296 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Multi-candidate missing data imputation for robust speech recognition

    Get PDF
    The application of Missing Data Techniques (MDT) to increase the noise robustness of HMM/GMM-based large vocabulary speech recognizers is hampered by a large computational burden. The likelihood evaluations imply solving many constrained least squares (CLSQ) optimization problems. As an alternative, researchers have proposed frontend MDT or have made oversimplifying independence assumptions for the backend acoustic model. In this article, we propose a fast Multi-Candidate (MC) approach that solves the per-Gaussian CLSQ problems approximately by selecting the best from a small set of candidate solutions, which are generated as the MDT solutions on a reduced set of cluster Gaussians. Experiments show that the MC MDT runs equally fast as the uncompensated recognizer while achieving the accuracy of the full backend optimization approach. The experiments also show that exploiting the more accurate acoustic model of the backend does pay off in terms of accuracy when compared to frontend MDT. © 2012 Wang and Van hamme; licensee Springer.Wang Y., Van hamme H., ''Multi-candidate missing data imputation for robust speech recognition'', EURASIP journal on audio, speech, and music processing, vol. 17, 20 pp., 2012.status: publishe

    Studies on noise robust automatic speech recognition

    Get PDF
    Noise in everyday acoustic environments such as cars, traffic environments, and cafeterias remains one of the main challenges in automatic speech recognition (ASR). As a research theme, it has received wide attention in conferences and scientific journals focused on speech technology. This article collection reviews both the classic and novel approaches suggested for noise robust ASR. The articles are literature reviews written for the spring 2009 seminar course on noise robust automatic speech recognition (course code T-61.6060) held at TKK

    Independent Component Analysis and Time-Frequency Masking for Speech Recognition in Multitalker Conditions

    Get PDF
    When a number of speakers are simultaneously active, for example in meetings or noisy public places, the sources of interest need to be separated from interfering speakers and from each other in order to be robustly recognized. Independent component analysis (ICA) has proven a valuable tool for this purpose. However, ICA outputs can still contain strong residual components of the interfering speakers whenever noise or reverberation is high. In such cases, nonlinear postprocessing can be applied to the ICA outputs, for the purpose of reducing remaining interferences. In order to improve robustness to the artefacts and loss of information caused by this process, recognition can be greatly enhanced by considering the processed speech feature vector as a random variable with time-varying uncertainty, rather than as deterministic. The aim of this paper is to show the potential to improve recognition of multiple overlapping speech signals through nonlinear postprocessing together with uncertainty-based decoding techniques

    Influence of binary mask estimation errors on robust speaker identification

    Get PDF
    Missing-data strategies have been developed to improve the noise-robustness of automatic speech recognition systems in adverse acoustic conditions. This is achieved by classifying time-frequency (T-F) units into reliable and unreliable components, as indicated by a so-called binary mask. Different approaches have been proposed to handle unreliable feature components, each with distinct advantages. The direct masking (DM) approach attenuates unreliable T-F units in the spectral domain, which allows the extraction of conventionally used mel-frequency cepstral coefficients (MFCCs). Instead of attenuating unreliable components in the feature extraction front-end, full marginalization (FM) discards unreliable feature components in the classification back-end. Finally, bounded marginalization (BM) can be used to combine the evidence from both reliable and unreliable feature components during classification. Since each of these approaches utilizes the knowledge about reliable and unreliable feature components in a different way, they will respond differently to estimation errors in the binary mask. The goal of this study was to identify the most effective strategy to exploit knowledge about reliable and unreliable feature components in the context of automatic speaker identification (SID). A systematic evaluation under ideal and non-ideal conditions demonstrated that the robustness to errors in the binary mask varied substantially across the different missing-data strategies. Moreover, full and bounded marginalization showed complementary performances in stationary and non-stationary background noises and were subsequently combined using a simple score fusion. This approach consistently outperformed individual SID systems in all considered experimental conditions

    Recognition of Harmonic Sounds in Polyphonic Audio using a Missing Feature Approach: Extended Report

    Get PDF
    A method based on local spectral features and missing feature techniques is proposed for the recognition of harmonic sounds in mixture signals. A mask estimation algorithm is proposed for identifying spectral regions that contain reliable information for each sound source and then bounded marginalization is employed to treat the feature vector elements that are determined as unreliable. The proposed method is tested on musical instrument sounds due to the extensive availability of data but it can be applied on other sounds (i.e. animal sounds, environmental sounds), whenever these are harmonic. In simulations the proposed method clearly outperformed a baseline method for mixture signals
    • …
    corecore