construction time increases with the sensor range and the number

of obstacles. Figure 68 shows that when an obstacle is added, the number of sec-

tors is increased significantly. Though only a small number of primitive sectors are

introduced with each additional obstacle (eight in this case), they intersect a large

number of existing sectors. Similarly, the sector construction time increases when ad-

ditional obstacles are added. Figure 69 shows that in the lab environment, additional

obstacles or a longer sensor range can double the total construction time.
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Fig. 68. Simulation in the lab environment. (a) Visibility sectors with three obstacles

and sensor maximum range of 95 inches, and (b) Number of sectors increases

with number of obstacles (each obstacle is added according to the sequence

numbered in Figure 68(a)).
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Fig. 69. Time of constructing sectors with varying sensor range and obstacles.
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2. Varying Sensor Maximum Range

Among the many sensor properties, perhaps the maximum range affects the attributes

of the visibility sectors the most. In Figure 70, among five different sensor maximum

ranges (50, 100, 150, 200, 250), the 200 inch case shows the largest total number of

sectors. The largest visibility number (the number of visible features) is ten when the

maximum range is 200 or 250. Figure 70(c) shows that as the sensor maximum range

is increased, the area with high feature visibility becomes larger. For example, if the

sensor range is increased from 150 to 200 inches, then the area with visibility number

ten is increased almost ten times. Sector boundaries with different sensor ranges are

illustrated in Figure 71.

Figure 72 shows the regions where at least (a) two or (b) four features are visible

with a sensor maximum range of 100 inches. With two or more features, the robot

can precisely localize if all features are successfully identified. This may not be robust

enough if some of the features are not scannable. In the marked area in Figure 72(b),

the robot can localize even if it fails to recognize two features in the map data. Such

information can be utilized by our path planner so that it will select paths from the

roadmap that are robust for the localizer.

Though a larger sensor range means increased robustness in general, it demands

more storage. As the sensor range becomes larger, Figure 70(b) shows that the

majority of the sectors have larger visibility numbers. When the maximum range is

200 inches, the average number of features is approximately 5.5. However, depending

on mission requirements, shorter–ranged sensors may be preferred to save storage

(or we could elect to record only close features). If the sensor range is reduced to

100 inches, then the number of sectors is decreased by 15% and the sectors have

approximately four features on average. Such information about an environment can
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Fig. 70. Properties of visibility sectors with different sensor maximum ranges.
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(a) (b) (c)

(d) (e) (f)

Fig. 71. Visibility sectors with sensor minimum range of 5 inches and maximum ranges

of (a) 20 inches, (b) 50 inches, (c) 100 inches, (d) 150 inches, (e) 200 inches,

and (f) 300 inches.
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(a) (b)

Fig. 72. Sectors with (a) two or more local minimum features, and (b) four or more

features for sensor maximum range of 100 inches.

be used to help decide how long the sensor’s maximum range should be for that

environment.

Next, we show simulation results that illustrates that a larger sensor maximum

range can assist efficient navigation. We restrict the robot to stay close to the wall

so that at least one feature is visible while moving. In the hallway environment,

Figure 73 shows that at least five localizations are necessary if the sensor range is

15 inches. The second and the third cases use maximum sensor ranges of 25 and 35

inches, respectively, and they require fewer localizations. Also, we show that a large

sensor maximum range and accurate odometry measurements contribute to efficient

navigation in a similar way. Figures 74(a) and 74(b) show almost the same subgoal

positions with different combinations of parameters. However, this does not always

hold. For example, subgoals in Figure 74(c) and 74(d) are far apart though the

parameters do not vary significantly. This is because with a sensor maximum range

of 45 inches, the upper and lower sectors overlap and the robot can move along the

medial axis of the environment.
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Fig. 73. Hallway environment with sensor maximum range (a) 15 inches, (b) 25 inches,

and (c) 35 inches. Localization position are labeled [1] – [5].
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Fig. 74. Hallway environment with sensor maximum range and lateral deviation: (a)

20 inches and 2% of travel distance, (b) 30 inches and 4%, (c) 40 inches and

5%, and (d) 45 inches and 6%.

3. Varying Number of Obstacles

To test our methods in the environments cluttered with small obstacles, up to fifteen

box-shaped obstacles were added to the lab environment. Figure 75 shows the order

of adding each obstacle. The first three obstacles are same as those in Figure 68. For

restricted visibility, sensor maximum range was set to 50 inches.

First, we investigate visibility sectors with local maximum features (perfect vis-

ibility and merging sectors cases). Figure 76 shows the time of construction and

number of sectors in the lab environment. In Figure 76(a), the time of merging sec-

tors explodes when a few obstacles are added. This is because our implementation

does not take advantage of a sector adjacency list. When computation is optimized,

our analysis results in Chapter IV Section B.6 expected that the time will be bounded

by O(nr log(n2r)). With five obstacles present, the number of sectors is increased to

16 times the free environment case with perfect visibility (Figure 76(b)) and 2.5 times
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Fig. 75. Lab environment cluttered with fifteen obstacles.

the free environment case (with restricted visibility (Figure 76(c)). This shows that

using sensors with perfect visibility might render the computation infeasible when the

environment is complex.

Next, we show the results for local minimum point features. In this case, syn-

thetic scanning is not necessary and the sector construction time depends on the

process of environment subdivision. Figure 77 shows the number of sectors and time

of construction with 0 – 15 obstacles present. Though cluttered environments take

a long preprocessing time, they prove to provide good feature visibility. With four

obstacles, 72.3% of randomly sampled nodes have feature visibility of two or higher.

The ratio is increased to 99.3% when fifteen obstacles are present.
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Fig. 76. Merging sectors with varying number of obstacles. (a) Time of computing

visibility sectors for perfect visibility and restricted visibility (needs merging).

(b) Number of visibility sectors for perfect visibility. (b) Number of visibility

sectors after merging.
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Fig. 77. Sector properties in cluttered environment. (a) Number of primitive and

visibility sectors, and (b) time for constructing sectors.
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4. Ambiguity in Global Localization

Our strategy for overcoming the issue of ambiguous regions is to avoid selecting paths

which might place the robot in two sectors with indistinguishable labels. However,

in global localization, the robot should be able to localize virtually anywhere in the

environment. In this case, to prevent localization failure we need to minimize the

areas where ambiguities could occur.

With the four features (m, M, D, c) defined in Chapter IV, there are five pairs of

ambiguous sectors in the lab environment as shown in Figure 78(a). The total area of

such sectors is 8% of the free space. Global localization could fail in these regions. To

improve the differentiability of sector labels, we can add additional feature (feature l

in this case) as explained in Chapter IV Section C. The ambiguous region is reduced

to two pairs of sectors and their area is 1.5% of the environment. If one small obstacle

shown in Figure 68(a) is added, then the ambiguity is removed without using feature

l. As mentioned earlier, the main role of visibility sectors is not to create robustness

but to help to quickly assess the effectiveness of a feature set.

In practice, such small ambiguous regions are of little importance since robustness

depends on many other factors such as the resolution and noise of the sensors, the

size of the robot, unknown obstacles, the accuracy of the map, etc.

5. Reducing Uncertainty When No Features Are Scanned

This section describes techniques to increase the performance of our localization meth-

ods without modifying the sector data structure. An example shown here is that the

robot’s position uncertainty can be reduced even when no feature is identified from

the scan data. This is possible if a part, but not all, of the uncertainty region inter-

sects visibility sectors from which features should be visible. Figure 79(a) shows that
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Fig. 78. Ambiguous regions (same cyclic scan labels) for perfect visibility (a) with

four features and (b) with five features (pairs of sectors with indistinguishable

cyclic labels are linked with dotted lines).

an uncertainty ellipse (dotted line) is reduced to cover the featureless region (solid

line). The pseudo code in Figure 79(b) was used to compute the reduced ellipse. This

process can be integrated into the uncertainty reducing algorithm shown in Figure

56, Chapter IV.

C. Path Planning

We now examine the performance of our path planner. First, we show how to select

feasible paths given the robot’s physical constraints. We first address kinematic and

dynamic constraints for nonholonomic robots and then discuss how the methods can

be extended to compute efficient paths in general. Second, we consider the issue of

safe navigation. We will show by simulation results that passive (increasing path

clearance) and active (increasing feature visibility) measures can be used. For prac-

tical applications, we will also consider path clearance and length together. Finally,
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(a)

Localization(unc reg, scans)
1. S ← sectors intersecting with unc reg
2. Fscan ← features in scans
3. if Fscan = ∅ then
4. for each s ∈ S
5. unc reg ← unc reg \ s
6. end for
7. end if
8. return unc reg

(b)

Fig. 79. Reducing position uncertainty when no feature is scanned. (a) The dotted

gray ellipse shows the uncertainty ellipse before reduction and the black ellipse

shows the uncertainty ellipse after reduction. (b) Pseudo code for reducing

the ellipse.

a flexible final condition will be formulated and simulated to illustrate how this can

make it easier for the robot to reach the goal.

1. Kinematic Constraints

Nonholonomic robots, such as car–like robots, have kinematic constraints that pre-

vent them from turning with an arbitrary radius. Feasible paths for such robots are

computed by avoiding selecting edges that violate such constraints. Our approach

is to use an infinite edge weight for such unrealizable turns as explained in Figure

19(b) in page 42, part B of f2. In Figure 80, different start positions were tried

to obtain different valid paths which respected the robot’s turning angle limitation.

So, our path planning methods can be extended to the applications where kinematic

constraints often exist.
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start

(a)

start

(b)

Fig. 80. Kinematic constraints — feasible path for nonholonomic robots. Different

start positions in (a) and (b) result in different paths.

2. Minimizing Turning Effort

For holonomic and nonholonomic robots, reducing turning angles makes it easier to

follow paths. In this section, two methods for minimizing turning effort are simulated.

First, edge costs are computed based on the turning angle (only part A of Figure

19(b)) and they are accumulated using Equation 3.15. The result is shown in Figure

81(b). Because the edge cost is accumulated, the path is smooth and its length is

reasonably short. Second, the path’s maximum turning angle is minimized using

a technique similar to maximizing path clearance. The result is shown in Figure

81(c) which is the smoothest path, in theory. Note that the resulting paths can be

arbitrarily long because there is no control over the path length. Our last method

is to combine path length (Figure 81(a)) and maximum turning angle (Figure 81(c))

using the cost function in Equation 6.1.

cost(ei) =


costdist · length(ei) + costtr · f2(turning radius of ei−1 and ei)

or

costdist · length(ei) + costta · (turning angle of ei−1 and ei)

(6.1)
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(a) (b)

(c) (d)

Fig. 81. Kinematic constraints — smoothing paths. (a) A shortest–distance path, (b)

path selected by minimizing accumulated turning angle, (c) path selected by

minimizing maximum turning angle, and (d) path selected using a combina-

tion of turning angle and distance.

For the simulation result shown in Figure 81(d), the values costdist = 1 and costta = 10

were used. This shows an example that balances the competing goals of minimizing

path length and maximizing turning radius.

3. Dynamic Constraints

Dynamic constraints become important as speed increases. To show how our path

planner deals with increased speed, we used a mobile platform with a three–link arm

as illustrated in Figure 82. The wall in the middle has a passage, and each node’s

position in the roadmap (Figure 82(a)) indicates the mobile platform’s center of mass.
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The start configuration is shown in Figure 82(b), and the final condition is that the

end effector of the robotic arm should touch the wall opposite to the start position.

Also, the mobile platform must come to a stop at the final position. Note that such

a final condition should be formulated using a set of goal configurations (a goal set)

instead of a unique goal configuration.

The optimization value is to minimize the time required from the start to the goal.

We use bang–bang control logic (move at full speed until the end effector touches the

wall, and apply the brake as hard as possible) to compute the minimum time of each

path using Dijkstra’s algorithm. Depending on the weight (including payload) of the

robot, the final position varies because the stopping distance depends on the weight.

Three different simulations show three different final configurations depending on the

mass of the robot.

4. Path Clearance and Length

Path clearance is defined to be the minimum clearance of all edges in the path from

the start to the goal, and is one way of representing the safety of the path. Three

passages exist in the environment shown in Figure 83(a), where the start and the

goal are shown in Figure 83(c). Paths going through corridor A or C are obtained by

maximizing the minimum clearance or minimizing path length, respectively. Figure

83(c) shows the path going through corridor B; this is the result of using Equation

6.2 which combines the two conditions depicted in Equations 3.12 and 3.16 using

costdist = 0.03 and costclr = 0.97.

cost(ei) = costdist length(ei)+
costclr (clmin − cl(ei)) if cl(ei) < clmin

0 otherwise

(6.2)
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Fig. 82. A mobile platform with an robotic arm. (a) roadmap, (b) start position, and

(c) three different configurations in the goal set.
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(a) (b)

start goal

A

B

C

(c)

Fig. 83. Maximizing minimum path clearance. (a) Roadmap, (b) visited edges in

the middle of the search, and (c) the shortest path computed using the two

optimization values are shown.

The search tree edges of Dijkstra’ algorithm are illustrated in Figure 83(b) by arrows

representing the direction of the search from the start node.

If the turning radius is considered together with the clearance and distance values,

then the resulting path is short, efficient, and safe. For this, we add costtr to the

formula computing cost(ei). Simulation results are shown in Table II and Figure

83(c). The fifth and sixth rows show that different combinations of weight values can

result in similar paths.

5. Goal Sets

This section shows the benefit of using goal sets instead of a unique goal configuration.

A simple way of connecting the start and the goal configurations to the roadmap is

to try to connect them both to nearby nodes in the roadmap. This sometimes causes

difficulty in obtaining quality paths. For example, the path shown in Figure 84(a)

connects the goal and the roadmap so that there is little room between the path

and the wall. Unless the connection method is changed, the path clearance cannot be
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Table II

Three different paths

Corridor costdist costclr costtr

A 0 1 0

B 0.03 0.97 0

C 1 0 0

B 0 0 1

B 0.08 0.84 0.08

B 0.03 0.32 0.65

These weights were used in the environment shown in Figure 83(c).

increased any further. So, we have used the final condition h() described by Equation

3.11 which computes the distance between the current search node and nearby nodes.

Figure 84(b) shows the improved path using the goal area marked by a circle.

There are other cases where the goal sets can be used to obtain good paths.

Examples include the disassembly problem where the goal is to move the various

parts far from each other, the flocking problem where relative distances among the

robots are important, and car–like robots where the final orientation of the robot

depends on the path taken.

D. Global Navigation: Integrated Path Planning and Path Following

The third issue we study considers how well we integrate the localizer and the path

planner in our global navigation framework. We observe that building multi–purpose

roadmaps is a prerequisite for high-quality navigation, and we will evaluate several

roadmap construction methods for this purpose. Next, we demonstrate benefits that
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start

connect

(a)

goal area

(b)

Fig. 84. Using goal sets improves the path quality. (a) A node closest to the goal is

found first, and then used to compute the shortest path. (b) The goal set

consists of the nodes in the goal area.

can be obtained where feature information is shared by the localizer and the path

planner. Finally, we explain our techniques for improving paths during postprocess-

ing. In this step, the path processor is also aware of the needs for localization.

1. Feature–Based Roadmap

Table III compares three methods for computing probabilistic roadmaps using a hall-

way environment outside our lab. Figure 85(a) shows that at the center of the large

square room, there are regions with zero visibility. If we use basic PRM which uses

only uniform sampling, then some nodes will be created in the featureless area. For

the benefit of localization, this must be improved.

First, two existing PRMs are tested (see Chapter II Section F). The nodes

generated by medial axis PRM (MAPRM) [79] are useful for traveling across large

areas. Simulation results for MAPRM show that 85.4% of the nodes have nonzero

visibility. If obstacle-based PRM (OBPRM) [4, 83] is used, simulation results show

that all the nodes have nonzero feature visibility.

Next, we propose a new PRM variant that uses sector information when sampling
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Table III

Roadmap nodes in localizable areas

method number of number of nodes with number of nodes with

nodes/edges visibility 1 visibility 2 or higher

(b)MAPRM 150/424 1(0.7%) 127(84.7%)

(c)OBPRM 150/262 18(12.0%) 132(88.0%)

(d)FBPRM 300/817 69(23.0%) 231(77.0%)

These weights were used in the environment shown in Figure 85.

nodes. This feature-based PRM (FBPRM) generates nodes that are evenly distributed

in the sectors with nonzero visibility (Figure 85(b)). Depending on mission require-

ment, we may choose to use sectors where two or more feature are visible. Or, it is

also possible to vary the probability of creating nodes depending on the number of

features visible. For other mission–specific requirements, new node generation meth-

ods and connection methods can be employed. For example, if the robot frequently

visits a recharging station, then the area may be connected to other important areas

with straight line segments.

Next, we simulate in the lab environment while varying the number of obstacles

and the sensor range. When additional obstacles are added, as shown in Figure 68(a),

the number of roadmap nodes that can see multiple features increases as illustrated

in Figure 86(a). A similar result is obtained when the sensor maximum range is

increased as shown in 86(b). In this environment, MAPRM almost always showed

the best result.
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featureless area

(a) (b)

(c) (d)

Fig. 85. Properties of roadmap nodes. (a) Visibility sectors in a hallway environment.

Roadmaps were constructed using: (b) medial axis PRM, (c) obstacle based

PRM, (d) feature based PRM.
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Fig. 86. Multi–feature nodes in the roadmap. (a) Varying obstacles (sensor range is

25 inches), and (b) varying sensor maximum range (without obstacle).

2. Dynamic Path Replanning

In this section, we show how a different route is selected when re-planning after

a localization operation. One obvious example is shown in Figure 87 where three

different paths could be selected in the second iteration depending on the result of

the localization at the first subgoal. The path in the first iteration uses the medial

axis, which enables the robot to move as far as possible before the first localization

operation. Note that in the second iteration, different cost functions could be used

that might move the path away from the medial axis to ensure good feature visibility

and accurate navigation around the goal.

Dynamic path replanning can sometime cause a big difference in the selected

route for a small change in the robot’s position. In Figure 88(a), the global plan-

ner initially selects the path start-b-a-f-goal by finding the shortest path in the

roadmap from b to f. The node b is selected as the subgoal since the uncertainty
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start
goal

route 1

subgoal
route 2

route 3

Fig. 87. After localizing at the subgoal, three routes can be taken depending on the

robot’s actual position.

ellipse along the segment b-a intersects an obstacle. After the first robot movement

and subsequent localization (see Figure 88(b)), the actual robot position was close

enough to the node c so that the (re)planning by the path planner selected a different

path (new)start-c-d-f-goal. Given the new start position, this new path is more

efficient than the originally computed path.

Now, the actual goal is selected as the subgoal since the uncertainty ellipses

indicate a collision-free path exists that does not encounter ambiguous sector labels.

The goal is reached, within the specified tolerance, after the second iteration. This

example shows the difference between our navigator and a simple navigator where

the entire path is planned and fixed in the beginning.

3. Avoiding Featureless Areas

A basic requirement for successful localization is that the robot should avoid attempt-

ing to localize in featureless areas. One way of ensuring this is to prevent the path

from passing through such area. This may result in very inefficient paths. So, we

need to allow some portion of the path to be in a featureless area and ensure that no
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Fig. 88. Simulation of path replanning. (a) first iteration and (b) second iteration.

subgoal is placed there. In computing good paths, we aim to achieve feature visibility

and efficiency together. Equation 6.3 is used to compute edge weights where f1()

was described in Figure 19(a). This is simulated in the environment shown in Figure

89(a).

cost(ei) = costdist · length(ei) + costvis · f1(visibility of ei) (6.3)

In Figure 89(b), costvis was set small and the resulting path is close to the

shortest–distance path. This allows the last two nodes to localize using the upper

wall. In Figure 89(c), all the nodes in the path are in sectors with non–zero visibility

numbers due to increased costvis. However, in the last node before the goal, the robot

cannot see the wall to the right and precise localization is not possible there. The

robot might not be able to safely approach the goal. To improve this, costvis was

increased and the result is shown in Figure 89(d). Though this path is longer than
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(c) (d)

Fig. 89. Avoiding featureless areas. (a) Sectors with visibility numbers (0 – 2), and

start and goal are shown. (b) Path selected using a combination of distance

and visibility, (c) path selected when visibility gets more weight than distance,

and (d) path selected when visibility is maximized.

the previous cases, three nodes are in areas that have two visible features.

Next, we simulate in the lab environment using the same edge weight function.

The sensor maximum range has been set to be short (20 inches) to create a large

featureless area in the middle of the environment. Depending on the combination of

edge weight constants as shown in Table IV, four different paths are obtained as shown

in Figure 90. Path 1 strictly avoids the featureless area, and paths 2 and 3 have one

and two node(s) in the featureless area, respectively. Path 4 is the shortest-distance

path (roadmap is not shown).
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start
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path2

path4

path3

featureless area

Fig. 90. Avoiding featureless areas in the lab environment. Four paths are obtained

using the edge weight combinations shown in Table IV.

Table IV

Four different paths

path number costdist costvis

path 1 0 1

path 2 1 50

path 3 1 15

path 4 1 0

These weight constants were used for the lab environment shown in Figure 90.
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4. Reducing the Number of Localizations

Though localization helps avoid collision, unnecessary localization should be avoided

because it takes time and resources. Like many previous cases where the boundary

between optimal and inefficient is not clear, the minimum number of necessary local-

izations cannot be estimated. Our approach is to assume that the robot always makes

a certain amount of error and that it needs to be localized whenever a collision would

be possible if no localizations were performed. Also, we assume that each localization

is successful and reduces the uncertainty to zero, i.e., the uncertainty ellipse a point

after localization.

A simple environment with two corridors was made for simulation. Figure 91(a)

shows the roadmap in the environment. Subsequent figures show snapshots of search-

ing a path and do not reflect the robot’s actual movement. A collision is detected in

Figure 91(b), and as a result, the upper corridor is explored faster in Figure 91(c).

Finally, the goal is reached from the upper corridor first as shown in Figure 91(d).

Next, we simulate in the hallway environment. If we consider the number of

localizations only, then the path will have large uncertainty regions and thus approx-

imately follow the medial axis of the environment. This is shown in Figure 92 where

the dotted line was obtained using costdist = 1, costloc = 4, costvis = 0 in Equation

6.4. The resulting path minimizes the estimated navigation time.

cost(ei) = costdist · length(ei)

+ costvis · f1(visibility of ei)

+ costloc · (if collision in ei)

(6.4)

Finally, we improve the path’s safety by employing nonzero costvis. The result is

shown by the solid line in Figure 92 which visits an area that has multiple features.

In general, the path cost functions must consider efficiency and safety measures of
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(a)

Collision expected

(b)

(c) (d)

Fig. 91. Minimizing total time by choosing a smaller number of localizations.

path planner and path follower, which are summarized in Table V.

Table V

Summary of edge weights

Safety Efficiency

Path planner costclr costdist

Path follower costvis costloc

5. Path Postprocessing

The path extracted from a probabilistic roadmap is generally composed of a number

of straight line segments as shown in Figure 93(a). Such paths often make unnec-

essary short translations and turns. The quality of the paths can be improved by



133

startgoal

Fig. 92. Optimizing for number of localizations and feature visibility. The dotted line

is the shortest path, and the solid line accounts for feature visibility while

minimizing the number of localizations.

additional processing. One can convert to a spline curve, which allows the robot

to move continuously. Though there are several ways to generate such high–quality

paths, they often require long processing times.

Our approach to this problem is to reduce the number of segments by removing

a node in the path whenever the angle between two adjacent edges is smaller than

a certain value. Figure 93(b) shows the result of removing all possible nodes using

the turning angle condition. This path has been maximally straightened and no

valid subgoal can be found. So, we check that resulting path meets the necessary

criteria before removing a node. The result is shown in Figure 93(c) where the path

is shortened so that it contains two subgoals.

E. Hardware Experiments

In this section, we demonstrate the effectiveness of our navigation methods with a

real mobile robot, focusing on the localization process. The first experiment shown in

Figure 94 used a simple small environment to test the reliability of localization. The
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(a) (b) (c)

Fig. 93. Path postprocessing. (a) Uncertainty ellipses shown for each line segment

in the roadmap. (b) The path is over-straightened, and (c) a subgoal is

determined after reducing the path to three segments.

environment’s outside dimension is 2.25 by 2.25 meters, and the width of the robot is

26cm. It required two localizations to move from the start to the goal. After the goal

was reached, the next goal selected was the original start location. In other words,

the start and the goal were exchanged and the path was reversed. This experiment

was repeated ten times and they were all successful with a small variance in trajectory

due to odometry error and sensor noise.

StartGoal

Localize #1

Localize #2
Roadmap

Fig. 94. A small environment for repeated experiment.
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Next, we used our lab environment for experiments. Figure 95 shows a part of

our lab that has doors, desks, cabinets, and trash cans. The minimum and maximum

sensor range was set to 5 and 100 inches, respectively. This range was large enough to

cover all the nodes generated by MAPRM and to ensure that all of them have visibility

two or greater. Figure 96(a) shows the robot’s start and goal configurations.

After a path is extracted and the first subgoal is chosen, the robot travels toward

the subgoal and stops. Figure 96(a) also depicts the robot’s growing uncertainty and

actual position at the subgoal. Stopped at the subgoal in Figure 96(b), the robot

scans the environment and potential features are gathered. The features observed by

the sonar scans are matched to known features in the environment and the robot’s

pose is updated, Figure 96(c). Continuing, a new path is computed from the robot’s

actual position to the goal and the process iterates, Figure 96(d).

In the experiment shown in Figure 96, the robot’s position at the first subgoal was

off by 6 inches to the west and 6 inches to the north. The localization step corrected

this but the sonar scans also included error because of an unknown obstacle, a trash

can, shown in Figure 96(a). After localization the robot’s position continued to be

off target by 4 inches to the east and 2 inches to the south. The robot was able to

reach the goal area after replanning the path from the localized configuration.

F. Multiple Robot Localization

For the uncertainty reducing problem described in Chapter V Section C, two envi-

ronments were used to simulate the proposed heuristic methods. Also, a random

selection method was used to compare with our methods.
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Fig. 95. A part of the lab environment with an AmigoBot.

1. Tree Root–Based Method

In the environment shown in Figure 97, a random selection and our rooted tree

methods were simulated.

Although we would not expect it to perform well, we compare with a naive

random ordering method because we are not aware of any other multiple robot lo-

calization methods that address the issue of determining the best order in which to

localize the robots. As illustrated in Figure 98, the random selection took ten sequen-

tial rounds to completely localize all robots. This was reduced to seven rounds with

the rooted tree method as shown in Figure 99. If we allow simultaneous localization

of multiple robots in each round, then rounds {3, 4} and {5, 6} can be processed in

parallel, and the total rounds required are reduced to five.
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Fig. 96. Hardware experiment using AmigoBot in lab environment. (a) the first iter-

ation, (b) local minimum features identified, (c) matching features, (d) new

path after localizing, and (e) trajectory of the robot.
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Fig. 97. Environment for approximate solution (uncertainty ellipses and FVG with

directed edges are shown).
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round 1 round 2

round 3 round 4 round 5 round 6

round 7 round 8 round 9 round 10

Fig. 98. Randomly selecting a robot. A total of ten rounds were taken to completely

localize all robots. At each round, in this figure, only one robot is localized

(sequential case)

.
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round 1 round 2 round 3

round 4 round 5 round 6 round 7

Fig. 99. Selecting a robot at the top of tree. The first round selects a robot that is

adjacent to the smallest ellipse. The 4th and the 5th rounds localize the same

robot using different features.
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Table VI

Three heuristics for UR

random rooted tree uncertainty-based

sequential rounds 15.8 15.2 14

parallel rounds 11.3 10.3 10

2. Uncertainty-Based Method

To demonstrate the uncertainty–based method, a more complex environment shown

in Figure 100(a) was used. An embedded tree for this environment is shown in

Figure 100(c). After localizing robots 1 and 2, two trees are formed (Figure 100(d)).

Robot 6’s ellipse is larger than the ellipse of robot 4, and the robot with a smaller

ellipse belongs to the taller tree in this case. This environment was simulated using

three methods and the results are shown in Table VI.

If random numbers are used, the value reported is the average of five simulations

that were performed for each problem using different random number seeds. The

maximum number of tree–like portions is at most three in this case. So, localizing

more than three robots in one round does not help improve the total time.
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Fig. 100. Ellipse-based method for UR. (a) The FVG and uncertainty ellipses before

localizing, (b) the FVG with numbers ordered by the size of the ellipses, (c)

an embedded tree before localization, (d) two major embedded trees after

localizing robot 1 and 2, and (e) the FVG after localizing all robots.
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CHAPTER VII

CAMPUS NAVIGATOR

Our roadmap-based path planning techniques have been applied to a web-based route

planner that covers the Texas A&M campus. This is intended to be a practical

application that can potentially be used by people to navigate on our campus. The

idea was conceived originally as a practical form of the technique for optimal path

extraction for mobile robots, and received attention from the people in related fields

including the TAMU Administrative GIS office.1 There are many important issues

when implementing such systems; such as generating precise paths and minimizing

the effort for software development. There are two major components in our system:

path planner (called campus-query) and visualizer (called campus-vizmo), and they

are modified versions of query and vizmo that have been developed by the Algorithms

and Applications group in the Parasol lab [59]. Four graduate students (Jinsuck

Kim, Jyh-Ming Lien, Aimee Vargas E., Roger Pearce) and two former undergraduate

students (Nick Downing and Bharatinder Sandhu) have participated in this project.

A. Features

Our system is more sophisticated than Yahoo! Map or MapQuest, etc. It includes a

path planner and hand–made roadmaps.

• It supports several modes of transportation. Currently we have implemented

pedestrian (walking and wheelchair), individual vehicle (bicycle, motorcycle and

automobile), and bus. Paths utilizing multiple modes are considered to obtain

1Maintains the official map of Texas A&M University campus at College Station.
http://www-agis.tamu.edu
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the best result. For example, most paths will start and/or end with walking

but they might use a bus in the middle to minimize time.

• The path can be optimized and individually customized with respect to several

criteria such as shortest time, shortest distance, or shortest walking distance.

For example, the traveler can choose not to take a bus even if it results in faster

travel.

• When visualizing the path, unlike other software that shows 2D images, our

program generates 3D images with realistic building models. These 3D images

can be projected to 2D (see Figure 101). Our system supports graphics and

text-based user interaction. For example, when selecting building query points,

the user can click on the screen where buildings and their names are displayed,

or they can type in a building name or select from a building list (see Figure

102).

B. Components

The major components of the Campus Navigator are illustrated in Figure 103. User

requests over the internet are received by a web server and the corresponding query

data are inserted into the queue. The query data includes start, goal, and other

parameters such as transportation methods. For each query, a path is computed by

the path generation module (campus-query) and sent to the image generator (campus-

vizmo). After the environment and the path are drawn in 3D (and projected to 2D),

the resulting webpage is generated and sent back to the user. Our system runs in

linux with Apache and PHP for web serving, OpenGL and QT [76] for graphics, and

MySQL for roadmap storage. The campus-query, campus-vizmo, and other modules
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Fig. 101. A part of result webpage of the Campus Navigator. Buildings, streets and a

path from Bright building to Wisenbaker building are shown.
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Fig. 102. Two ways to choose the start location: clicking on the screen or selecting

from a list of buildings.
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Fig. 103. System architecture of the Campus Navigator.
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are written in C++ with MySQL API. Figure 104 shows additional components that

handle multiple user requests, generate the text guide, and support zoom/pan of the

resulting image. The query and path queue are actually database tables which are

convenient for maintenance and monitoring.

Apache, PHP
path path

generators
query
queue queue files

queue

queue

camera

path image

text guide

visualizer

Q1 P1 I1

C1

T1

Q2 P2 I2

C2

T2

Q3 P3 I3

C3

T3

Fig. 104. Detailed architecture of Campus Navigator server. Each queue is actually

a table in the database, and image files are stored in a network file server

system.

Roadmap. The roadmap is manually generated and contains real–world infor-

mation. For example, each vertex in the graph is related with a building or street.

Some buildings represent departments and services in the university, and some street

vertices are bus stops, parking lots, etc. Bus stops are related to bus routes in the

database. For these reasons, we have chosen to use a relational database system
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to store and maintain our roadmap. Constructing such roadmaps involves modifying

graph topology and editing edge/vertex properties, which ultimately results in editing

database tables. Appendix A shows the tables used for our campus navigator.

Roadmap Editor. Text–based database table editing tools such as MySQL

client or phpMyAdmin [55] are not suitable for creating large, complex roadmaps.

For this purpose, we have developed a dedicated graphical roadmap editor. Our

roadmap editor is based on vizmo [56] and has been extended to have specialized

functions such as node/edge editing dialogs and database connection. Screen shots

of the editor are shown in Appendix B.

Path Generation. During initialization, campus-query first reads the roadmap

from the database to memory and converts it to a graph–based roadmap. The

roadmap uses a vertex for a single location with a single transportation method.

For example, if a node in the database roadmap is a bus stop which is also a part of a

street, then two vertices are used to represent ‘in the bus’ and ‘walking on the street’.

The motivation for this roadmap conversion is that our path planning software can

be used without modification on these roadmaps.

Converting the roadmap to a graph takes two steps. First, for each vertex in

the database, a vertex is created as a seed vertex. This step generates a graph

whose topology resembles the database roadmap (see Figure 105(a)). Valid modes of

transportation for each vertex are identified and recorded in the seed vertex. Second,

for all modes of transportation, vertices are created and grouped with the seed (see

Figure 105(b)). After that, all pairs of vertices in a group or in adjacent groups are

connected if they share a transportation method. (see Figure 105(c)).

Web interface. The web interface module uses HTML and PHP to communi-

cate with the user. In the first screen, it asks the user how start and goal positions
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v1

v2

v3

e1 e2

(a)

v11
v12

v21

v22
v23

v31
v32

walk, car walk, bus

(b)

walk

 car bus

parking lot

parking lot

bus stop

bus stop

walk

(c)

Fig. 105. Constructing graph-based roadmap from database during initializing cam-

pus-query. (a) Three vertices and two edges with different transportation

methods. (b) In the first step, vertices are duplicated according to valid

transportation methods in the edges connected. (c) In the second step, for

each method, edges are created to connect all the vertices.

will be specified. Currently available options include typing a building name in a text

box, clicking with a mouse on the map, or selecting from a list of building names.

In the next page, the user performs actions to specify the start and the goal. If

the mouse click is selected, since the entire campus map is large and contains many

buildings, the image is enlarged (zoom in) before the user can click on a building.

Next, the user may request that a route be computed or they can input more

options. If more options are chosen, the user is allowed to specify, e.g., where a bike or

a car is parked. Also, specific transportation modes can be specified which will then

override automatic selection of the transportation methods. After the resulting image

and text guide have been displayed in the user’s screen, the image can be zoomed or
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panned if desired. For this, the query/path queue data contains special fields that

indicate the horizontal and vertical position of the camera.

Image generation. No significant changes were required in making campus-

vizmo from vizmo [56]. We added methods to connect to the database and an auto-

matic camera positioning function. To speed up image generation, the entire building

and street model files are loaded only once when campus-vizmo starts.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

In this dissertation, we proposed methods of navigation for personal mobile robotic

applications that are safe, robust, and inexpensive. Our navigator uses a roadmap–

based path planner and sector–based localizer. We first discussed limitations of pre-

vious methods and described our general strategy which integrates the path planner

and localizer. We proposed improvements for path planning, by augmenting Dijk-

stra’s graph traversal algorithm, and we developed new sector subdivision techniques

for localization. Also, our localization approach has been extended to handle multiple

robots. To show the effectiveness of our methods, experimental results were obtained

assuming partial knowledge about the environment, a constrained driving mechanism,

modest data storage and computing power, and limited sensor visibility. To demon-

strate the applicability of our techniques to other areas, a web–based campus route

planner was developed.

In Chapter III, we explained our approach for integrating the path planner and

localizer. This was facilitated by the use of roadmaps which contain candidate paths

for various purposes such as efficient navigation and robust localization. Our path

planner extracts the best path in our roadmap using an augmented version of Dijk-

stra’s algorithm that can handle a (i) Markov–like cost function and (ii) a relaxed goal

definition. We discussed useful cost function formulations such as minimizing travel

time, avoiding featureless areas, dealing with kinematic constraints, and maximizing

minimum clearance. Customized combination of these priorities enables the selection

of paths that balance various criteria such as safety and efficiency. As future work,

the path planner can be extended to deal with multiple robots.

In Chapter IV, we discussed our new localization methods that combine advan-
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tages of previous approaches for feature identification and space subdivision. We

defined primitive sectors that account for physical sensor limitations. Our approach

for dealing with sensor range and incidence angle restrictions was to (i) merge perfect–

visibility sectors and (ii) use only scannable features. A complete localization algo-

rithm and simulation results have been presented. Hardware experiments to show the

practicality of our methods were performed in our lab environment using an AmigoBot

equipped with sonar sensors. Future work related to visibility sectors includes proving

their effectiveness if used with other localization methods such as particles filters.

Our localization methods have been extended to handle multiple robots in Chap-

ter V. First, we investigated and formulated two problems for efficiently localizing

multiple robots in close proximity: (i) minimizing total sensing time while avoiding

sensor cross–talk, and (ii) reducing the uncertainty regions using a minimum number

of sensings. We showed that both these problems are NP–complete by reduction from

the graph coloring and task scheduling problems, respectively. To compute approx-

imate solutions for the second problem efficiently, we have proposed an algorithm

that estimates the size of the critical path based on uncertainty ellipse size. Simula-

tion results showed that our proposed algorithm reduces the total localization time

compared to a completely random approach. As future work, we are interested in

enhancing the methods to deal with cycles in the graph representation of the robots.

To demonstrate that our navigation techniques are not limited to mobile robots,

we have developed a web-based route planner for the Texas A&M campus. Major

components are (i) a path planner, (ii) a path visualizer, (iii) a roadmap representing

the campus stored in database, and (iv) a user interface. The first two components are

slight modifications of software that has been developed by the Parasol Algorithms

and Applications group. This is an on–going group project and we are working on

enhancing the visual output, supporting more complex query options, and building a
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more realistic roadmap.
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APPENDIX A

DATABASE FOR CAMPUS NAVIGATOR

The database tables listed below serve three purposes in the campus navigator:

to represent the roadmap, to serve as queues for user requests, and to maintain

campus-query and campus-vizmo servers running simultaneously.

• bike: if bikes can move on the edge, edge ID and time of travel

field type
eid int(10)

time mediumint(8)

• building: the building’s full name, abbreviation, and building number

field type
id int(10)

number smallint(6)
abbrv varchar(10)
name varchar(50)

• busEdge: if there is a bus route on the edge, time and direction

field type
route id int(10)

eid int(10)
time mediumint(9)

if directed char(4)

• busRouteStopMapping: bus stop ID for bus routes

field type
bus route id int(10)
bus stop id int(10)

• busRoutes: name for bus routes

field type
id smallint(6)

name varchar(40)
number buses smallint(6)
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• busStop: name for bus stops

field type
id int(10)

name varchar(50)

• car: if cars can move on the edge, time and direction

field type
route id int(10)

eid int(10)
time mediumint(9)

if directed char(4)

• deptServices: department (type is ‘D’) or service (type is ‘S’) for some buildings

field type
id int(10)

name varchar(50)
building number smallint(6)

type char(1)

• edge: start and end vertices, direction, and length

field type
eid int(10)

street id smallint(10)
start vid int(10)
end vid int(10)
distance double

• motorcycle: if motorcycles can move on the edge, time and direction

field type
eid int(10)

time mediumint(8)
if directed char(4)

• parkingLot: name and number of parking lots

field type
id int(10)

name varchar(50)
number varchar(10)

• path: result of query (a series of robot configurations in text format), campus-

vizmo snapshot image name, camera zoom, and camera move information
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field type
id int(11)

path text
image name varchar(100)

zoom int(11)
move ud int(11)
move lr int(11)

time timestamp(14)

• pedestrian: if (handicapped) people can walk on the edge, time of moving

field type
eid int(10)

time mediumint(8)
wheelchair char(4)

• placeType: valid places (building, parking lot, department, bus stop)

field type
place type id int(10)
table name varchar(50)
type name varchar(50)

• query: user query queue generated by the web interface and consumed by

campus-query, some information sent to campus-vizmo.

field type
id int(10)

time timestamp(14)
start vid int(11)
goal vid int(11)

start method int(11)
goal method int(11)

park vid int(11)
park method char(1)
camera zoom int(11)

camera move ud int(11)
camera move lr int(11)

image name varchar(100)
query server id int(11)

• queryServers: query server(s) running over NFS (network file server system)

field type
id int(11)

start time timestamp(14)
campus dir char(100)
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• street: name of streets

field type
id smallint(6)

name varchar(35)

• textGuide: the text guide generated by the path planner and used by the web

interface

field type
id int(11)

guide text
image name varchar(100)

• vertex: coordinates of vertices

field type
vid int(10)
x int(11)
y int(11)

• vertexPlaceMapping: place(s) for vertices defined in the table placeType

field type
vid int(10)

type id int(10)
place id int(10)

• vizmoServers: visualization server(s) running over NFS

field type
id int(11)

start time timestamp(14)
campus dir char(100)
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APPENDIX B

DIALOGS IN CAMPUS ROADMAP EDITOR

The roadmap editor for campus navigator has been designed for intuitive and

easy use. When a vertex or an edge in the roadmap is clicked, the corresponding user

interface items appear at the bottom of the screen. In Figure 106(a), the selected

vertex is the South Side Parking Garage building. Other user interface items not

shown in the figure are bus stops and departments/services. In Figure 106(b), the

selected edge is Bizzel street and walk (marked as wk: in the figure) and bike (bk:)

are enabled (marked as Y). Other items not shown in the figure are car, motorcycle,

bus, and wheelchair.

Figure 107(a) shows a list box which pops up if the Bus Routes button is pressed.

In the figure, the selected vertex has three bus stops (Cotton Bowl, Replant, Yell

Practice). Similarly, Figure 107(b) shows that the selected edge (marked by yellow

lines and not seen in the gray scale image) has Replant bus route in it. Note that the

mark < ∧ indicates the direction of the bus route at the edge, which is northwest.
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(a)

(b)

Fig. 106. Roadmap editor: (a) editing building and parking lot, and (b) editing street.
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(a)

(b)

Fig. 107. Roadmap editor: (a) a vertex is selected, and (b) an edge is selected



173

VITA

Jinsuck Kim was born on October 14th, 1971, in South Korea. Early childhood and

public school years were spent in Yoido, Seoul. His current permanent address is

Kangnam Sooseo 736 Shindonga Apt. 708-1208 Seoul, Korea. He graduated from

Inha University in 1996 and received a B.S. in aerospace engineering. After that,

he moved to the United States for graduate study. Under the advice of Dr. Martin

Corless at Purdue University, he received his master’s degree in the area of dynamics

and control in August, 1998. In pursuit of a Ph.D. degree, he transferred to the

Department of Aerospace Engineering at Texas A&M University. He spent about a

year working with Dr. John Crassidis on a project funded by NASA. Since the year

2000, he has been a student and graduate research assistant in the Department of

Computer Science.


	ABSTRACT
	ACKNOWLEDGMENTS 
	TABLE OF CONTENTS 
	LIST OF TABLES 
	LIST OF FIGURES 
	Introduction
	Global Navigation
	Roadmap--Based Path Planning
	Localization

	Contribution
	Outline

	Related Work
	Odometry Error and Uncertainty Regions
	Sonar Sensor Limitations
	Mobile Robot Localization
	Sensor Cross--Talk
	Multiple Robot Localization
	Roadmap Methods
	Dijkstra's Shortest Path Algorithm.
	Robot Path Optimization

	Roadmap-Based Navigation
	General Strategy
	Selecting Optimal Paths from a Roadmap
	Standard Cost Function
	Non--Markov Optimization Criteria
	Goal Sets -- Flexible Final States

	Augmenting Dijkstra's Shortest Path Algorithm
	Problem Formulation
	Markov--like Optimization
	Flexible Final Condition
	Augmented Dijkstra's Algorithm

	Mobile Robot Applications
	Minimizing Travel Time
	Avoiding Localization Failure
	Kinematic Constraints
	Maximizing Minimum Clearance
	Minimizing Localization Attempts
	Combination of Criteria


	Sector--Based Robust Localization
	Overview of Sector--Based Method
	Constructing Visibility Sectors
	Visibility Models
	Primitive Sectors
	Identifying Sectors
	Information in Sectors
	Geometric Operations
	Time Complexity Analysis
	Space Complexity Analysis

	Localization Algorithm
	Localizing to a Sector
	Reducing the Uncertainty Region
	Efficiency and Robustness


	Multiple Robot Localization
	General Assumptions
	Avoiding Crosstalk
	Problem Definition
	Graph Coloring
	Proof that RS is NP--complete

	Coordinating Reducing Ellipses
	Issues
	Problem Definition
	Precedence--Constrained Job Scheduling
	Proof that UR is NP--complete

	Approximate Solutions
	Range Sensing
	Uncertainty Reducing


	Experimental Results
	Implementation Details
	Assumptions
	Code and System
	Robot
	Environments

	Localization in Partially Known Environments
	Sector Construction Time
	Varying Sensor Maximum Range
	Varying Number of Obstacles
	Ambiguity in Global Localization
	Reducing Uncertainty When No Features Are Scanned

	Path Planning
	Kinematic Constraints
	Minimizing Turning Effort
	Dynamic Constraints
	Path Clearance and Length
	Goal Sets

	Global Navigation: Integrated Path Planning and Path Following
	Feature--Based Roadmap
	Dynamic Path Replanning
	Avoiding Featureless Areas
	Reducing the Number of Localizations
	Path Postprocessing

	Hardware Experiments
	Multiple Robot Localization
	Tree Root--Based Method
	Uncertainty-Based Method


	Campus Navigator
	Features
	Components

	Conclusion and Future Work
	REFERENCES
	APPENDIX A
	APPENDIX B
	VITA

