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When a number of speakers are simultaneously active, for example in meetings or noisy public places, the sources of interest
need to be separated from interfering speakers and from each other in order to be robustly recognized. Independent component
analysis (ICA) has proven a valuable tool for this purpose. However, ICA outputs can still contain strong residual components
of the interfering speakers whenever noise or reverberation is high. In such cases, nonlinear postprocessing can be applied to the
ICA outputs, for the purpose of reducing remaining interferences. In order to improve robustness to the artefacts and loss of
information caused by this process, recognition can be greatly enhanced by considering the processed speech feature vector as a
random variable with time-varying uncertainty, rather than as deterministic. The aim of this paper is to show the potential to
improve recognition of multiple overlapping speech signals through nonlinear postprocessing together with uncertainty-based
decoding techniques.

1. Introduction

When speech recognition is to be used in arbitrary, noisy
environments, interfering speech poses significant problems
due to the ovelapping spectra and nonstationarity. If auto-
matic speech recognition (ASR) is nonetheless required, for
example for robust voice control in public spaces or for
meeting transcription, the use of independent component
analysis (ICA) can be important to segregate all involved
speech sources for subsequent recognition. In order to attain
the best results, it is often helpful to apply an additional
nonlinear gain function to the ICA output to suppress
residual speech and noise. After a short introduction to
ICA in Section 2, this paper shows in Section 3 how such
nonlinear gain functions can be attained based on three
different principal approaches.

However, while source separation itself is greatly
improved by nonlinear postprocessing, speech recognition
results often suffer from artefacts and loss in information due
to such masks. In order to compensate for these losses and
to obtain results exceeding those of ICA alone, we suggest
the use of uncertainty-of-observation techniques for the

subsequent speech recognition. This allows for the utilization
of a feature uncertainty estimate, which can be derived
considering both artefacts and incorrectly suppressed com-
ponents of target speech, and will be described in more
detail in Section 4. From such an uncertain description of
the speech signal in the spectrum domain, uncertainties
need to be made available also in the feature domain, in
order to be used for recognition. This can be achieved by
the so-called “uncertainty propagation,” which converts an
uncertain description of speech from the spectrum domain,
where ICA takes place, to the feature domain of speech
recognition. After this uncertainty propagation, detailed in
Section 5, recognition can take place under observation
uncertainty, as shown in Section 6.

The entire process is vitally dependent on the appropriate
estimation of uncertainties. Results given in Section 8 show
that when the exact uncertainty in the spectrum domain
is known, recognition results with the suggested approach
are far in excess of those achievable by ICA alone. Also, a
realistically computable uncertainty estimate is introduced,
and experiments and results given in Sections 7 and 8
show that with this practical uncertainty measure, significant
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improvements of recognition performance can be attained
for noisy, reverberant room recordings.

The presented method is closely related to other works
that consider observation vectors as uncertain for decoding
purposes, most often for noisy speech recognition [1–4],
but in some cases also for speech recognition in multitalker
conditions, as, for example, [5, 6], or [7] in conjunction with
speech segregation via binary masking (see, e.g. [8, 9]).

The main novelty in comparison with the above tech-
niques is the use of independent component analysis in
conjunction with uncertainty estimation and with a piece-
wise approach of transforming uncertainties to the feature
domain of interest. This allows for the suggested approach
to utilize the combined strengths of independent component
analysis and soft time-frequency masking, and to still be
used with a wide range of feature parameterizations, often
without the need for recomputing the uncertainty mapping
function to the desired ASR-domain. Corresponding results
are shown here for both MFCC and RASTA-PLP coefficients,
but the discussed uncertainty transformation approach also
generalizes well to the ETSI advanced front end, as shown in
[10].

2. Independent Component Analysis for
Reverberant Speech

Independent component analysis has been successfully
employed for the separation of speech mixtures in both
clean and noisy environments [11, 12]. Alternative methods
include adaptive beamforming, which is closely related
to independent component analysis when information-
theoretic cost functions are applied [13], sparsity-based
methods that utilize amplitude-delay histograms [6, 8, 14],
or grouping cues typical of human stream segregation [15].
Here, independent component analysis has been chosen
due to its inherent robustness to noise and its ability
to handle strong reverberation by frequency-by-frequency
optimization of the cost function.

In order to separate a number N of simultaneously
active speech signals from M recordings, with M ≥ N , the
reverberant, noisy mixing process is modelled as

xj(t) ≈
N∑

k= 1

sk(t)∗ hjk(t) + dj(t), (1)

where the room impulse response hjk(t) from source k to
sensor j is considered time-invariant.

Since convolutions are easily separable in the frequency
domain, this expression is transformed by a short-time
Fourier transform (STFT). Then, (1) becomes

X(Ω, τ) ≈ H(Ω)S(Ω, τ) + D(Ω, τ), (2)

where H(Ω) is composed of the room transfer functions
Hjk(Ω) from all sources k to the sensors j, and D is the sensor
noise. Here,Ω and τ denote the integer-valued frequency bin
index and frame index, respectively.

In order to extract the original sources from the mixtures,
ICA finds an unmixing matrix

W(Ω) ≈ P(Ω)Δ(Ω)H(Ω)−1, (3)

for each frequency bin Ω, which by principle can only be
known up to an arbitrary scaling and permutation described
by the diagonal scaling matrix Δ and the permutation matrix
P. The unmixing matrix W is found by maximizing the
statistical independence of the unmixed signals Ŝ. Finally,
unmixing is carried out separately in each frequency bin
according to

Ŝ(Ω, τ) = W(Ω) ·X(Ω, τ). (4)

To learn the matrix W, the adaptive algorithm described in
[16, Table 8.2, Equation 2] is used. In this algorithm, the
demixing matrix W is calculated using a gradient descent.
The update rule for the matrix in the ith iteration consists of
two steps. At first, the current estimate of the source signals
is computed by (4), using the result of the previous iteration
Wi−1 for unmixing. Then, the update of the unmixing matrix
takes place according to

Wi(Ω)=Wi−1(Ω)+η
(
Λ−

〈
f
(

Ŝ(Ω, τ)
)

Ŝ(Ω, τ)H
〉)

Wi−1(Ω),

(5)

where Λ is a diagonal matrix with

λmm =
〈
Ŝm(Ω, τ)Ŝ∗m(Ω, τ)

〉
. (6)

Here, 〈·〉 denotes the mean value and

f (x) = x exp

(
−|x|

2

2

)
. (7)

Ideally, this optimization will result in independent output
signals in each frequency bin. To obtain a complete spectrum
of unmixed sources, it is additionally necessary to correctly
sort the outputs, since their ordering after ICA is arbitrary
and may vary from frequency bin to frequency bin. This
so-called permutation problem can be solved in a number
of ways; see, for example, [17, 18]. In all following work,
permutations have been corrected by sorting outputs in
accordance with the distance criterion

dm,n(Ωr ,Ωs) =
(
∑

τ

|νm(Ωr , τ)− νn(Ωs, τ)|p
)1/p

, (8)

described in [19]. Here, ν is defined by

νm(Ω, τ) = log
∣∣∣Ŝm(Ω, τ)

∣∣∣
2
, (9)

Ωs is the frequency bin at which the permutation problem
has to be solved and Ωr denotes the frequency bin to be used
as reference, and p is a constant. For this strategy, ordering
permutations first at higher frequencies and proceeding
downward has proven beneficial; therefore, the ordering at
the maximum frequency bin was chosen as reference, and
sorting according to (8) took place binwise in descending
order.
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Figure 1: Performance of an ideal binary mask, tested on 12
pairs of same-and mixed-gender speakers. Performance is shown
for frame lengths (NFFT) of 256, 512, 1024, and 2048 samples in
terms of SDR and SIR-improvement. When the SNR-threshold is
increased, the red SDR-curves are decreasing monotonically, while a
more pronounced monotonic increase can be observed for the SIR-
improvement, shown in green color.

3. Time-Frequency Masking for ICA

However, some residual noise and interference are to be
expected even after applying source separation, especially
in reverberant environments. For removing these, post-
masking of ICA-results has often been employed [14, 17, 20,
21] using

Yk(Ω, τ) =Mk(Ω, τ) · Ŝk(Ω, τ). (10)

This is motivated by the potential gains in Signal-to-
Interference Ratio (SIR), which can already be attained by
simple binary masking with an ideal mask. With such an,
albeit practically elusive, mask, which is given by evaluating
the true knowledge about the signal spectra via

Mk(Ω, τ) =

⎧
⎪⎨
⎪⎩

1, for |Sk(Ω, τ)| ≥
∣∣∣Sj(Ω, τ)

∣∣∣ ∀ j,
0, otherwise,

(11)

it is possible to obtain more than 40 dB SIR improvement
on two-speaker mixtures even without ICA, while remaining
above 20 dB of Signal-to-Distortion Ratio (SDR) [22]. The
results of one such exemplary experiment are shown in
Figure 1. For this figure, an additional masking threshold T
was introduced, and the mask in (11) was only set to 1, if the
source of interest was greater than all other sources by at least
T dB, that is, if

20 log10|Sk(Ω, τ)| ≥ 20 log10

∣∣∣Sj(Ω, τ)
∣∣∣− T ∀ j. (12)

However, an ideal mask is impossible to obtain realisti-
cally; thus, approximations to it are required. For obtaining
such an approximation, mask estimation based on ICA

ICA +
Permutation
correction

IFFTIFFT

W(Ω, τ) P(Ω, τ)

Ŝ1(Ω, τ) Ŝ2(Ω, τ)

Y1(Ω, τ) Y2(Ω, τ)

y1(t) y2(t)

Ŝ(Ω, τ) = P(Ω, τ)W(Ω)X(Ω, τ)
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ST
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,τ
)

Time-frequency masking

Figure 2: Structure of ICA with Postmasking. Here, f stands for
those ICA-based features that may be needed for mask estimation.
All double arrows show the data flow of signal spectrograms,
while single arrows indicate auxilliary information flow. The figure
corresponds to the special case of two microphones and two
estimated signals.

results has been proposed and shown to be successful, both
for binary and soft masks, see, for example, [17, 18, 20].
The motivation for this procedure lies both in the noise-
robustness of ICA, which can therefore unmix signals even
when large interferences make the estimation of a time-
frequency mask extremely difficult, and also in the fact that
ICA will unmix signals even in those time-frequency regions,
where two or more of them are simultanously active to a
significant extent.

The architecture of such systems is shown in Figure 2 for
the exemplary case of two sources and microphones.

In the following, four types of masks are considered:

(i) amplitude-based masks,

(ii) phase-based masks,

(iii) two types of interference-based masks,

which will be described in the subsequent sections.

3.1. Amplitude-Based Masks. One of the simplest post-
masks suitable for postprocessing of ICA results is based on
comparing the magnitude of all ICA outputs [20]. Due to the
sparsity of sources in an appropriate spectral representation
[8], only one should be dominant; therefore, all others are
discarded.
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In order for the strategy to be independent of the source
signal energies, all ICA output signals need to be normalized
to equal variance via

S̃k(Ω, τ) = Ŝk(Ω, τ)√
var

(
Ŝk
) , (13)

before the mask is computed.
Then, a hard amplitude mask can be obtained by com-

paring a local dominance ratio to an acceptance threshold T
via

Mk(Ω, τ)

= Ψ

(
log

(∣∣∣S̃k(Ω, τ)
∣∣∣

2
)
− max
∀ j /= k

log
(∣∣∣S̃ j(Ω, τ)

∣∣∣
2
)
− T

10

)
,

(14)

with Ψ defined by

Ψ(x) =
⎧
⎨
⎩

0, for −∞ ≤ x ≤ 0,

1, for 0 < x <∞.
(15)

This is a rather simple approach, which has been
enhanced in the following by applying a sigmoid nonlinearity
to reduce artefacts. This can be easily achieved by redefining
Ψ to

Ψ(x) = 1
1 + exp

(−gx) , (16)

where g is the mask gain controlling its steepness.

3.2. Phase-Based Masks. The source separation performance
of ICA can also be seen from a beamforming perspective.
When the unmixing filters learned by ICA are viewed
as frequency-variant beamformers, it can be shown that
successful ICA effectively places zeros in the directions of all
interfering sources [23]. Therefore, the zero directions of the
unmixing filters should be indicative of all source directions.
Thus, when the local direction of arrival (DOA) is estimated
from the phase of any one given time-frequency bin, this
should give an indication of the dominant source in this bin.
This is the principle underlying phase-based time-frequency
masking strategies.

Phase-based postmasking of ICA outputs was introduced
in [17]. In this method, the angle θk(Ω, τ) between the
k’th target basis vector of the unmixing matrix and the
microphone signal vector is used in order to determine
whether and to what degree a given channel should be
masked.

According to (2), when noise is not considered, the
mixing system can be modeled by

X(Ω, τ) ≈
N∑

k=1

hk(Ω)Sk(Ω, τ). (17)

Here, hk(Ω) denotes the k’th column of the mixing matrix,
and Sk(Ω, τ) is the value of source k in frequency Ω at
frame τ.

ICA results in an unmixing matrix W, which is used
to obtain M estimated source signals according to (4). This
corresponds to

X(Ω, τ) = W(Ω)−1Ŝ(Ω, τ)

= [a1(Ω), a2(Ω), . . . , aM(Ω)]Ŝ(Ω, τ),
(18)

where the estimated mixing matrix W−1 is given in terms
of its constituent column vectors, [a1, a2, . . . , aM]. When
comparing (18) and (2), and considering (3), it can be
seen that the columns of W−1 correspond to the columns
of H(Ω), the matrix containing the values of the room
transfer function for each frequency, up to an arbitrary
scaling of column vectors and a reordering of sources,
which is constant over frequencies after the permutation
correction. Thus, in those time-frequency bins, where source
k is dominant, the associated basis vector ai(Ω) should
correspond to the column of the mixing matrix H(Ω)
associated with source k. In general, the index i may be
different from the index k, due to possible permutations.
However, as this change of indices will be consistent over
frequency, it is disregarded in the following.

Thus, after appropriate normalization, in frames with
dominant source k, the associated basis vector a would also
be equal to X(Ω, τ) of the current frame. If an anechoic
model is appropriate for the mixing process at hand, the basis
vectors should form clusters, one for each of the sources.
For this purpose, the basis vectors need to be normalized
regarding both their phases and amplitudes as detailed in
[17]. For phasenormalization, they are first normalized with
respect to a reference sensor J and secondly frequency-
normalized, which gives

ajk(Ω)

=
∣∣∣ajk(Ω)

∣∣∣ exp

⎛
⎝i

arg
(
ajk(Ω)/aJk(Ω)

)

f (Ω)4c−1dmax

⎞
⎠; j, k=1 . . .M,

(19)

as a normalized vector. Here, f (Ω) stands for the center
frequency in Hz of frequency binΩ; c is the velocity of sound
and dmax stands for the distance between the reference sensor
J and the farthest of all other microphones j = 1 . . .M. For
this vector, the phase varies only between

−π
2
≤ arg

(
ajk(Ω)

)
≤ π

2
, (20)

which is important for computing a distance measure
between vectors. Finally, amplitude-normalization is carried
out by

ãk(Ω) = [a1k(Ω), a2k(Ω), . . . , aMk(Ω)]T

‖ak(Ω)‖ . (21)

After the normalized basis vectors ãk(Ω) are thus available,
masking is carried out based on the angle θk(t, τ) between
the observed vector X(Ω, τ) and the basis vector ãk(Ω). This
angle is computed in a whitened space, where X(Ω, τ) and
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ã(Ω) are premultiplied by the whitening matrix V, which is
the inverse square root of the sensor autocorrelation matrix,
V(Ω) = R−1/2

xx .
The mask is a soft mask, which is determined from

θk(Ω, τ) by the logistic function

Mk(Ω, τ) = 1
1 + eg(θk(Ω,τ)−θT ) . (22)

The parameter g describes the steepness of the mask and θT
is the transition point, where the mask takes on the value 1/2.
More details on the mask computation can be found in [17].

3.3. Interference-Based Masks. As an alternative criterion for
masking, residual interference in the signal may be estimated
and the mask may be computed as an MMSE estimator of
the clean signal. This can be achieved with a number of
approaches, two of which will be presented here in more
detail.

3.3.1. Ephraim-Malah Filter-Based Post-Filtering. The
remaining noise components in the separated signals can be
minimized based on the Ephraim-Malah filter technique.
For this purpose, the following signal model is assumed

Ŝ(Ω, τ) = S(Ω, τ) + D(Ω, τ), (23)

where the clean signal S(Ω, τ) is corrupted by a noise
component D(Ω, τ), the remaining sum of the interfering
signals and the background noise. The estimated clean
signals are obtained by

Y(Ω, τ) =MSE(Ω, τ)Ŝ(Ω, τ), (24)

where MSE(Ω, τ) is the amplitude estimator gain. For the
calculation of the gain MSE(Ω, τ), different speech enhance-
ment algorithms can be used. In the following, we are using
the log spectral amplitude estimator (LSA) as proposed by
Ephraim and Malah [24].

For the algorithm, the a posteriori γk(Ω, τ) and a priori
SNR ξk(Ω, τ) are defined by

γk(Ω, τ) =
∣∣∣Ŝk(Ω, τ)

∣∣∣
2

λD(Ω, τ)
,

ξk(Ω, τ) = max
(
α
(
γk(Ω, τ − 1)− 1

)

+(1− α)
(
γk(Ω, τ)− 1

)
, 0
)
.

(25)

Here, α is a smoothing parameter, Ŝk(Ω, τ) is the kth ICA-
output, and λD(Ω, τ) is the noise power

λD(Ω, τ) = αDλD(Ω, τ − 1) + (1− αD)|Dk(Ω, τ)|2, (26)

with the noise estimate |Dk(Ω, τ)| given by

|Dk(Ω, τ)| = max
(∣∣∣Xk(Ω, τ)− Ŝk(Ω, τ)

∣∣∣, 0
)
. (27)

With these parameters, the log spectral amplitude estimator
is given by

MSE(Ω, τ) = ξ(Ω, τ)
1 + ξ(Ω, τ)

exp

(∫∞

t= ν(Ω,τ)

e−t

t
dt

)
, (28)

with ξ(Ω, τ) denoting the local a priori SNR and

ν(Ω, τ) =
(

ξ(Ω, τ)
1 + ξ(Ω, τ)

)
γ(Ω, τ). (29)

3.3.2. Inclusion of Speech Presence Probabilities. According
to [25], the previous approach can be expanded using
additional information for calculation of speech presence
probabilities. The gain function of the Ephraim-Malah filter
becomes

M(Ω, τ) =MSE(Ω, τ)p(Ω,τ)G
(1−p(Ω,τ))
min , (30)

where Gmin is a spectral attenuation floor, MSE the gain of
the speech enhancement method, and p(Ω, τ) the speech
presence probability [26, 27]. The infomation needed for
speech presence probability calculation is gained from a bin-
wise noise dominance estimate, which can be computed in
the spectrum domain by [18]

fN ,k(Ω0, τ0) =
∥∥∥Φ(Ω, τ)

(∑
m /= k Ŝm(Ω, τ)− Ŝk(Ω, τ)

)∥∥∥
∥∥∥Φ(Ω, τ)Ŝk(Ω, τ)

∥∥∥
.

(31)

A similar measure of speech dominance fS,k is needed in
addition

fS,k(Ω0, τ0) =
∥∥∥Φ(Ω, τ)

(
Ŝk(Ω, τ)−∑

m /= k Ŝm(Ω, τ)
)∥∥∥

∥∥∥Φ(Ω, τ)
∑

m /= k Ŝm(Ω, τ)
∥∥∥

.

(32)

Both measures utilize the difference between the esti-
mated target spectrogram Ŝk(Ω, τ) and the sum of estimated
nontarget signals

∑
m /= k Ŝm(Ω, τ). The Euclidean norm

operator ‖ · ‖ is applied to two-dimensional windowed
spectrograms here by taking the sum over their squared
entries, and

Φ(Ω, τ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W(Ω−Ω0, τ − τ0), |Ω−Ω0| ≤ RΩ/2,

|τ − τ0| ≤ Rτ/2,

0, otherwise
(33)

uses a two-dimensional window function W of size RΩ ×Rτ ,
usually a two-dimensional Hanning window. The speech
presence probability is then approximated by a soft mask via

p̂i(Ω, τ) = 1
1 + exp

(
g
(
fS,k(Ω0, τ0)− λs

))

·
(

1− 1
1 + exp

(
g
(
fN ,k(Ω0, τ0)− λn

))
)
.

(34)

Here, λs, λn and g are parameters specifying the two threshold
points and the mask gain, respectively.
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4. Estimation of Uncertainties

Due to the use of time-frequency masking, part of the
information of the original signal might be eliminated along
with the interfering sources. To compensate for this lack of
information, each masked estimated source is considered
as uncertain and described in the form of a posterior
distribution of each Fourier coefficient of the clean signal
Sk(Ω, τ) given the available information.

Estimating the uncertainty in the spectrum domain
has clear advantages, when contrasted with uncertainty
estimation in the domain of speech recognition, since much
intermediate information about the signal and noise process
as well as the mask is known in this phase of signal
processing, but is generally not available in the further
steps of feature extraction. This has motivated a number of
studies on spectrum domain uncertainty estimation, most
recently for example [7, 10]. In contrast to other methods,
the suggested strategy possesses two advantages: it does not
need a detailed spectrum domain speech prior, which may
require a large number of components or may incur the need
for adaptation to the speaker and environment; and it gives
a computationally very inexpensive approximation that is
applicable for both binary and soft masks.

The model used here for this purpose is the complex
Gaussian uncertainty model [28]

p(Sk(Ω, τ)|Yk(Ω, τ))= 1
πσ2

exp

(
−|Sk(Ω, τ)−Yk(Ω, τ)|2

σ2

)
,

(35)

where the mean is set equal to the Fourier coefficient
obtained from post-masking Yk(Ω, τ) and the variance σ2

represents the lack of information, or uncertainty. In order
to determine σ2, two alternative procedures were used.

4.1. Ideal Uncertainties. Ideal Uncertainties describe the
squared difference between the true and the estimated signal
magnitude. They are computed by

σ2
T = ||Sk(Ω, τ)| − |Yk(Ω, τ)||2, (36)

where Sk is the reference signal. However, these ideal
uncertainties are available only in experiments where a
reference signal has been recorded. Thus, the ideal results
may only serve as a perspective of what the suggested method
would be capable of if a very high quality error estimate were
already available.

4.2. Masking Error Estimate. In practice, it is necessary to
approximate the ideal uncertainty estimate using values that
are actually available. Since much of the estimation error is
due to the time-frequency mask, in further experiments such
a masking error was used as the single basis of the uncertainty
measure.

This uncertainty due to masking can be computed by

σ2
E = α

∣∣∣|Ŝk(Ω, τ)| − |Yk(Ω, τ)|
∣∣∣

2
. (37)

If α = 1, this error estimate would assume that the time-
frequency mask leads to missing signal information with 100
certainty. The value should be lower to reflect the fact that
some of the masked time-frequency bins contain no target
speech information at all. To obtain the most suitable value
for α, the following expression was minimized

α = arg min
α̃

(σE(α̃)− σT)2. (38)

In order to avoid adapting parameters to each of the
test signals and masks, this minimization was carried out
only once and only for a mixture not used in testing. After
averaging over all mask types, the same value of α was used
in all experiments and for all datasets. This optimal value was
α = 0.71.

5. Propagation of Uncertainties

When uncertain features are available in the STFT domain,
they could in principle be used for spectrum domain speech
recognition. However, as shown in [29], due to the less
robust spectrum domain models, this does not provide for
optimum results. Instead, a more successful approach is
to transform the uncertain description of speech from the
spectrum domain to the domain of speech recognition. This
can in principle be achieved by two approaches, data-driven
as in [7] or model-driven as in [5]. In the following, we only
consider the model-driven approach, which can achieve very
low propagation errors with small memory requirements
and without the need for a training phase [10]. However, a
detailed comparison of both principal methods remains an
interesting target for future work.

In order to carry out the propagation through the
feature extraction process, the uncertain spectrum domain
description is considered as specifying speech as a random
variable according to (35). If such an uncertain description
of the STFT is used, the corresponding posterior distribution
p(Sk | Yk) has to be propagated into the feature domain.
For this purpose, the effect of all transformations in the
feature extraction process on this probability distribution
needs to be considered, which will result in an estimated
feature domain random variable, describing both the mean
of the speech features as well as the associated degree of
uncertainty. Since this computation takes place for each
feature and in each bin, subsequent recognition will have a
maximally precise description of all uncertainties, allowing
the algorithm to focus most on those features that are most
reliable, and, if desired, to replace the uncertain ones by
better estimates under simultaneous consideration of the
recognizer speech model.

In conventional automatic speech recognition, only the
STFT of each estimated source Yk must be transformed into
the feature domain of automatic speech recognition. Feature
extractions involve multiple transformations, some of them
nonlinear, which are performed jointly on multiple features
of the same frame or by combining features from different
time frames. Propagating an uncertain description of the
STFT of each estimated source is therefore a complicated task
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that can be simplified by propagating only first- and second-
order information. This section shows how this propagation
can be attained by a piecewise approach in which the feature
extraction is divided into different steps and the optimal
method is chosen to perform uncertainty propagation in
each step. Uncertainty propagation is used with two of
the more robust speech recognition features, namely the
Mel-cepstrum coefficients (MFCCs) [30] and the cepstral
coefficients obtained from the RelAtive SpecTrAl Perceptual
Linear Prediction (RASTA-PLP) feature extraction [31], here
denoted as RASTA-LPCCs.

5.1. Mel-Cepstral Feature Extraction. The conventional Mel-
cepstral feature extraction consists of the following steps.

(1) Extract the short-time spectral amplitude (STSA)
from the STFT.

(2) Compute each filter output of a Mel-filterbank as a
weighted sum of the STSA features of each frame.

(3) Apply the logarithm to each filter output.

(4) Compute the discrete cosine transform (DCT) from
each frame of log-filterbank features.

In order to propagate random variables rather than
deterministic signals, these steps were modified as follows.

Step (1) can be solved if we take into account that if a
Fourier coefficient Sk(Ω, τ) is complex Gaussian distributed
as given by (35), its amplitude |Sk(Ω, τ)| is Rice distributed.
From the first raw moment of the Rice distribution, it is
possible to compute the mean of the uncertain STSA features
as [28]

μk(Ω, τ)STSA = E{|Sk(Ω, τ)|}

=
√
πλk(Ω, τ)

2
· exp

(
−|Yk(Ω, τ)|2

2λk(Ω, τ)

)

×
[(

1 +
|Yk(Ω, τ)|2
λk(Ω, τ)

)
I0

(
|Yk(Ω, τ)|2
2λk(Ω, τ)

)

+
|Yk(Ω, τ)|2
λk(Ω, τ)

I1

(
|Yk(Ω, τ)|2
2λk(Ω, τ)

)]
,

(39)

where I0 and I1 correspond to the modified Bessel functions
of order zero and one, respectively. The variance of the
uncertain STSA features can be computed from the first and
second raw moments as

Σk(Ω, τ)STSA = E
{
|Sk(Ω, τ)|2

}
−
(
μk(Ω, τ)STSA

)2

= λk(Ω, τ) + |Yk(Ω, τ)|2 −
(
μk(Ω, τ)STSA

)2
.

(40)

Step (2) in the Mel-cepstral feature extraction corre-
sponds to the Mel-filterbank, which is a linear transforma-
tion and bears no additional difficulty for the propagation
of mean and covariance. In general, given a random vector

variable x and a linear transformation defined by the matrix
T, the transformed mean and covariance correspond to

E
{

TxT
}
= TE{x}T ,

Cov
{

TxT
} = TCov{x}TT .

(41)

Step (3) corresponds to the computation of the log-
arithm. Since the distribution of the Mel-STSA uncertain
features has a relatively low skewness and the dimensionality
of the features has been reduced by approximately one order
of magnitude through the application of the Mel-filterbank,
the use of the pseudo-Montecarlo method termed unscented
transform [32] provides an acceptable trade-off between
accuracy and computational cost. Details regarding the use
of the unscented transform for uncertainty propagation can
be found in [28].

Step (4), the DCT transform, completes the computation
of the MFCC coefficients. Since this is a linear transformation
like the Mel-filterbank, it can be computed according to (41).

5.2. Relative Spectral Perceptual Linear Prediction Feature
Extraction. The obtention of the RASTA-Linear Prediction
Cepstral Coefficients (RASTA-LPCCs) corresponds to the
following steps.

(1) Extract the power spectral density (PSD) from the
STFT.

(2) Compute each filter output of a Bark-filterbank as a
weighted sum of the PSD features of each frame.

(3) Apply the logarithm to each filter output.

(4) Filter the resulting frames with the RASTA IIR filter.

(5) Add the equal loudness curve and multiply by 0.33 to
simulate the power law of hearing.

(6) Apply the exponential to invert the effect of the
logarithm.

(7) Compute an all-pole model of each frame to obtain
the linear prediction coefficients (LPCs).

(8) Compute cepstral coefficients from each LPC frame.

This feature extraction also requires a set of modifi-
cations and approximations in order to be applicable for
uncertain features. An overview of these is shown in Figure 3
and the necessary computational steps are given in detail
below.

Step (1) can be solved similarly to the case of the STSA.
The propagated mean and covariance can be computed from
the second and fourth raw moments of the Rice distribution
as [33]

μk(Ω, τ)PSD = E
{
|Sk(Ω, τ)|2

}
= λk(Ω, τ) + |Yk(Ω, τ)|2,

Σk(Ω, τ)PSD = E
{
|Sk(Ω, τ)|4

}
−
(
μk(Ω, τ)PSD

)2

= 2λk(Ω, τ)|Yk(Ω, τ)|2 + λk(Ω, τ)2.
(42)



8 EURASIP Journal on Audio, Speech, and Music Processing

p(Sk | Yk)

| |2

μPSD
k ΣPSD

k

μBARK
k ΣBARK

k

μLOG
k ΣLOG

k

μRASTA
k ΣRASTA

k

Bark-filterbank

log

RASTA-filter

Pre-emphasis

Power-law

exp

All-pole model

LPCC

ASR system

μPOW
k ΣPOW

k

μEXP
k ΣEXP

k

μCEPS
k ΣCEPS

k

1)

2)

3)

4)

5a)

5b)

6)

7)

8)

Figure 3: Block diagram of the RASTA-LPCC feature extraction
extended to encompass uncertainty propagation. Arrows indicate
the propagation of mean and covariance at each step. The figure
shows the propagation of the posterior corresponding to the kth
estimated source.

Step (2), which corresponds to the Bark-filterbank, can
be resolved identically to the case of the Mel-filterbank of the
MFCCs by using (41).

Step (3) of the RASTA-PLP transformation consists of
the computation of the logarithm as in the case of the
Mel-cepstral feature extraction. However, the distribution
of the Bark-PSD uncertain features presents a much higher
skewness compared to the case of the Mel-STSA features.
Consequently, the propagation through this step is more
accurately computed using the assumption of log-normality
of the Bark-PSD features, also used in other propagation
approaches like [3, 5, 34]. The covariance under this
assumption can be approximated by [34, equation 5.47],
yielding

Σk
(
i, j, τ

)LOG

≈ log

(
Σk
(
i, j, τ

)BARK

μk(i, τ)BARKμk
(
j, τ

)BARK + 1

)
,

(43)

where i, j are the filterbank indices and μk(i, τ)BARK and
Σk(i, j, τ)BARK correspond to the mean and covariance
after the Bark-filterbank transformation. The mean can be
approximated by [34, equation 5.46]

μk
(
j, τ

)LOG ≈ log
(
μk
(
j, τ

)BARK
)
− 1

2
Σk
(
j, j, τ

)LOG
. (44)

Step (4) corresponds to the RASTA filter. The RASTA
filter is an IIR filter that imitates the preference of humans for
sounds with a certain rate of change. It realizes the transfer
function

H(z) = 0.1
2 + z−1 − z−3 − 2z−4

1− 0.94z−1
. (45)

This can also be expressed by the following difference
equation

y(τ) =
4∑

d=0

bd x(τ − d)− a1y(τ − 1), (46)

where y(τ) is a column vector containing the τth frame of
RASTA-filtered features, and x(τ) · · · x(τ − 4) and y(τ − 1)
correspond to previous logarithm domain input and RASTA
domain output frames, respectively. The scalars b0 · · · b4 and
a1 are the normalized feedforward and feedback coefficients.
Computing the propagation of the mean μk(τ)RASTA through
this transformation is identical to the case of the Mel or Bark
filterbanks. The computation of the covariance is, however,
more complex due to the created time correlation between
inputs and outputs. The correlation matrix for the τth filter
output y(τ) can be computed from (46) as

E
{

y(τ)y(τ)T
}
=

4∑

d=0

b2
d E

{
x(τ − d)x(τ − d)T

}

+ a2
1E
{

y(τ − 1)y(τ − 1)T
}

+ 2
4∑

d= 0

d∑

q= 1

(−1)qbda
q
1bd−q

· E
{

x(τ − d)x(τ − d)T
}

,

(47)

where the last summand accounts for the input output
correlation. The corresponding covariance of the RASTA
features can be obtained as

Σk(τ)RASTA = E
{

y(τ) y(τ)T
}
− μk(τ)RASTA

(
μk(τ)RASTA

)T
.

(48)

Steps (5a) and (5b) correspond to conventional linear
transformations in the logarithm domain, and therefore
the propagation through them can be solved by applying
(41) to obtain the means μPOW

k and covariances ΣPOW
k .

Furthermore, since the assumption of log-normality in the
Bark-PSD domain implies that the log-domain features are
normally distributed, RASTA, preemphasis, and power-law
transformations do not alter this condition.
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Step (6) corresponds to the transformation through
the exponential. Since this transformation is the inverse of
the logarithm, the corresponding features are log-normally
distributed with mean and covariance computable from [34,
equations 5.44, 5.45]

μk
(
j, τ

)EXP ≈ exp

(
μk
(
j, τ

)POW +
Σk
(
j, j, τ

)POW

2

)
,

Σk
(
i, j, τ

)EXP ≈ μk(i, τ)POWμk
(
j, τ

)POW

·
(

exp
(
Σk
(
i, j, τ

)POW
)
− 1

)
.

(49)

The final steps of the RASTA-LPCC feature extraction,
Steps (7) and (8), correspond to the computation of the all-
pole model to obtain the LPC coefficients, described in the
conventional PLP technique [35], and the computation of
the cepstral coefficients from the LPCs using [30, equation
3] Due to the complex nature of these transformations
and the low skewness of the uncertain features after the
exponential transformation, the propagation is computed
using the unscented transform, similarly to the case of the
logarithm transformation for the Mel-cepstral features.

6. Recognition of Uncertain Features

When features for speech recognition are given not as point
estimates, but rather in the form of a posterior distribution
p(ok|Yk) with estimated mean μCEPS

k and covariance ΣCEPS
k ,

the speech decoder must be modified in order to take
this additional information into account. A number of
approaches exist, both for binary and for continuous-valued
uncertainties, for example, [2, 36, 37].

Here, two missing feature approaches were applied,
which are capable of considering real-valued uncertainties.
These methods, modified imputation [5] and HMM variance
compensation [2], have been implemented for the Hidden
Markov Model Toolkit (HTK) [38] and were used in the tests.

Both methods are appropriate for HMM-based systems,
where recognition takes place by finding the optimum HMM
state sequence [q1, . . . , qE], which gives the best match to the
feature vector sequence [o(1), . . . , o(E)] when each HMM
state has an associated output probability distribution p(o |
q).

6.1. HMM Variance Compensation. In HMM variance com-
pensation, the computation of state output probabilities
is modified to incorporate frame-by-frame and feature-by-
feature uncertainties [2]. This is formulated as an averaging
of the output probability distribution p(ok(τ) | q) over all
possible unseen cepstra defined by the posterior p(ok(τ) |
Yk(τ))

p̂
(
μCEPS
k (τ) | q

)
=
∫∞

−∞
p(ok(τ) | Yk(τ))p

(
ok(τ) | q)dok(τ)

(50)

which leads to

p̂
(
μCEPS
k (τ) | q

)
= N

(
μCEPS
k (τ);μq,Σq + ΣCEPS

k (τ)
)
. (51)

Here, q denotes the HMM state, with mean μq and
covariance Σq. For Gaussian mixture models, the same
procedure can be applied to each mixture component. This
yields

p̂
(
μCEPS
k (τ) | q

)
=

M∑

m=1

wmN
(
μCEPS
k (τ);μq,m,Σq,m+ΣCEPS

k (τ)
)

,

(52)

for an M-component mixture model with weights wm.

6.2. Modified Imputation. In modified imputation, the idea
is to replace the imputation equation, originally proposed
for completely missing features in [36], with an alternative
formulation, which also allows for real-valued degrees of
uncertainty. Thus, whereas missing parts of feature vectors
are replaced by the corresponding components of the HMM
model mean μq in classical imputation, modified imputation
finds the maximum a posteriori estimate

ôk(τ) = arg max
ok(τ)

p
(

ok(τ) | Yk(τ), q
)
. (53)

Assuming a flat prior for ok(τ), as shown in [5], (53)
leads to

ôk(τ) = arg max
ok(τ)

p(ok(τ) | Yk(τ))p
(

ok(τ) | q) . (54)

Finally, the modified imputation estimate of the feature
vector ôk in state q

ôk,q(τ)

=
(
ΣCEPS
k (τ)−1 + Σ−1

q

)−1·
(
μqΣ

−1
q +μCEPS

k (τ)ΣCEPS
k (τ)−1

)
,

(55)

can be obtained. This estimate is used to evaluate the pdf of
the HMM state q at time τ, as in conventional recognition or
classical imputation.

For mixture-of-Gaussian (MOG) models, (55) is eval-
uated separately for each mixture component m to obtain
separate estimates ôk,q,m(τ), and all mixture component
probabilities p(ôk,q,m(τ) | μq,m,Σq,m) are finally added to
obtain the feature likelihood for state q via

p
(

ok | q
) =

M∑

m=1

wmp
(

ôk,q,m(τ) | μq,m,Σq,m

)
, (56)

where wm stands for the mixture weight of component m.
This, again, is analogous to the process in conventional
recognition or classical imputation.

7. Experiments

7.1. Room Recordings. For the evaluation of the proposed
approaches, recordings were made in a noisy lab room with
a reverberation time of T60 ≈ 160 ms. In these recordings,
audio files from the TIDigits database [39] were used and
mixtures with two and three speakers were recorded at
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Figure 4: Experimental Setup.

fs =11 kHz. The distance Li between the loudspeakers and
the center of the microphone array was varied between 0.9
and 3 m. The experimental setup is shown schematically in
Figure 4. The distance d between two sensors was 3 cm and a
linear array of four microphones was used in all experiments.
The recording conditions for all mixtures are summarized in
Tables 1 and 2.

7.2. Model Training. The HMM speech recognizer was
trained with the HTK toolkit [38]. The trained HMMs
comprised phoneme-level models with 6-component MOG
emitting probabilities and a conventional left-right structure.
The training data was mixed and it comprised the 114
speakers of the TI-DIGITS clean speech database along
with the room recordings for speakers sa and rk used for
adaptation. Speakers used for adaptation were removed from
the test set. The feature extractions presented in Section 5
were also complemented with cepstral mean subtraction
(CMS) for further reduction of convolutive effects. Since
CMS is a linear operation, it poses no additional difficulty
for uncertainty propagation.

7.3. Parameter Settings of Time-Frequency Masks. Parameters
of all masks were set manually for good performance
on all datasets, and were kept consistent throughout all
experiments.

7.3.1. Amplitude-Based Masking. For amplitude-based
masking, a soft mask according to (14) and (16) was used.
Thus, there are two parameters, the mask threshold T and
the gain g, which were set to T = 0 and g = 1, respectively.

Table 1: Mixture description.

Mixture Mix. 1 Mix. 2 Mix. 3

Number of speakers N 2 3 2

Speaker Codes ar,ed pg,ed,cp fm,pg

Distance between speaker
i and array center

L1 = L2

= 2.0 m
L1 = L2

= L3 = 0.9 m
L1 = 1.0 m

L2 = 3.0 m

Angular position of the
speaker i (as shown in
Figure 4)

θ1 = 75◦ θ1 = 30◦ θ1 = 50◦

θ2 = 165◦ θ2 = 80◦ θ2 = 100◦

Table 2: Mixture description.

Mixture Mix. 4 Mix. 5

Number of speakers N 2 3

Speaker Codes cp,ed fm,ga,ed

Distance between speaker i and
array center

L1 = L2

= 0.9 m
L1 = L2 =
L3 = 0.9 m

Angular position of the speaker i
(as shown in Figure 4)

θ1 = 50◦ θ1 = 40◦

θ2 = 115◦ θ2 = 60◦

θ3 = 105◦

7.3.2. Phase-Based Masking. In phase-based masking accord-
ing to (22), there are two free parameters as well, again
a mask gain g and also a mask threshold, the angle
threshold θT . However, optimum performance was reached
for different parameter values depending on the recognizer
parameterization. For optimal performance on MFCC fea-
tures, they were set to g = 20 and θT = 0.2π, which will
be refered to as Phase1 in the results. In contrast, for RASTA-
PLP-based recognition, better results were generally achieved
with g = 15 and θT = 0.2π (Phase2), that is, the same
threshold but less steep of a mask gain.

7.3.3. Interference-Based Masking. For the first interference-
based mask, defined in Section 3.3.1, the two smoothing
parameters defining the algorithm are set to α = 0.1 and
αD = 0.9. This algorithm will be denoted by IB in the
following.

The second interference-based algorithm addition-
ally includes the speech probability estimate defined in
Section 3.3.2. Thus, in addition to the parameters α =
0.9 and αD = 0.9, there are additional parameters in the
weighting function (34). These are λs, λn and g, parameters
specifying the two threshold points and the mask gain. They
are defined to correspond to the mean absolute value of the
estimated signal Fourier coefficients λs = fS,k, the mean
absolute value of the noise estimate Fourier coefficient λn =
fN ,k; and the mask gain is set to g = 10. For windowing
in (33), a Hanning window of size 3 × 3 is used. For this
algorithm, the abbreviation IBPE will be used.

8. Results

8.1. Recognition Performance Measurement. To evaluate
recognition performance, the number of reference labels
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Table 3: Word accuracy (WA) of ASR tests for RASTA-PLP features, estimated uncertainties. Here, the algorithms Phase1 and Phase2 utilize
the parameters defined in Section 7.3.2, the entries with the heading Amplitude correspond with the mask given in Section 7.3.1, and the
two interference-based strategies IB and IBPE are specified in Section 7.3.3. The two robust recognition strategies are abbreviated by MI for
modified imputation and UD for uncertainty decoding.

Phase1 Phase2 Amplitude IB IBPE

No. of speakers 2 3 2 3 2 3 2 3 2 3

no ICA 31.4 6.3 31.4 6.3 31.4 6.3 31.4 6.3 31.4 6.3

only ICA 58.0 48.0 63.1 52.7 63.1 52.7 63.1 52.7 63.1 52.7

ICA + Mask 15.1 16.7 16.4 17.1 52.1 51.9 02.2 00.9 38.9 30.7

ICA + Mask + UD 52.8 50.7 66.0 59.1 67.2 60.3 66.0 56.5 67.7 59.5

ICA + Mask + MI 60.0 58.0 73.4 69.1 72.9 68.8 71.4 67.1 72.9 69.2

Table 4: Word accuracy (WA) of ASR tests for MFCC+Δ + ΔΔ features, estimated uncertainties.

Phase1 Phase2 Amplitude IB IBPE

No. of speakers 2 3 2 3 2 3 2 3 2 3

no ICA 37.7 17.2 37.7 17.2 37.7 17.2 37.7 17.2 37.7 17.2

only ICA 69.9 67.4 70.0 68.6 70.0 68.6 70.0 68.6 70.0 68.6

ICA + Mask 03.5 03.7 03.3 03.6 62.1 60.6 04.3 04.2 38.7 35.7

ICA + Mask + UD 72.9 73.2 75.2 73.7 74.2 72.5 75.1 73.7 76.7 74.7

ICA + Mask + MI 72.3 75.4 71.4 70.7 70.0 68.9 69.9 70.1 72.0 72.2

(N), of substitutions (S), insertions (I) and deletions (D) are
counted. From these values, the recognition accuracy PA is
defined as

PA = 100 · N −D − S− I
N

. (57)

The value of PA, output by the HTK scoring tool, corre-
sponds with 100 − WER, where WER is the word error
rate that is also commonly used in the evaluation of speech
recognition performance.

8.2. Multispeaker Recognition Results. At first, results are
given for the estimated uncertainty values and RASTA-
PLP features in Table 3 and for MFCC features in Table 4.
Especially for RASTA-PLP features, results are improved
notably by masking and missing feature recognition by
modified imputation, averaging an absolute improvement
of more than 10% over all tested masks and experiments.
For MFCCs, significant improvements can also be achieved
by the suggested strategy. This is true especially for the two
strategies of phase masking and interference-based filtering
with speech probability estimation. In both cases, an absolute
improvement of about 6% can be achieved. It is also clearly
visible that here, uncertainty decoding performs better on
average.

When true rather than estimated uncertainties are used,
results are again improved greatly, both for RASTA-PLP and
for MFCC features, as shown in Tables 5 and 6. Compared
to the use of ICA alone, a relative error rate reduction of
59% for uncertainty decoding and of 69% for modified
imputation is achieved in the case of RASTA features.

Similar performance gains can be observed in the case
of MFCC features, where word error rates can be reduced
by 64% and 62% for uncertainty decoding and modified
imputation, respectively. Comparing the uncertain recog-
nition strategies, again, modified imputation is on average
the better performer for RASTA-PLPs, whereas uncertainty
decoding leads to better performance gains for MFCCs.
Concerning the masking strategies, it is clear that the IB-
mask, which has fairly aggressive parameter settings and
an extremely low recognition rate without missing feature
approaches, is the best for this case of ideal uncertainties.

9. Conclusion

An overview of the use of independent component analysis
for speech recognition under multitalker conditions has
been given. As shown by the presented results, the con-
ventional strategy of purely linear source separation can be
improved by post-masking in the time-frequency domain, if
this is accompanied by missing-feature speech recognition.
Especially for three-speaker scenarios, this improves the
recognition rate notably. Interestingly, the optimal decoding
strategy is apparently dependent on the features that are
used for recognition. Whereas modified imputation was
clearly superior for RASTA features, better results for MFCC
features have almost consistently been achieved by uncer-
tainty decoding, even though uncertainties were estimated
in the spectrum domain for both features and propagated
to the recognition domain of interest. Further work will be
necessary to determine how these results correspond to the
degree of model mismatch in both domains, with the aim
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Table 5: Word accuracy (WA) of ASR tests for RASTA-PLP features, true uncertainties.

Phase1 Phase2 Amplitude IB IBPE

No. of speakers 2 3 2 3 2 3 2 3 2 3

no ICA 31.4 6.3 31.4 6.3 31.4 6.3 31.4 6.3 31.4 6.3

only ICA 58.0 48.0 63.1 52.7 63.1 52.7 63.1 52.7 63.1 52.7

ICA + Mask 15.1 16.7 16.4 17.1 52.1 51.9 02.2 00.9 38.9 30.7

ICA + Mask + UD 82.7 76.1 88.0 83.7 81.2 74.0 91.5 84.5 86.2 75.3

ICA + Mask + MI 86.7 80.6 89.8 86.3 85.6 79.0 92.6 88.3 89.5 82.9

Table 6: Word accuracy (WA) of ASR tests for MFCC+Δ + ΔΔ features, true uncertainties.

Phase1 Phase2 Amplitude IB IBPE

No. of speakers 2 3 2 3 2 3 2 3 2 3

no ICA 37.7 17.2 37.7 17.2 37.7 17.2 37.7 17.2 37.7 17.2

only ICA 69.9 67.4 70.5 68.6 70.5 68.6 70.5 68.6 70.5 68.6

ICA + Mask 03.5 03.7 03.3 03.6 62.1 60.6 04.3 04.2 38.7 35.7

ICA + Mask + UD 89.9 82.3 91.3 88.6 89.6 83.8 93.9 89.6 92.8 88.1

ICA + Mask + MI 90.3 87.4 89.5 87.3 87.0 83.4 90.3 88.2 92.1 87.5

of determining an optimal decoding strategy depending on
specific application scenarios.

A vital aspect of missing feature recognition is still
the estimation of the feature uncertainty. Here, an ideal
uncertainty estimate will result in superior recognition
performance for all considered test cases and all applied
post masks. Since such an ideal uncertainty is not available
in practice, the value needs to be estimated from available
data. In the presented cases, this measure has been derived
from the ICA output signal and the applied nonlinear
gain function. The resulting uncertainty estimate has a
correlation coefficient of 0.45 with the true uncertainties,
leading to superior and consistent performance among all
tested uncertainty estimates.

However, uncertainty estimation for the ICA output
signals should be improved further, in order to approximate
more closely the ideally achievable performance of this
strategy. For this purpose, it will be interesting to compare
the proposed uncertainty estimation to other approaches.
Specifically, the uncertainty estimation described in [7] is
of interest for use with any type of recognition feature and
preprocessing method, but it requires learning of a regression
tree for the given specific feature set and environment. In
contrast, feature-specific methods described for example in
[2, 3] are applicable only to the feature domain they have
been derived for, but can be used without the need for
additional training stages.

Since none of the above methods is designed specifically
for use with ICA, another direction of research is a better
use of the statistical information gathered during source
separation. Further research can thus focus on an optimal
use of this intermediate data, and on its combination with
more detailed prior models in the spectrum domain, as those
in [29], for arriving at more accurate uncertainty estimates
which utilize all avaliable data from multiple microphones.
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