1,651 research outputs found

    Serangga dan mitos suku kaum jakun, Kampung Peta, Mersing Johor

    Get PDF
    This study focuses on seeing insects from the mythical perspective of the Orang Asli tribe of Jakun, Kampung Peta, Mersing Johor. The existence of insects in the life of every ethnic in Malaysia has brought various elements of myths. Therefore, when combining myths and insects, it could be said that myth is a human way of understanding, expressing and linking insects to him/herself as well as a group/culture. The practice of using insects among ethnic groups in daily life is called etnoentomology. In this study, the insects studied are the butterfly (Lepidoptera), the odonates (Odonata) and the cicadas (Homoptera). This is because these insects are very popular in the community and have their own myths that are brought into the local culture of belief

    Application of Fuzzy control algorithms for electric vehicle antilock braking/traction control systems

    Get PDF
    Abstract—The application of fuzzy-based control strategies has recently gained enormous recognition as an approach for the rapid development of effective controllers for nonlinear time-variant systems. This paper describes the preliminary research and implementation of a fuzzy logic based controller to control the wheel slip for electric vehicle antilock braking systems (ABSs). As the dynamics of the braking systems are highly nonlinear and time variant, fuzzy control offers potential as an important tool for development of robust traction control. Simulation studies are employed to derive an initial rule base that is then tested on an experimental test facility representing the dynamics of a braking system. The test facility is composed of an induction machine load operating in the generating region. It is shown that the torque-slip characteristics of an induction motor provides a convenient platform for simulating a variety of tire/road - driving conditions, negating the initial requirement for skid-pan trials when developing algorithms. The fuzzy membership functions were subsequently refined by analysis of the data acquired from the test facility while simulating operation at a high coefficient of friction. The robustness of the fuzzy-logic slip regulator is further tested by applying the resulting controller over a wide range of operating conditions. The results indicate that ABS/traction control may substantially improve longitudinal performance and offer significant potential for optimal control of driven wheels, especially under icy conditions where classical ABS/traction control schemes are constrained to operate very conservatively

    Torque Control

    Get PDF
    This book is the result of inspirations and contributions from many researchers, a collection of 9 works, which are, in majority, focalised around the Direct Torque Control and may be comprised of three sections: different techniques for the control of asynchronous motors and double feed or double star induction machines, oriented approach of recent developments relating to the control of the Permanent Magnet Synchronous Motors, and special controller design and torque control of switched reluctance machine

    Direct Torque Control of Permanent Magnet Synchronous Motor

    Get PDF
    Permanent Magnet Synchronous Motors (PMSM’s) are used in places that require fast torque response and high-performance operation of the machine. The Direct Torque Control (DTC) technique is different from methods which use current controllers in an proper reference frame to control the motor torque and fluxe values. The DTC technique does not any current controllers. DTC controls the Voltage source Inverter states on the basis of difference between the required and obtained torque and flux values. This is done by selecting one out of the six voltage vectors obtained by the Inverter (VSI) to have torque and flux fluctuations in between the limits of 2 hysteresis bands. This thesis obtains the modelling of the Direct Torque Control (DTC) system of PMSM using MATLAB/Simulink®. Speed control of PMSM using Field Oriented Control technique and Direct Torque Space Vector Pulse Width Modulation technique is also analysed and compared with traditional DTC. Simulation results are presented to help analyse the system performance and PI controller parameters influence on the system performance. The analysis is also done with fuzzy logic controller

    High performance position control of permanent magnet synchronous drives

    Get PDF
    In the design and test of electric drive control systems, computer simulations provide a useful way to verify the correctness and efficiency of various schemes and control algorithms before the final system is actually constructed, therefore, reducing development time and associated costs. Nevertheless, the transition from the simulation stage to the actual implementation has to be as straightforward as possible. This paper presents the design and implementation of a position control system for permanent magnet synchronous drives using the dsPIC33FJ32MC204 microcontroller as the target processor to implement the control algorithms. The overall system is simulated and tested in Proteus VSM software which is able to simulate the interaction between the firmware running on the microcontroller and the analogue circuits connected to it. The electric drive model is developed using elements present in the Proteus VSM library. As in any high-performance AC electric drive system, field oriented control is applied. The complete control system is distributed in three control loops, namely torque, speed and position. A standard PID control system, and a hybrid control system based on fuzzy logic, are implemented and tested. The natural variation of motor parameters, such as winding resistance and magnetic flux, are also simulated. Comparisons between the two control schemes are carried out for speed and position control using different error measurements, such as, integral square error, integral absolute error and root mean squared error. Comparison results show a superior performance of the fuzzy-logic-based controller when coping with parameter variations, and by reducing torque ripple, but the results are reversed when periodical torque disturbances are present.N/

    PSO BASED TAKAGI-SUGENO FUZZY PID CONTROLLER DESIGN FOR SPEED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

    Get PDF
    A permanent magnet synchronous motor (PMSM) is one kind of popular motor. They are utilized in industrial applications because their abilities included operation at a constant speed, no need for an excitation current, no rotor losses, and small size. In the following paper, a fuzzy evolutionary algorithm is combined with a proportional-integral-derivative (PID) controller to control the speed of a PMSM. In this structure, to overcome the PMSM challenges, including nonlinear nature, cross-coupling, air gap flux, and cogging torque in operation, a Takagi-Sugeno fuzzy logic-PID (TSFL-PID) controller is designed. Additionally, the particle swarm optimization (PSO) algorithm is developed to optimize the membership functions' parameters and rule bases of the fuzzy logic PID controller. For evaluating the proposed controller's performance, the genetic algorithm (GA), as another evolutionary algorithm, is incorporated into the fuzzy PID controller. The results of the speed control of PMSM are compared. The obtained results demonstrate that although both controllers have excellent performance; however, the PSO based TSFL-PID controller indicates more superiority

    High performance position control for permanent magnet synchronous drives

    Get PDF
    In the design and test of electric drive control systems, computer simulations provide a useful way to verify the correctness and efficiency of various schemes and control algorithms before the final system is actually constructed, therefore, development time and associated costs are reduced. Nevertheless, the transition from the simulation stage to the actual implementation has to be as straightforward as possible. This document presents the design and implementation of a position control system for permanent magnet synchronous drives, including a review and comparison of various related works about non-linear control systems applied to this type of machine. The overall electric drive control system is simulated and tested in Proteus VSM software which is able to simulate the interaction between the firmware running on a microcontroller and analogue circuits connected to it. The dsPIC33FJ32MC204 is used as the target processor to implement the control algorithms. The electric drive model is developed using elements existing in the Proteus VSM library. As in any high performance electric drive system, field oriented control is applied to achieve accurate torque control. The complete control system is distributed in three control loops, namely torque, speed and position. A standard PID control system, and a hybrid control system based on fuzzy logic are implemented and tested. The natural variation of motor parameters, such as winding resistance and magnetic flux are also simulated. Comparisons between the two control schemes are carried out for speed and position using different error measurements, such as, integral square error, integral absolute error and root mean squared error. Comparison results show a superior performance of the hybrid fuzzy-logic-based controller when coping with parameter variations, and by reducing torque ripple, but the results are reversed when periodical torque disturbances are present. Finally, the speed controllers are implemented and evaluated physically in a testbed based on a brushless DC motor, with the control algorithms implemented on a dsPIC30F2010. The comparisons carried out for the speed controllers are consistent for both simulation and physical implementation

    Self organizing fuzzy sliding mode controller for the position control of a permanent magnet synchronous motor drive

    Get PDF
    AbstractIn this paper, a self organizing fuzzy sliding mode controller (SOFSMC) which emulates the fuzzy controller with gain auto-tuning is proposed for a permanent magnet synchronous motor (PMSM) drive. The proposed controller is used for the position control of the PMSM drive. The performance and robustness of the control system is tested for nonlinear motor load torque disturbance and parameter variations. It has a novel gain self organizing strategy in response to the transient or tracking responses requirement. To illustrate the performance of the proposed controller, the simulation studies are presented separately for the SOFSMC and the fuzzy controller with gain auto-tuning. The results are compared with each other and discussed in detail. Simulation results showing the effectiveness of the proposed control system are confirmed under the different position changes

    Nonlinear Time-Frequency Control of Permanent Magnet Electrical Machines

    Get PDF
    Permanent magnet (PM) electrical machines have been widely adopted in industrial applications due to their advantages such as easy to control, compact in size, low in power loss, and fast in response, to name only a few. Contemporary control methods specifically designed for the control of PM electrical machines only focus on controlling their time-domain behaviors while completely ignored their frequency-domain characteristics. Hence, when a PM electrical machine is highly nonlinear, none of them performs well. To make up for the drawback and hence improve the performance of PM electrical machines under high nonlinearity, the novel nonlinear time-frequency control concept is adopted to develop viable nonlinear control schemes for PM electrical machines. In this research, three nonlinear time-frequency control schemes are developed for the speed and position control of PM brushed DC motors, speed and position control of PM synchronous motors, and chaos suppression of PM synchronous motors, respectively. The most significant feature of the demonstrated control schemes are their ability in generating a proper control effort that controls the system response in both the time and frequency domains. Simulation and experiment results have verified the effectiveness and superiority of the presented control schemes. The nonlinear time-frequency control scheme is therefore believed to be suitable for PM electrical machine control and is expected to have a positive impact on the broader application of PM electrical machines

    Fuzzy logic controlled SPMSM drives for long cable applications

    Get PDF
    In many industrial Variable Speed Drives (VSD) applications require that the Voltage Source Pulse Width Modulation (PWM) Inverter and the motor be at separate locations, often resulting in long motor leads, high voltage oscillation at the motor terminal, increase harmonics content and affect the overall motor speed performance. To our knowledge, a detailed investigation of the impact of various cable lengths over speed response has not been reported in the literature. Therefore, the research focuses on investigation and evaluation of the performance of a Vector Controlled Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) drive, controlled by PI speed controller and FL speed controller for different cable lengths conditions. Current control is performed in the stationary reference frame, using hysteresis current controllers. The scope of research is focusing on low speed operation based on simplified 9 rules Fuzzy Logic speed controller and tested for tested 100 meter maximum cable lengths and 1.1kW SPMSM. The drive is modeled, simulated and implemented using MATLAB, SIMULINK and FUZZY LOGIC Toolboxes. The experimental study is carried out based on dSPACE hardware platform for validating the simulation results. PI and Fuzzy Logic speed controllers are designed and tuned to obtain the best performance with criteria less than 0.72% overshoot and ±0.1 steady state error are acceptable. All the controller parameters are fixed based on designed case study for overall simulation and experimental studies. The overshoot/undershoot, settling time and rise time of the speed response are used to evaluate the controller performance. The simulation and experimental results have showed that the speed response and load rejection are degraded due to variation in cable length and increase of motor inertia. The proposed Fuzzy Logic has demonstrated better performance in term of step speed command, load rejection capability and THD compare with the results obtained from PI speed controller for different cable length conditions. The THD of the three-phase stator current is increased when motor is connected with longer cable. Fuzzy Logic speed controller shows better THD of stator currents as compare to PI speed controller where the THD was remain constant even cable length was increasing. When switching frequency of the Hysteresis PWM is increased, the stator currents will be closer to sinusoidal and indirectly reduced the %THD of the drives. Study on variable speed drive performance versus different cable length can be further investigated for medium and high motor speed commands operation
    corecore