4 research outputs found

    Noise modelling for denoising and 3D face recognition algorithms performance evaluation

    Get PDF
    This study proposes an algorithm is proposed to quantitatively evaluate the performance of three‐dimensional (3D) holistic face recognition algorithms when various denoising methods are used. First, a method is proposed to model the noise on the 3D face datasets. The model not only identifies those regions on the face which are sensitive to the noise but can also be used to simulate noise for any given 3D face. Then, by incorporating the noise model in a novel 3D face recognition pipeline, seven different classification and matching methods and six denoising techniques are used to quantify the face recognition algorithms performance for different powers of the noise. The outcome: (i) shows the most reliable parameters for the denoising methods to be used in a 3D face recognition pipeline; (ii) shows which parts of the face are more vulnerable to noise and require further post‐processing after data acquisition; and (iii) compares the performance of three different categories of recognition algorithms: training‐free matching‐based, subspace projection‐based and training‐based (without projection) classifiers. The results show the high performance of the bootstrap aggregating tree classifiers and median filtering for very high intensity noise. Moreover, when different noisy/denoised samples are used as probes or in the gallery, the matching algorithms significantly outperform the training‐based (including the subspace projection) methods

    3D FACE RECOGNITION USING LOCAL FEATURE BASED METHODS

    Get PDF
    Face recognition has attracted many researchers’ attention compared to other biometrics due to its non-intrusive and friendly nature. Although several methods for 2D face recognition have been proposed so far, there are still some challenges related to the 2D face including illumination, pose variation, and facial expression. In the last few decades, 3D face research area has become more interesting since shape and geometry information are used to handle challenges from 2D faces. Existing algorithms for face recognition are divided into three different categories: holistic feature-based, local feature-based, and hybrid methods. According to the literature, local features have shown better performance relative to holistic feature-based methods under expression and occlusion challenges. In this dissertation, local feature-based methods for 3D face recognition have been studied and surveyed. In the survey, local methods are classified into three broad categories which consist of keypoint-based, curve-based, and local surface-based methods. Inspired by keypoint-based methods which are effective to handle partial occlusion, structural context descriptor on pyramidal shape maps and texture image has been proposed in a multimodal scheme. Score-level fusion is used to combine keypoints’ matching score in both texture and shape modalities. The survey shows local surface-based methods are efficient to handle facial expression. Accordingly, a local derivative pattern is introduced to extract distinct features from depth map in this work. In addition, the local derivative pattern is applied on surface normals. Most 3D face recognition algorithms are focused to utilize the depth information to detect and extract features. Compared to depth maps, surface normals of each point can determine the facial surface orientation, which provides an efficient facial surface representation to extract distinct features for recognition task. An Extreme Learning Machine (ELM)-based auto-encoder is used to make the feature space more discriminative. Expression and occlusion robust analysis using the information from the normal maps are investigated by dividing the facial region into patches. A novel hybrid classifier is proposed to combine Sparse Representation Classifier (SRC) and ELM classifier in a weighted scheme. The proposed algorithms have been evaluated on four widely used 3D face databases; FRGC, Bosphorus, Bu-3DFE, and 3D-TEC. The experimental results illustrate the effectiveness of the proposed approaches. The main contribution of this work lies in identification and analysis of effective local features and a classification method for improving 3D face recognition performance

    Using the 3D shape of the nose for biometric authentication

    Get PDF
    corecore