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Abstract 

This thesis is dedicated to extracting expression robust features for 3D face recognition. The 

use of 3D imaging enables the extraction of discriminative features that can significantly 

improve the recognition performance due to the availability of facial surface information such 

as depth, surface normals and curvature. Expression robust analysis using information from 

both depth and surface normals is investigated by dividing the main facial region into patches 

of different scales. The nasal region and adjoining parts of the cheeks are utilized as they are 

more consistent over different expressions and are hard to deliberately occlude. In addition, in 

comparison with other parts of the face, these regions have a high potential to produce 

discriminative features for recognition and overcome pose variations. 

An overview and classification methodology of the widely used 3D face databases are first 

introduced to provide an appropriate reference for 3D face database selection. Using the FRGC 

and Bosphorus databases, a low complexity pattern rejector for expression robust 3D face 

recognition is proposed by matching curves on the nasal and its environs, which results in a 

low-dimension feature set of only 60 points. To extract discriminative features more locally, a 

novel multi-scale and multi-component local shape descriptor is further proposed, which 

achieves more competitive performances under the identification and verification scenarios. 

In contrast with many of the existing work on 3D face recognition that consider captures 

obtained with laser scanners or structured light, this thesis also investigates applications to 

reconstructed 3D captures from lower cost photometric stereo imaging systems that have 

applications in real-world situations. To this end, the performance of the expression robust face 

recognition algorithms developed for captures from laser scanners are further evaluated on the 

Photoface database, which contains naturalistic expression variations. 

To improve the recognition performance of all types of 3D captures, a universal landmarking 

algorithm is proposed that makes uses of different components of the surface normals. Using 

facial profile signatures and thresholded surface normal maps, facial roll and yaw rotations are 

calibrated and five main landmarks are robustly detected on the well-aligned 3D nasal region. 

The landmarking results show that the detected landmarks demonstrate high within-class 

consistency and can achieve good recognition performances under different expressions. This 

is also the first landmarking work specifically developed for the reconstructed 3D captures 

from photometric stereo imaging systems.   
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Chapter 1 Introduction  

1.1  Background and Challenges 

Biometrics that try to utilise some physical and behavioural characteristics to represent the 

human beings have become more significant in the recent decades, and have been widely used 

in security, control and entertainment applications. With the increasing security concerns of 

access control, for example of military, airport, bank and border control, the demand to develop 

robust biometrics features for recognising and verifying people has been the subject of much 

research interest.  

In recent years, some smart devices have been developed for many purposes and scenarios, 

which can produce many diverse biometric applications. For example, fingerprints have been 

widely used to facilitate the access control of most smart phones and, to achieve a high security, 

the use of the iris has been proposed [1]. Furthermore, the face has been introduced to bank 

payment system, for example by the HSBC bank, which is aimed to replace the time-

consuming or even less accurate manual recognition by human. Therefore, to accommodate 

the increasing security demands, more sophisticated and robust biometrics are required to 

improve the performance. 

Compared to behavioural biometrics, physical biometrics (e.g. fingerprints, iris, pupil and face) 

are assumed to be unique for each identity and can achieve high recognition performance. In 

particular, fingerprints and iris have been widely used in many scenarios as their high accuracy 

and distinctness. However, the main problem of these two modalities is the requirement of 

human cooperation during data acquisition, which might not be appropriate in unconstrained 

scenarios. In contrast, facial information acquisition is more convenient as the development of 

low-cost capture devices and the main parts of face are hard to be intentionally or 

unintentionally occluded by other things. Also, the human face maintains a lot of discriminative 

features for recognition, which brings more possibilities to use the face as a biometric for 

security concerns and the development of diverse software applications.  

Face recognition techniques mainly come from computer vision, pattern recognition and 

artificial intelligence and employing the face as a biometric feature has been used in many 

application scenarios [2]. In its early days, most face recognition algorithms used 2D intensity 
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or colour images. As the accuracy of 2D face recognition is adversely affected by variations in 

pose, expression, illumination, and occlusions, the development of robust, fully-automatic 2D 

face recognition system remains a challenging problem. Alternatively, using 3D facial data to 

understand the characteristics of the human face in the 3D domain has been shown to have 

much promise for improving the overall recognition performance.  

Using 3D face as a biometric has many advantages in comparison with 2D imaging: (1) 3D 

face shape possesses high distinctiveness among different identities, which can be extracted 

from various types of 3D shape representations in terms of depth, surface normals, curvatures 

and so forth. Some specific regions, for example the nose, have been shown to contain lots of 

discriminative features [3-5]. (2) 3D acquisition systems have the potential to solve the 

illumination problem of 2D imaging as feature detection and the consistency of feature 

extraction by 2D captures fail in different illumination conditions. (3) Compared to 2D methods, 

3D facial shape provides more possibilities to address the problems caused by expression, pose 

and occlusion variations. Feature extraction on some relatively rigid regions, for example of 

3D nose or certain small facial patches, is one of the most popular approaches to address 

expression variations [6, 7]. Also, it is easy to calibrate pose variations on the 3D shape and 

the missing areas caused by occlusions can be estimated from the known areas. 

Although 3D strategies have the potential to address many drawbacks of 2D imaging and 

improve the recognition performance of biometric systems, there are still many challenging 

and unsolved issues in 3D face recognition, including the expression robust feature extraction, 

low complexity and accurate pose calibration, and real world applications. Expression invariant 

3D face recognition requires developing more effective and efficient descriptors for feature 

extraction on the 3D shape or evaluating some rigid patches on the face, which suffer less facial 

surface changes or movements under expressions. For the pose calibration, extracting pose 

invariant features and making a compromise between the efficiency and accuracy are two hot 

topics in 3D face recognition. 

To overcome those challenges in a more effective and efficient way, many researchers have 

proposed to investigating the 3D nose for recognition as it demonstrates high robustness under 

various expression variations. Also, it is the most symmetric and obtainable region on the face, 

which provides more facial surface information for pose calibration and discriminative features 

for recognition. Therefore, there is increasing research of interest on utilising the robustness 

and distinctness of nasal region for alignment and feature space manipulation. 
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Most public 3D face recognition algorithms are tested on the depth map with higher accuracy, 

which are mainly reconstructed from 3D point clouds captured by laser scanners or structured 

light. The main drawback of these kinds of acquisition methods is that they require candidates’ 

fully cooperation as well as long calculation time to produce the 3D captures, which might be 

hard to be applied to some security control scenarios. Therefore, the development of more 

practical 3D acquisition system and discriminative features extraction from the unconstrained 

and low-complexity 3D captures have become a hot area in face recognition. 

1.2  Motivation  

1.2.1 Expression Robust Feature Extraction on the Nasal and Adjoining Cheek Regions 

Compared to other biometrics modalities, face recognition possesses many distinct advantages 

and 3D imaging provides more potential to address the problems caused by facial variations 

and illumination conditions, which are hard to solve by using the 2D imaging. However, 

variations in expression, which lead to muscle movements and deform the face surface, still 

present challenges to recognition systems using 3D data. Therefore, one of the main working 

areas in this thesis is extracting relatively expression robust features for 3D face recognition.  

One way to address these problems is to select relatively stable structures or patches on the 

facial surface and use these to explore the discriminative features. For example, the nasal region, 

which is more consistent over universal expressions and also invariant to the majority of 

occlusions caused by hair, hands and scarves, is widely used in many face recognition 

algorithms. In addition to the nasal region, the adjoining parts between the nasal region and 

cheek bones also have the potential to produce discriminative features [8], even though they 

are less expression robust than the main nasal region. As a consequence, it is interesting to 

extend the nasal region to its surroundings to extract more discriminative patches or design 

new descriptors for investigating on the nasal and adjoining cheek regions.  

1.2.2 Investigation of Photometric Stereo Captures 

Another main motivation of this topic is improving the real world application possibility, for 

example of utilising 3D captures from the photometric stereo. In general, to achieve high 

identification and verification performance, many researchers take efforts to investigate the use 

of the depth maps with higher accuracy in facial details, for example the captures provided by 

the FRGC and Bosphorus databases in Figure 1.1. Many algorithms can produce high rank one 

recognition rate (R1RR), even higher than 99%. However, those methods lose the real world 
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application feasibility as nearly all the captures they used are obtained from laser scanner or 

structured light, which are not suitable to apply to most scenarios for security concern, even 

though the resulting 3D captures possess higher resolution and accuracy and provide a good 

source for face analysis. 

In the past decade, many new 3D data acquisition devices have been developed. The most 

famous one is the Kinect device developed by Microsoft, which has been widely used in Xbox. 

Since the depth information is relatively with low resolution as shown in Figure 1.1(c), many 

researchers proposed to merge both 2D colour and depth information, defined as ‘RGB-D’, to 

design face recognition algorithms. The Photoface device [9] proposed by Centre of Machine 

Vision at University of the West of England provides a good compromise of this tough and 

challenging issue. The Photoface device facilitates the 3D data acquisition procedure, which 

can obtain the facial data in a very short period of time without candidates’ cooperation. What 

is more, the resulting 3D captures provide a good overall reconstruction in comparison with 

the “ground-truthed” captures, which produces relatively higher resolution 3D captures than 

other commercial acquisition system [10]. As shown in Figure 1.1(c), the depth information of 

Photoface captures used in this thesis is recovered by integrating the surface normals using the 

Frankot-Chellappa surface integration algorithm [11]. 

                                     
                                          (a) FRGC [12]                             (b) Bosphorus [13] 

                
                                 (c) EURECOM Kinect [14]                    (d) Photoface [9] 

Figure 1.1: Example 3D captures laser scanner (FRGC), structured light (Bosphorus), Kinect sensor 

(KinectFaceDB) and Photoface. 



5 

Actually, there has been limited research using the Photoface captures for face recognition, 

although this kind of data possesses a lot of advantages and has promising application prospects. 

It is interesting to apply the well-designed face recognition algorithms to the Photoface captures 

or investigate new techniques on the basis of their characteristics. Therefore, this work will 

consider the development of new feature detection and extraction approaches to achieve high 

recognition performance under real world application scenarios. 

1.2.3 Landmarking for the Captures with High/Low Accuracy Depth Maps 

In biometric systems, landmarks are often instrumental in the generation of signatures for faces 

[15]. Landmarking plays a significant role in region based face recognition algorithms and, as 

such, its accuracy will directly determine the effectiveness of feature extraction. The within-

class similarity and between-class dissimilarity may be adversely affected by inconsistent 

landmarks. In addition, for real-time automatic face recognition systems, the landmarking 

method should also be computationally efficient. Landmarking has been well researched and 

explored using higher accuracy depth maps as many facial details are preserved, for example 

see [16]. However, the landmarking approaches designed for the captures produced by newly 

developed and more practical 3D data acquisition systems have not been explored in literature, 

which is a major impediment to the development of region based face recognition algorithms. 

3D data acquisition in a biometric session is the first main step of a 3D face recognition 

algorithm and the use of different acquisition devices can result in captures with varying 

characteristics, presenting different challenges for landmarking. Many landmarking 

approaches use databases captured using laser scanners or structured light technologies, which 

provide point clouds captures with high accuracy of depth maps and better preserve the face’s 

local details. However, such acquisition systems require full cooperation during data 

acquisition, which presents difficulties for real world application scenarios. The Photoface 

device [9, 17] that collects 3D captures by the photometric stereo was proposed to address this 

problem. In addition to the real time and low complexity data acquisition, the resulting captures 

are well smoothed with high resolution, which have been proven to be more beneficial to face 

recognition in comparison with other kinds of captures, as more facial fine discriminative details 

are reconstructed on the depth maps [18]. However, the depth maps produced from surface 

normals are flatter than their real-world counterparts with most protrusions understated [18], 

such as the nose tip, eye sockets and the sides of the nose.  
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Those regions with the highest curvatures are crucially important for nasal landmarks 

localization. Therefore, large variations on those regions might result in failed landmarking on 

the Photoface database using the curvatures based algorithms. Region based face recognition 

algorithms are still unexplored on this kind of data due to the lack of effective landmarking 

algorithms, which is also the gap in the 3D landmark detection literature. Simply applying well-

designed landmarking algorithms to this kind of data is not guaranteed to produce a good 

performance. Therefore, new landmarking algorithms designed for such kind of 3D captures 

should be further explored. 

1.2.4 The Use of Surface Normals 

Most 3D face recognition algorithms are focused on utilising the depth information to detect 

and extract features. In addition to the depth, the surface normals of each point can determine 

the orientation of facial surface and describe the local shape variations, which provides an 

effective facial surface representation to investigate discriminative features for recognition. 

Gökberk et al. [19] found that surface normals provide the best features for face recognition in 

comparison with the depth, point clouds and shape index. 

Surface normals (SNs), that can be represented as a vector of three individual components (SNx, 

SNy, and SNz), have been widely used in feature detection and extraction [6, 9] on the 3D 

captures with higher accuracy, providing the motivation for fusing the depth and surface 

normals to exploit more discriminative features for 3D face recognition. For example, Li et al. 

use the 3D point clouds to estimate the surface normals and extract different scales of local 

normal patterns on three components of surface normals [6]. In [20], the surface normal vectors 

at the sampled facial points are shown to contain more discriminatory information than the 

coordinates of the points. 

In addition, using surface normals is beneficial to feature space manipulation on the 3D 

captures from the photometric stereo as the original data computed from the photometric stereo 

are surface normals and the albedo, which are less smoothed and suffer less distortion than the 

reconstructed depth information. Zafeiriou et al. [9] utilize the surface normals as vectors and 

match the normalface for recognition. The recognition performance achieved by normalface 

outperforms that using depth information. Therefore, using surface normals as an effective 3D 

shape representation has a lot of advantages for feature space manipulation, providing an 

additional feature source for expression robust face recognition [6]. In particular, the surface 
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normal has great potential to provide a good approach for the landmarking on the Photoface 

captures.  

1.3  The Outline of This Thesis 

In Chapter 2, an overview of the most significant research work related to 3D face recognition 

algorithms in the literature is provided. An introduction to biometrics and face recognition is 

first given in Section 2.1. Then the basic 3D face recognition techniques are introduced in 

Section 2.2, including preprocessing, landmarking, features extraction, postprocessing, 

matching and decision making. In particular, the recognition algorithm for addressing the 

expression variations is further explained in Section 2.3 and feature extraction on the nasal and 

adjoining cheek regions is introduced and discussed in Section 2.4. In addition, to demonstrate 

the advantages of using 3D nasal and adjoining cheek regions, three whole face evaluations on 

the Bosphorus database are provided in Section 2.4.4. A summary and the challenges are 

concluded in Section 2.5. 

In Chapter 3, the use of 3D face databases is further explained, including an overview of 3D 

face database, preprocessing work and baseline performance evaluation. In Section 3.2, an 

analysis of all widely used 3D face databases is introduced, which summarises all the 

significant characteristics and challenges and provides a useful reference for 3D facial analysis. 

Then, the motivation and experimental settings of the databases (FRGC, Bosphorus and 

Photoface) used in the following chapters are further explained in Section 3.3. The 

preprocessing work and the recognition performance evaluations on a subset of three databases 

are provided in Section 3.6. 

In Chapter 4, an expression robust rejector is proposed that first robustly locates landmarks on 

the relatively stable structure of the nose and its environs, termed the cheek/nose region. Then, 

75 nasal curves and 38 cheek/nose curves are found by concatenating sets of landmarks. For 

manipulating the feature space, 113 curves are selected and then, in Section 4.6, after some 

significant parameters analysis, a small set of features (4 curves with only 15 points each) on 

the cheek/nose surface are finally selected to build the feature space. In Section 4.7, the 

resulting pattern rejector, which can quickly eliminate a large number of candidates at an early 

stage, is further evaluated on the FRGC database for both the identification and verification 

scenarios. The classification performance using only 60 points from 4 curves shows the 
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effectiveness of this efficient expression robust rejector. In addition to the horizontal curves, 

the radial and root curves are also explored in Section 4.8. 

In Chapter 5, a novel local depth and surface normals descriptor is proposed. This is used to 

explore the discriminative features on the nasal surface and adjoining cheek regions for 

expression robust 3D face recognition. After preprocessing the 3D face data, landmarks located 

on the perimeter of a triangular region covering the nose and adjoining parts of the cheeks are 

accurately detected. Inspired by Local Binary Patterns, local shape differences for 3D points 

on a set of horizontal curves joining selected landmarks provide a novel representation of the 

local shape information. A further analysis of the discriminatory power of each patch shows 

that the adjoining regions have the potential to produce good recognition performance. Using 

the FRGC and Bosphorus databases, the performance of the proposed descriptor is evaluated 

on diverse patches, scales and for four components, one from the depth and three from the 

surface normals. Results show that the new local shape descriptor performs well at representing 

the shape information on a relatively large scale. On the basis of this descriptor, a relatively 

small set of features is extracted from the nasal and adjoining cheek regions. The adjoining 

cheek regions demonstrate a high discriminatory power and provide a useful new addition to 

3D face biometrics. 

In Chapter 6, an investigation of expression robust features extracted from the Photoface 

captures is provided to demonstrate the recognition performance of reconstructed data using 

improved well designed algorithms for fine 3D data. 75 curves are found by connecting 16 

automatically detected landmarks on the nasal region which result in an efficient feature set 

consisting of different 3D data representations, depth, surface normals and shape index. The 

recognition performance is tested on the Photoface, FRGC and Bosphorus databases and 

features extracted using surface normal y component (SNy) and shape index map from the 

Photoface database significantly outperform the other databases. After feature selection, a small 

number of features are tested on the 3DE-VISIR Database using one training sample scenario. 

The recognition performance shows that nasal curves extracted from SNy and shape index map 

are relatively expression robust which can be used for 3D nose recognition.  

In Chapter 7, a new 3D facial landmarking algorithm is proposed that is applicable for both 

higher accuracy 3D captures, obtained using laser scanners or structured light, and the 

reconstructed captures from photometric stereo systems. The benefits of employing surface 

normals are demonstrated for both roll and yaw rotation calibration and nasal landmarks 
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detection. Results show that the surface normals can provide an additional and effective 

representation of the 3D surface geometrical structure. By thresholding the surface normal 

maps, the nasal bridge and candidate alar grooves are robustly detected, which can be utilized 

to refine the location of nose tip and correct rotation errors in the yaw direction. Also, using 

the nasal bridge, root and nose tip detected by the surface normal maps, a coarse to fine roll 

rotation calibration is applied to further refine the pose variations, even though using surface 

normal maps is relatively pose invariant. Finally, five landmarks on the nasal region are 

robustly detected on the well aligned 3D captures by utilising the thresholded surface normal 

maps and facial profile signatures. This novel landmarking algorithm provides an effective way 

to localize the key landmarks on the human nose. Test results on the Bosphorus and FRGC v.2 

databases, which contain a large number of expression variations, show that the detected 

landmarks possess high within-class consistency and produce good recognition performance 

under different expressions. This landmarking algorithm is further applied to less accurate 3D 

facial captures reconstructed from infrared photometric stereo captures and is shown to 

robustly detect the main nasal landmarks are robustly detected. The proposed approach is the 

first landmarking work specially designed for this kind of 3D captures. 

The thesis concludes with chapter 8, which provides a summary of the proposed algorithms in 

section 8.1 and discussion and future work in section 8.2.  

1.4  Main Contributions 

The main contributions of the thesis and its related field of science can be categorised as follows: 

1. An overview of public 3D face database in terms of database population, data 

acquisition, preprocessing and landmarking and modes of facial variations is introduced 

for the first time. It provides an appropriate reference for the choice of 3D face 

databases in 3D facial analysis. 

2. Using both depth and surface normal information, a recognition performance analysis 

of the main parts of human face is explained for the first time, including within-class 

dissimilarity under expressions, large scale and local patches evaluation.  

3.  A low complexity pattern rejector for expression robust 3D face recognition by 

matching curves on the nasal and adjoining cheek region is proposed, which provides 

the motivation of investigating the discriminative features on the adjoining cheeks. 
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4. A novel local shape descriptor is proposed to explore the discriminative features on the 

nasal surface and adjoining cheek regions, which outperforms the nasal curves. 

Different 3D shape representations in terms of depth and three components of surface 

normals are exploited. 

5. An investigation of expression robust features extracted from the Photoface captures is 

provided to demonstrate the recognition performance using the well-designed 

algorithms for 3D captures with higher accuracy depth maps. A comparison of 

recognition performances among the FRGC, Bosphorus and Photoface databases shows 

that the Photoface captures have the potential to extracting discriminative features for 

recognition but use the different feature space manipulation methods. 

6. Utilizing the surface normals maps and facial profile signatures, a novel 3D facial 

landmarking strategy is proposed for the 3D captures with higher or lower accuracy 

depth maps. Roll and yaw rotation calibration achieved by thresholding the surface 

normal maps and the detected nasal bridge and landmarks. 
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Chapter 2 Literature Review 

2.1  Biometrics and Face Recognition 

2.1.1 Biometrics 

Biometrics is the use of science and technology to obtain behavioural or physical characteristics 

of a person for identification or verification purposes. The main motivation of storing a 

person’s biometric data is to reuse it for the recognition purposes. Due to the wide variety of 

biometric modalities, there are many data acquisition methods and analysis algorithms. In 

general, the biometrics of human beings are derived from physiological and behavioural 

features [21]. Fingerprints, irises and pupils, faces, palm print, voice, keystroke and gait are 

among the most widely used human biometrics.  

Gait, voice and keystroke are typical behavioural features of biometrics. The main 

disadvantage of this kind of method is the requirement of high level feature detection 

algorithms. In addition, behavioural features are hard to obtain accurately and straightforwardly 

in real world applications and can also change over time. Therefore, the use of behavioural 

features as biometrics may not be reliable enough for high security applications. However, 

behavioural characteristics have found applications in soft biometrics.  

Physiological biometrics technologies are widely used in both academia and industry as this 

kind of features is more discriminative and possess high within-class similarity and between-

class dissimilarity. The face, fingerprints and iris are the most widely applied biometrics due 

to their high distinctness. Iris patterns have been proven to be unique for each person and, as a 

biometric, possess a very low false acceptance rate (FAR) [22]. However, simply comparing 

the FAR with other recognition approaches such as the face or fingerprints does not show the 

full picture. For example, iris recognition has a high false rejection rate (FRR) resulting from 

eye blinking and the use of contact lenses. Although the iris requires relatively high cost devices 

for real world applications, its high accuracy has promising application prospect in the 

scenarios with high security requirements.  

In comparison, fingerprints have been widely used in access control systems such as building 

entrances, border controls, most smartphones and laptops due to its unparalleled efficiency and 

effectiveness. The main drawback of fingerprints is that they generally require candidates to 
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cooperate by making physical contact with the sensor surface. As a biometric modality, the 

human face is advantageous as it is an easily collectible and nonintrusive physiological 

biometric, compared with the iris and fingerprints [23]. The face has contactless acquisitions 

and can be widely applied to the surveillance systems [2].  

Jain et al. define some good characteristics of biometric systems [24, 25]: for the data 

acquisition system, the first issue is convenience and efficiency, which require biometrics 

features in both probes and gallery should be easy and fast to obtain. Some complicated data 

acquisition devices might degrade the practicability of a biometric system. Also, safety is 

another key issue for data acquisition. The data acquisition process is completely private for a 

candidate subject and the biometric data should be securely stored or encrypted to avoid any 

spoofing attack. The extracted biometric features, either physical or behavioural, should be 

discriminative, consistent and robust, which can best preserve the within-class similarity and 

between-class dissimilarity. They require that the features are hard to be falsified by the subject 

and also with high consistency under various scenarios. 

In general, there are two exclusive biometric application scenarios, verification and 

identification, as shown in Figure 2.1. For the verification or authentication scenario, a one-to-

one matching of the probe data and the gallery data of the same identity is undertaken, in which 

the subject’s identity is compared with the claimed identity. A threshold is chosen to compare 

with the matching score and determine whether the target subject is accepted [25]. The 

verification performance is measured by the Receiver Operating Characteristic (ROC) curve 

which plots the FRR versus the FAR or the verification rate (1-FRR) versus the FAR [26]. The 

FAR is defined as the percentage of the probes that are wrongly recognized as the claimed 

person while the FRR is the percentage of the probes that are incorrectly rejected. Therefore, 

the ROC curve describes the trade-off between the FAR and the FRR. EER is the point where 

the FRR equals the FAR and it is the most commonly stated single number on the ROC curve. 

In addition, the FRR or verification rate at 0.1% FAR on the ROC is also used to evaluate the 

performance.  

For the identification scenario, the input subject is compared with the whole database and the 

closest subject is found to denote its identity. The Cumulative Match Characteristic (CMC) 

curve is applied to evaluate the identification performance and plots the recognition rate (RR) 

versus the rank number, which summarizes the percentage of probes and galleries that are 

correctly matched [26]. R1RR is the most widely used performance metric on the CMC curve.  
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Figure 2.1: A description and comparison of face verification and identification system. For 

identification, the probe is identified by matching all the biometric data in the gallery and the output is 

the closest identity. For verification, the claimed identity of probe is verified by matching with its 

corresponding biometric data in the gallery. 

In the all-to-all matching scenario, another method used for identification is ‘leave-one-out’ 

cross validation, which considers each capture as an individual and compares the target capture 

with the remaining captures by calculating a distance measure. The nearest subject denotes the 

probe’s identity and the Nearest Neighbours (NN) are widely used to produce the matching 

score or distance. 

2.1.2 Face Recognition 

As a branch of object recognition, face recognition has been widely investigated over several 

decades. The main motivation of using face as a biometric is the diversity of human face, which 

can provide significant contributions in improving the performance and applicability of 

biometric systems. Facial captures contain plenty of discriminative information, which is 

relatively robust for each subject. For example, people may possess various types of eye, nose, 

eyebrow, forehead, cheek and mouth, which bring many different shape features of each facial 

part or their combinations. Considering behavioural features, some expressions (e.g. smile, 
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disgust or frown) on the human face also contain discriminatory features for each person. All 

those diversities result in the special distinctiveness of the human face and many holistic or 

region based recognition algorithms are proposed to extract the facial features.  

Confronted by the increasing security concerns, the use of biometric features for recognising 

people in many application scenarios has become more important. Although some existing 

biometric technologies (e.g. fingerprints and irises) can offer a very high accuracy, they also 

require much greater explicit cooperation from the user. As one of the most commonly used 

biometrics, the face can be easily acquired by imaging devices in realistic scenarios. Thus there 

is a significant application-driven demand for improved performance in face recognition [27].  

Using the face as a biometric has significant application prospects. First, the data acquisition 

procedure is less intrusive and more straightforward in comparison with the iris and fingerprints. 

It is hard to intentionally or unintentionally occlude the whole face during the acquisition. Also, 

imaging modalities are generally much cheaper than other biometrics and can produce facial 

captures with good quality [27]. In addition, the computation cost of image processing 

algorithms has also been reduced. Instead of some traditional biometric application scenarios, 

face recognition is exclusively used in identity card organization systems in many countries. 

The photo capture of each citizen is always the first collected biometric, and robust face 

recognition algorithms also contribute the personnel screening and criminal suspect decision.  

2.1.3 The Motivation of Using 3D Face Recognition 

With the developments in computer vision and pattern recognition fields, many algorithms 

have been applied to face recognition systems. 2D images are widely used in face recognition 

as it is easy to obtain discriminative facial features from the texture of 2D grey or colour face 

captures. However, as can be seen from Figure 2.2, 2D approaches contain some drawbacks in 

terms of the sensitivity to variations in the illumination, pose, facial expression and occlusion, 

which can dramatically affect the within-class similarity and between-class dissimilarity in 

each 2D capture. 

In the past two decades, many the state-of-the-art 3D face recognition techniques have been 

proposed to solve the aforementioned issues found in the 2D imaging. The most significant one 

is the improvements of 3D imaging capture devices in terms of laser sensors, structured light 

and photometric stereo imaging. These provide well-known approaches to collect the facial 

surface data and estimate 3D captures. The captures are either stored as mesh grid points or 
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point clouds. The point clouds are widely used in the public databases, for example of the 

FRGC [12] and Bosphorus databases [13].  

3D face recognition has many advantages, which are widely utilised in biometrics. Also, 3D 

captures have been shown to have the potential for achieving better recognition performance 

than 2D captures [28-31]. 3D captures can overcome some limitations of 2D face recognition 

due to viewpoint and lighting variations and also have the advantage of being able to capture 

shape variations irrespective of illumination variability [29, 31]. In addition, 3D information 

makes it possible to cope with pose variations by using the curvature information of the face, 

something not possible with only 2D information [32].  

    
(a) Illumination  

       
(b) Pose 

       
(c) Expression 

       
(d) Occlusion 

Figure 2.2: Some facial captures with the illumination, expression, pose and occlusion variations. (a) 

Four images captured from different light directions by photometric stereo [9] are used to show 

illumination variations. 21 images with different facial variations in (b) pose, (c) expression and (d) 

occlusion from the Bosphorus database [13]. 
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The advantages of using 3D face recognition are: 

• Pose calibration and occlusion reconstruction. In real world applications, the human 

face might be intentionally or unintentionally rotated by the natural posture and such 

rotations can dramatically damage the consistency and accuracy of the extracted 

features. It is relatively easy to correct the facial roll rotation in the 2D images. However, 

yaw and pitch rotations, which result in missing facial data during data acquisitions, are 

hard to be calibrated by the 2D imaging. 2D face information is not sufficient to correct 

the pose around the yaw and pitch directions. 3D approaches can provide more 

probabilities to address pose variations as they have the potential to approximate the 

missing points caused by such self-occlusion. Moreover, compared to 2D imaging, 

some rotation invariant surface descriptors can be found in 3D or 2.5D data.  

• More diverse data representations. In addition to the texture information used in the 

2D imaging, 3D imaging provides the access to the facial surface information such as 

the depth, surface normals and curvatures. These surface representations provide the 

possibility to design different descriptors for extracting various discriminative features. 

By fusing these modalities, the recognition performance can be significantly improved. 

Also, the curvature calculated from the 3D surface are helpful for face segmentation, 

feature detection and landmark localization.  

• More robust performance for different expressions. For both 2D and 3D captures, 

the variations in expressions are another challenging issue in the recognition. Different 

degrees and types of expressions might cause the movement of facial patches, which 

makes the subjects lose the within-class similarity and between-class dissimilarity. 

Compared to 2D imaging, 3D data has the potential to address this problem as it 

provides more diversity of data representations. Some descriptors are relatively less 

sensitive under different expressions. Also, certain regions on the facial surface are 

comparatively more robust to expression variations, for example of the nose and 

forehead. Such regions on the 3D map are more consistent under expressions and also 

contain plenty of discriminative features for recognition in comparison with the 2D 

imaging. 
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2.2  Overview of 3D Face Recognition Algorithms 

In general, a 3D face recognition algorithm can be divided into four main stages, consisting of 

the preprocessing, feature space manipulation, matching and classification and decision 

making, as shown in Figure 2.3. In the preprocessing stage, the main facial part is first cropped 

from the detected face and then the facial captures are denoised and aligned. The second stage, 

manipulating the feature space, is crucial in the whole 3D face recognition and includes feature 

detection, feature extraction and postprocessing. The last two stages are classification and 

decision making, which have been well explored in many pattern recognition issues. 

3D	Face	
Recognition

2.	Preprocessing

3.	Feature	Space	
Manipulation

5.	Decision	Making

Face	Detection	and	Cropping

Denoising

Alignment

Feature	
Extraction

Postprocessing

Feature	
Detection

4.	Matching	and	Classification

Landmarking

Region	Segmentation

Feature	Descriptors

Varying	3D	Data
(depth,	surface	

normal,	curvature…)

Curves	Drawing

Feature	Selection

Dimensionality	
Reduction

Feature	Fusion

1.	Face	Capture

 

Figure 2.3: The breakdown of a typical 3D face recognition algorithm 
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2.2.1 Curvatures 

3D imaging provides the ability to obtain facial curvature information that facilitates the facial 

surface analysis. Curvature information plays a significant role in 3D face recognition which 

has been widely applied in face detection, image segmentation and landmark localization. Also, 

curvature calculation is roll rotation invariant and not sensitive to the point cloud’s storage 

order.  

In differential geometry, two principal curvatures (kmax and kmin) that are the maximum and 

minimum values of the curvatures at a given point of surface measure the amounts of surface 

bending in different directions, which provide a significant shape operator for facial surface 

analysis. The Gaussian curvature (K), mean curvature (H), shape index (SI) and curvedness 

can be estimated using the following equations, which are widely used in the surface analysis.  

𝐾 = 𝑘$%&	×	𝑘$)* 

𝐻 = ,
-
(𝑘$%& + 𝑘$)*	)                                                    (1) 

𝑆𝐼 = 	
2
𝜋 	arctan	(

𝑘$%& + 𝑘$)*
𝑘$%& − 𝑘$)*

) 

𝐶𝑢𝑟𝑣𝑒𝑑𝑛𝑒𝑠𝑠 = 	
𝑘$%&- + 𝑘$)*- 	

2  

Four types of regions are detected by thresholding the curvature maps, which can be employed 

for region segmentation and feature detection. 

1. Convex region:	 𝐾 > 0
𝐻 > 0  

2. Concave region:	 𝐾 > 0
𝐻 < 0  

3. Saddle region:	
𝐾 < 0
𝐻 > 0

𝑘$%& + 𝑘$)* > 0
 

4. Saddle region: 
𝐾 > 0
𝐻 > 0

𝑘$%& + 𝑘$)* < 0
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The principle curvatures are very robust for feature space manipulation as they do not change 

when the surface rotates or translates. For misaligned captures, using other 3D representations 

might cause greater within-class dissimilarity, but the principle directions are more robust. Also, 

principle curvature directions have been proven to increase the identification performance 

significantly as they have high potential to produce discriminative features [33].  

The shape index can be computed from the principal curvatures. As a 2D representation of the 

curvature of 3D surface, shape index is a popular method to characterize the surface patches 

and many nose, ear and face recognition related algorithms employ it successfully for fiducial 

feature detection. The shape index describes regions of a surface ranging from spherical cup (-

1) to spherical cap (+1) with saddle at 0. SI has been used for landmarking in many algorithms. 

For example, the nose tip is located in the largest convex region on the face, which can be 

found by thresholding the SI using −1 < SI < −5/8 to produce a binary image [7, 27, 34]. 

Curvedness is first proposed in [35], which describes the second order structure of the surface 

in the neighbourhood of any one of its points. Compared to the principle curvatures or Gaussian 

and mean curvature, curvedness is a positive number that specifies the amount or the intensity 

of the curvatures. It is defined by calculating the distance from the origin in the principal 

curvature plane. 

2.2.2 Face Detection and Segmentation 

Face detection techniques determine the locations and sizes of human faces in digital images 

or video sequences. In recent years, this form of biological identity verification has been widely 

applied in the visual surveillance and tracking [36]. For face recognition algorithms, face 

detection is always considered as the first part of preprocessing procedure because nearly all 

the captures used in face recognition contain complex backgrounds, or other regions that are 

not relevant for recognition, for example the neck and hair.  

Some efficient and accurate face detection methods are used in recognition algorithms. The 

most popular and effective methods are based on the colour or curvatures. For colour images, 

as human skin colour of all races has a specific range in the YCbCr colour space, the skin can 

be extracted straightforwardly by colour thresholding [4]. Then, the facial region is found by 

utilising a priori knowledge of facial geometry. For 3D shape, different types of curvatures 

including the Gaussian curvature, mean curvature and Shape Index are widely used for face 
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detection [37] due to their rotation invariance [38]. According to a priori knowledge, the facial 

patches can be found by different thresholds.  

In most 3D face recognition algorithms, the nose tip, which is one of the most important 

landmarks on the face surface, is first detected by calculating the biggest connected convex 

region. Then, the face region is cropped by a Euclidean sphere centred at the nose tip and the 

radius of the sphere is chosen by the resolution maps found from the point clouds. The radius 

is generally set to 75 mm or 80 mm for FRGC [12].  

2.2.3 Denoising 

Most 3D face captures from various acquisition systems are always inevitably affected by noise 

to some extent. Noise introduces artefacts to the resulting 3D captures and can cause a 

significant influence on the overall 3D face recognition performance. As shown in Figure 2.4 

(a), spikes are one of the common noise types, which mainly result from impulsive values and 

can also be interpreted as outliers. Also, the facial surface might contain some holes or valleys. 

Missing data is another common problem associated with 3D imaging systems, which mainly 

results from self-occlusion, large depth variations or imaging device inaccuracy.  

For most 3D face recognition algorithms, three filters are typically employed to eliminate these 

artefacts on the 3D data: A spike removal filter is used to replace the outlier points; a hole-

filling filter identifies and fills the holes on the face surface; a smoothing filter helps further 

remove the spikes and smooth the whole 3D model at last. However, the sequence and the 

choice of these basic filters vary for different implements, which might make significant impact 

on the final quality of 3D data.  

 
(a) original                                                      (b) denoised 

Figure 2.4: Different types of noise in a sample 3D face capture from FRGC database: (a) three different 

types of noise and (b) the corresponding denoised capture. The captures shown in (a) and (b) are plotted 

in the xyz space with different view angles with different ranges of z axis for demonstration. 
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The denoising method proposed in [39] is widely applied by 3D face recognition algorithms 

[40-42] and three operations that are mainly used to eliminate the artefacts are median filter, 

hole filling and smoothing. Specifically, the spikes on the face are removed by median filter 

and the holes caused by spikes removal are filled. Finally, the whole 3D face data is smoothed. 

Mian et al. proposed an effective denoising method: after face cropping, the outlier spikes are 

eliminated and holes are filled by the cubic interpolation. Finally, a median filter is employed 

to denoise the Z-component of the 3D face [5].  

Compared to the methods used in [39-42], some other approaches [5, 43, 44] calculate and 

select the variance that is larger than a threshold value to remove the spikes instead of using 

the median filter. Mian et al. defined the outlier points according the distance to their 8 

neighbouring points [5]. Chang et al. remove the spikes by calculating the variance in the Z 

coordinate within an 11Í11 window around each points [43]. To remove the outlier vertices, 

Lei et al. smooth the values of all three coordinates (x, y and z) of the outlier vertices according 

to the statistical information of neighboring vertices [44]. 

Some other methods have been proposed to eliminate the spikes. In one of these, the observed 

points are defined as outliers if the angle between their optical axis and surface normal is larger 

than a threshold [45]. In [20], the outliers are removed during nose tip detection as the spikes 

are considered as the candidate nose tip points. Gaussian filtering is used in [46] to remove the 

spikes.  

Generally, cropping the face region is the first step of denoising because it can remove the 

irrelevant details on the face such as the hair and neck [5, 20, 43, 45, 47, 48] while other 

methods crop the face after removing the noise [39-42, 44, 46, 49-53]. The order in which the 

filters are applied also varies among different methods. Spike removal, hole filling and 

smoothing filters are applied sequentially in [39-42, 51]. In [43, 44, 54], they remove and 

smooth the spikes before filling the holes and there is no further smoothing in the following 

steps.   

Three major interpolation methods are used to fill the holes: cubic interpolation [5, 55], bicubic 

interpolation [44, 54] and linear interpolation [20, 43, 47, 49]. Some effective filling filters 

include the Gaussian filter [39-42, 44-46, 52, 54, 55], the median filter [5, 53, 56], the Wiener 

filter [20] and the mean filter [44, 47]. All of these are widely used for smoothing the range or 

point cloud data.  
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In addition, a number of other effective denoising methods have been proposed in the recent 

years. Three different Gaussian filters are employed to eliminate spikes, fill small holes and 

smooth the data [46]. K-nearest neighbour interpolation is applied to remove or smooth the 

noise [48]. Drira et al. sequentially utilise the VTK (www.vtk.org) library to fill holes, crop 

main the face region and smooth the spike [49]. 

2.2.4 Alignment 

Alignment aims to remove the pose variances in the input 3D captures and normalize them to 

a predefined pose. It is an indispensable preprocessing step in particular if the features to be 

extracted in the following steps are sensitive to pose variations. Misaligned captures might lose 

the correspondence in feature space of the same subject and the recognition performance will 

be significantly reduced. Moreover, the alignment algorithms should be efficient to meet 

requirement of real-time automatic face recognition systems. 

There are numerous algorithms that have been proposed for 3D face alignment, which can be 

categorized as template based, landmark based or shape based [57]. The Iterative Closest Point 

(ICP) algorithm [58] is the most well-known template based approach and iteratively changes 

the rotation and translation of the probe image to minimize the energy function. This energy 

function is defined by comparing the current state of the probe and gallery. Although ICP was 

originally proposed for 3D shape registration, it has been widely used for 3D face recognition. 

The main drawback of ICP based methods is that they might not produce good performance 

for coarse alignments as, being an iterative algorithm, ICP can be trapped in local minima. 

Annotated face model (AFM) [39] and adaptive active appearance models (AAM) [59] are also 

the examples of template based approaches. The main drawback of template based algorithms 

is high computation cost for alignment. 

As the curvature calculation is rotational invariant [60], it is widely used in landmarking and 

then the detected pose invariant landmarks are applied to correct the rotations [37]. The major 

drawback of this approach is that the alignment performance is significantly affected by the 

accuracy of the landmark detection. In fact, landmarking is very challenging and the accuracy 

can be degraded by the noise and self-occlusion.  

In comparison, shape based approaches do not rely on the reference captures used in the 

template based algorithms and are also less sensitive to specific landmarks. Shape based 

approaches utilise the regional or holistic facial geometry information to correct the pose 
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rotation. According to the symmetry characteristics of facial surface, both halves of the face 

are compared by ICP to correct the pose variation in [46]. Mian et al. proposed a 3D face 

alignment method based on PCA transform [5], which has been widely applied as a 

preprocessing procedure in many recognition algorithms [7, 34, 61]. It is a fully automatic 

algorithm for the pose correction of 3D captures. Compared to other existing techniques, this 

method only used the nose tip information and then iteratively corrects the pose using the 

Hotelling transform [62], which is also known as the PCA. The holes are filled by cubic 

interpolation and the face is resampled on a uniform square grid. The main problem of this 

PCA based alignment method is that the order of axes might suffer unwanted changes when 

the 3D points are mapped to the principal axes, which is difficult to detect. 

2.2.5 Landmarking  

In feature space manipulation, landmarking plays a significant role in region based face 

recognition algorithms. The accuracy of the landmarking will directly determine the 

effectiveness of feature extraction. A comprehensive summary of widely used landmarking 

algorithms in both academia and industry is provided by Creusot et al. [16]. Three categories 

of landmarking algorithms are used: curvature based descriptors, facial profile signatures and 

machine learning based methods. Using the curvature descriptor maps to find the salient points 

on the 3D captures is widely used by many researchers [4, 37, 38, 63-66]. For example, HK 

classification is the most popular method to detect the landmarks, which thresholds the mean 

(H) and Gaussian (K) curvatures to find the most salient candidates. In [4, 64], after the HK 

classification the landmark candidates are defined as the extrema points in given directions. 

However, the majority of algorithms utilising the HK classification are sensitive to yaw, pitch 

and roll rotations, even though H and K of a surface are rotation invariant [38]. In [37], a 

cropped face template containing three main landmarks (nose tip and eyes) is used for 

validation, which will also suffer variations under yaw and pitch rotations.  

Instead of employing HK classification, the shape index (SI) and curvedness [35], computed 

from principle curvatures, can provide more effective maps for landmarking. In a typical and 

widely used method [63], the nose tip is detected by the largest SI and two inner eye corners 

are found by detecting the smallest SI. In most approaches, the nose tip is always located at the 

maximum of depth on the largest convex region.  
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Another popular approach is to find the facial profiles and transections of the 3D point cloud 

and use these to localize the nose tip, root and corners. For example, Faltemier et al. proposed 

the use of rotated profile signatures to extract the contours of the mesh at varying angles until 

it matches a previously learned nose profile signature [67]. Segundo et al. [66] and Mian et al. 

[68] have also used transverse slices to detect the nose tip and the nose corners. Instead of using 

a heuristic method for landmark detection, machine learning based approaches are applied in 

many methods [16, 69, 70]. Creusot et al. proposed a machine-learning based approach to build 

a strong feature vector from the 3D mesh by combining different local surface descriptors [16].  

Emambakhsh et al. proposed an effective landmarking algorithm and found 16 nasal landmarks 

as shown in Figure 2.5(a), including the nose tip, root and two alar grooves [7], and successfully 

applied it to the Bosphorus [13] and FRGC [12] databases. Convex regions were found by 

thresholding the SI using −1 < SI < −5/8 [7, 27, 34] and the nose tip is located at the centroid 

on the largest convex region of the face. However, this method is not always robust for some 

scenarios: (1) the shape of the human nose is diverse and the nasal root is not necessary located 

at the minimum of each curve, which results in failed detection of some subjects; (2) denoising 

is still challenging in 3D face recognition and the algorithm is also sensitive to the residual 

noise; (3) as it is sensitive to the pose variations, accurate pose alignment is required and (4) 

occlusions by glasses. 

               

Figure 2.5: 16 nasal landmarks 

2.2.6 Feature Extraction 

Feature extraction is a crucial step in 3D face recognition and there are numerous approaches 

proposed for this step, which can be generally categorized into three groups, namely holistic, 

region based and hybrid-matching [71]. Holistic algorithms employ the whole face to recognise 

people, for example, Eigenfaces [72], Fisherfaces [73], Randomfaces [74], Gradientfaces [75], 

Laplacianfaces [76], Independent Component Analysis (ICA) [77], Support Vector Machines 

(SVM) [78] and Neural Networks [79]. Region based algorithms find some regions of interest, 
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including the nose, eyes and the mouth, and then attempt to extract features, which are 

relatively robust to variations on the face. Hybrid-matching algorithms combine holistic and 

region based methods to enhance the overall recognition performance.  

Although many methods can be used for extracting features from the 3D face, depth information 

is commonly used because of its efficiency. One of the most popular approaches is to draw 

curves between extracted landmarks. For holistic algorithms, Drira et al. first manually located 

the nose tip and then used a set radial curves emanating from the nose tip to develop a 

Riemannian framework for analysing the shape of full facial surfaces [49]. Although this 

approach overcomes some of the significant problems in face recognition and produces a high 

recognition performance, utilizing information from the whole face region is challenging and 

also requires a non-trivial preprocessing step to normalize the whole face and correct for 

occlusions. Ballihi et al. extracted a set of geometric features including circular and radial curves 

[80]. However, the location of the curves covered some expression sensitive regions presented 

problems for expression robust recognition and the nose tip also had to be detected manually. 

Emambakhsh et al. automatically detected four significant landmarks, the nose tip, the saddle 

and the two alar, and used these to define a set of 28 nasal curves that were used for expression 

robust recognition [7].  

Instead of using the depth information or point clouds, many other 3D representations can be 

used for feature extraction. These includes surface normals, that can be considered as a vector 

[17, 20] or three components [6, 61], the wavelet transform [39], multi-resolution wavelets [46], 

Local binary patterns (LBP) [81], the DCT [82], curvatures (principle, Gaussian, mean, shape 

index or curvedness) and Gabor filters [47, 83].  

In [39], to improve the efficiency, a deformable model framework is used to calculate the 

differences between the facial scan and the model and then the resulting differences are 

converted to a 2D geometry image and transformed to the wavelet domain. This work proves 

that a small portion of the wavelet data is sufficient to accurately describe a 3D facial scan. 

Local features described by Gabor wavelets [47] are extracted from depth and intensity images 

to improve the whole recognition performance. Employing the Gabor wavelets, different local 

features on the facial surface can be found by varying scales and frequencies and those features 

from different components are fused to build a strong feature vector.  

Spherical Face Representation (SFR) is utilized to quantize the 3D data by mapping the face 

into concentric spheres [5]. SFR and the 2D Scale Invariant Feature Transform (SIFT) 
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descriptor are combined to form the rejection classifier to narrow the search domain in the 

gallery. Combining with Haar, Gabor and LBP, Wang et al. introduced a method, termed the 

Collective Shape Difference Classifier (CSDC), to calculate the differences between the gallery 

and probe to make the feature space more various [46].  

Instead of using the depth or points’ coordinates for 3D registration, iterative closest normal 

points (normal vectors) are employed to find the corresponding points between a generic 

reference face and every input face [20]. The use of the point normals can maximize the within-

class similarity and between-class distribution. In [17], the Eigenfaces, Nonnegative Matrix 

Factorization (NMF) [84] and ICA is also applied to the normal vector. All the captures are 

reconstructed from photometric stereo and this device is called Photoface. Li et al. utilize three 

different scales Local Normal Patterns that are in a similar manner of LBP to extract the facial 

features on three components of surface normal [6]. The resulting histograms from the nine 

facial normals are used to build the final feature space.  

For region based algorithms, curvature calculation is always applied first to find the target 

region, such as convex and concave parts, and then other methods used to extract the features. 

In [85], curvature information is applied in face segmentation and landmarking and 7 

overlapping regions are used for recognition. In addition to the point cloud, curvature based 

3D shape descriptors are used to build the feature space. 

An alternative approach is to use relatively expression robust regions or structures for feature 

extraction in recognition systems [86]. Lemaire et al. divided the face into several regions on 

the basis of Facial Action Coding System (FACS) and anatomic considerations [87]. Patches 

around the landmarks on the face region are found by fitting of the Statistical Facial Feature 

Model. Then the patches were compared with six prototypical facial expressions using ICP and 

the distance between the patches was used as features for classification. Patches were found 

around landmarks in the 3D mesh, which is defined by circling the points [88]. The length of 

the geodesic path between corresponding patches, computed using a Riemannian Framework, 

provides quantitative information about their similarities. These measures are then used as 

inputs to several classification methods 

To address the pose variations, some rotation invariant feature extraction algorithms are widely 

employed, for example, 3D Fourier descriptors [89], Extended Gaussian Images (EGI) [90], 

spin images [91]. 
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2.2.7 Postprocessing 

The feature sets extracted from 3D captures always possess high dimensionality, which will 

significantly increase the storage costs and computational complexity. To reduce the 

dimensionality and find the most effective features, feature selection algorithms can be applied. 

Those are generally categorized into two groups: deterministic sequential and stochastic search 

based methods. The sequential methods search for the feature combinations in a predefined 

order. Forward sequential feature selection (FSFS) is a famous deterministic algorithm 

proposed by Pudil et al. [92], which is a low cost and effective feature selection method [93]. 

It is a top-down search strategy and iteratively concatenates the feature sets to obtain the highest 

recognition performance. In contrast, backward sequential feature selection (BSFS) initially 

utilizes the whole feature space and iteratively removes the feature sets [93].  

Stochastic search based methods aim to maximize the objective function by evaluating various 

combinations of feature sets and selecting those which possess high probability to achieve the 

global optimum. To overcome the drawbacks of the traditional gradient descent based method, 

genetic algorithms (GA) and simulated annealing are used as non-deterministic search based 

feature selection approaches [94]. GA, as evolutionary algorithms, are one of the widely used 

heuristic algorithms, whose evolution usually starts from a population of randomly generated 

individuals with an iterative process. GA have the capability to examine various combinations 

of the features. However, convergence is not guaranteed to occur in a limited number of 

iterations. Compared to sequential algorithms, search based approaches possess higher 

computational complexity. 

Instead of using feature selection strategies, the reduction of feature space’s dimensionality and 

feature vectors’ correlation is another effective postprocessing method to achieve a good 

classification performance as it is not necessary to use high dimensional feature sets [95, 96]. 

PCA is the most widely used unsupervised method for dimensionality reduction and Linear 

Discriminant Analysis (LDA) projects the data to a lower dimensional space to maximize the 

within-class similarity and between-class dissimilarity. For linear Fisher’s analysis, PCA is 

applied before LDA implementation. However, the main problem of PCA based methods is 

that using linear transformation will not necessarily find the maximal variance direction of 

features’ distribution, as some classes might not be linearly projected. To address this problem, 

non-linear projections are proposed to effectively distribute the features. Kernel PCA (KPCA), 

Kernel LDA (KLDA) and Kernel Fisher’s Analysis (KFA) are widely used kernels based 
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approaches while linear, polynomial, quadratic, and radial basis functions are the most typical 

kernels. 

2.2.8 Matching and Classification 

For each probe (p), calculating the distance from the gallery (g) is the simplest way to produce 

the matching scores. In Table 2.1, four widely used distance calculation methods are listed, 

where ◦ is the componentwise Hadamard product operator, Σ(.) computes the sum of the 

elements of a given vector and σG is the covariance matrix computed using the gallery samples. 

There are numerous matching strategies explained in the literature. Boosting is an effective 

algorithm for classification. Instead of building a strong classifier, boosting algorithms aim to 

iteratively merging weaker classifier to produce higher recognition performance. It can be used 

for face recognition [8, 80, 97, 98]. Hidden Markov models (HMM) are proposed for 

recognizing range images of faces [99]. In [100], embedded HMM are also used for both 2D 

and 3D face recognition algorithm.  

In addition to the facial alignment, the ICP algorithm can also be applied in computing the 

matching score [101]. Also, the distance between the detected landmarks are obtained in [102], 

and dynamic programming and Support Vector Machine are applied for classification. The 

Hausdorff distance [103] is used as the matching criterion for both 3D and 2D face recognition 

problems [104]. 

Sparse representations are proposed for classification [74]. The main drawback is that the 

classification performance might degrade when there are insufficient training samples for each 

class and is also sensitive to facial variations. Deng et al. [105] proposed to learn occlusions 

and artificially create more samples to each subject. Compared to the traditional applications, 

a weighted sparse representation is proposed for face recognition [6].  

Table 2.1: Four widely used methods to calculate the matching score between the probe and gallery. 

Euclidean distance: 
𝐷 = (𝑝 − 𝑔) ∘ (𝑝 − 𝑔) 

City-block distance: 𝐷 = 	 |𝑝 − 𝑔| 

Cosine: 𝐷(in	radians) = 	 cosQ,
|𝑝 ∙ 𝑔|
|𝑝||𝑔|

 

Mahalanobis distance: 𝐷 = 𝑝σG𝑔 
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2.2.9 Neural Networks and Deep Learning 

The traditional hierarchy approaches that are discussed above are widely used to solve the 

pattern region problems and are known as ‘shallow’ methods [106]. Many classic 3D face 

recognition strategies suffer from the generalisation problem. 3D captures from different data 

capture devices may possess various characteristics. For example, the data captured from laser 

scanners has high quality and preserves better facial details. In comparison, facial information 

obtained from photometric stereo is likely to suffer problems caused by integration during the 

reconstruction and the captures are also quite smoothed which might lose some fine details. 

Therefore, feature extraction algorithms might have various implementations or development 

for different kinds of data, which is hard to design a generalised algorithm to meet all the types.  

Neural networks are proposed to address this problem and in [107] a literature review on its 

applications is provided in terms of Probabilistic Neural Network [108], Radial Basis Functions 

neural networks [109], and convolutional neural networks [110]. However, the traditional 

algorithms suffer high computational cost for training. In recent years, with the development 

of GPU’s parallel and cloud computing, deep learning algorithms are being applied to face 

recognition, aiming to address the shortcomings of the shallow methods. Compared to the 

shallow algorithms, the deep learning architecture performs feature extraction, selection and 

classification in each trainable unit. The deep learning strategy is similar to the way of 

automatic feature extraction and selection in the human brain which uses different neuron 

layers to train the features.  

However, the drawbacks of such kind of approaches are also apparent and there are still some 

ongoing research or application problems. In general, the computation speed of deep learning 

algorithms is much slower than that of shallow algorithms. Using an inappropriate number of 

neurons may result in the over or under fitting problems and it is often hard to find specific 

parameters of layers to produce high training results. Finally, some deep learning architectures 

can only achieve good recognition performance on some specific datasets. 

2.3  3D Face Recognition under Expressions 

The human face, regardless of whether is a 2D or 3D representation, has high probability of 

exhibiting different kinds of expressions. It is hard to constrain all the facial captures to the 

neutral or the same expression in realistic biometric application scenarios. In fact, compared to 

other variations caused by pose or occlusions, facial expressions result in facial muscle 
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movements that may significantly deform the face surface. This causes problems for feature 

space manipulation and makes the subject lose the within-class similarity and between-class 

scatter. Therefore, matching images with different expressions in the probe and gallery is one 

of the most challenging problems in 3D face recognition and the development of recognition 

techniques that are relatively robust to expression variations has been the subject of much 

research over the past decades.  

Many 3D face recognition algorithms are proposed to address the expression variations and 

Smeets et al. provide a comparative study of 3D face recognition under expression variations 

[111]. In general, expression robust 3D face recognition algorithms can be categorized into two 

groups in terms of rigid and non-rigid strategies. Rigid approaches aim to investigate the 

constant facial patches under expressions, for example of the 3D nasal region. The forehead is 

also considered as the relatively expression robust region [5], even though it suffers more hair 

occlusions. In contrast, the non-rigid strategy, attempts to transform the facial captures with 

expressions to the neutral face by a deformable model.  

For the rigid strategy, one effective method is selecting relatively stable structures on the face 

for expression robust discriminative features extraction. Wang et al. proposed to use shape 

difference boosting for evaluating the deformations caused by expressions in facial patches and 

select some stable facial region under expressions [8]. The Bosphorus database is used for 

facial patches selection and the FRGC v2.0 database is used for recognition performance 

evaluation. In a similar manner, Li et al. divide the whole face into different scales of 

rectangular patches and select the most expression robust patches using a weighted sparse 

representation [6]. The features extracted from each patch are obtained from the depth and 

three components of the surface normals. Mian et al. exploit the recognition performance of 

the whole face and show that the nasal region and forehead are the most robust structures under 

expressions [5].  

Instead of selecting facial patches, the nasal region, which is considered to be a relatively rigid 

region on the human face, has been widely utilized in 3D face recognition in the recent years. 

The nasal region has been shown to be more consistent over natural expressions and occlusions. 

Chang et al. matched multiple overlapping 3D nose and its surroundings and obtained a good 

recognition performance [4]. Wang et al. also explored different size nasal and its surrounding 

region by changing the radius of a sphere centred on the nose tip, which indicated that the 

performance of nasal region is equal to that of the whole face [8]. Ballihi et al. found that 
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circular curves around the nasal region produce a better recognition performance than other 

curves [80]. All the results show the potential for employing nasal region to find discriminative 

features and its significant contribution to face recognition. Some algorithms that extract 

features on the nasal region for expression invariant face recognition are discussed in Section 

2.4.1. 

Using a non-rigid strategy, Kakadiaris et al. employed the deformable model framework and 

pyramid transformation to address expression variations [39]. Using the deformable model 

framework, all the 3D facial captures are accurately aligned to fit the model, even in the 

presence of facial expressions. The 3D difference between the input capture and facial model 

is saved as a 2D geometry image, which is further transformed to the wavelet domain. The 

pyramid transformation is applied to solve the position and rotation changes caused by 

expressions, as the pyramid wavelet is translation and rotation invariant. To make the features 

less sensitive to expressions, it was proposed to apply the ICP algorithm to the surface normal 

vectors instead of depth representation, for face registration and find the corresponding points 

between a generic reference face and each input face [20].  

Inspired by the introduction of sparse representation [74] for face recognition, Deng et al. 

proposed to address the problem of expression variations by artificially creating expressions 

for each capture [105]. The additional expression variations, as well as other variations in terms 

of illuminations and occlusions, are learnt from the given database. The newly added captures 

increase the number of training samples of each subject, which is beneficial to the classification 

performance of sparse representation as the original proposed method fails if training samples 

are insufficient. 

2.4  Using the Nasal and Adjoining Regions for Recognition 

2.4.1 The Motivation of Using 3D Nose  

Some relatively stable structures and patches on the face can be used to help design expression 

invariant face recognition algorithms. Mian et al. evaluated some regions on the face and found 

that the forehead and nose are more consistent over different expressions [5]. This study proved 

that the facial movement caused by natural expressions is not salient on those regions. However, 

the forehead is sensitive to the occlusion by human hair which might present problems for 

feature extraction. In comparison, the nose is very difficult to deliberately occlude by the hair, 

hands and scarves [112].  
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The nasal region has not been widely used for region based 2D face recognition algorithms, as 

it was believed that it would not possess enough discriminative features when compared to 

other parts in 2D texture images [18]. The introduction of depth information has enabled more 

nasal shape properties to be found and explored, and this has increased the potential to develop 

nose recognition algorithms over the past decade. Using the 3D nasal region as an additional 

biometrics demonstrates high accuracy and robustness in comparison with using the 2D nose. 

In addition, using the 3D nose region can provide a better solution than exploiting the whole 

face, in terms of expression, pose and occlusion variations.  

Moreover, using the curvature information and facial profile signature, it is relatively 

straightforward to detect and segment the central region of the 3D face that contains the nose. 

There are some salient landmarks on the nasal region such as the nasal tip, root and alar grooves, 

which can be robustly and accurately detected by their shape properties. For example, the nose 

tip is usually the closest point to the camera and its convexity is more salient than other parts 

of the face. Using these landmarks, some discriminative features, including curvature, 

depth/surface normal differences and curves, can be extracted from the nasal region, which 

offer many advantages for expression robust 3D face recognition.  

2.4.2 Overview of 3D Nose Recognition Algorithm 

There are many advantages mentioned above of using the 3D human nose as a biometrics and 

some researchers have focused specifically on 3D nose recognition or have evaluated the 

recognition performance of the nasal region. Chang et al. matched multiple overlapping 3D 

regions containing the nose and its surroundings and obtained good recognition performances, 

thus demonstrating that this region has much potential for providing expression robust biometric 

features [4]. In the preprocessing phase, the face is detected by 2D colour information and 

aligned by ICP. Some significant landmarks including the nose tip, eye corners and the nasal 

bridge are localized by HK classification. The recognition is performed by matching the nasal 

region of both the probes and gallery and the performance is evaluated using the FRGC 

database, Spring2003 folder as the gallery and the other two folders as the probes. The probes 

are divided into neutral and non-neutral groups for demonstrating the influence of human 

expressions. Generally, the expression variations might cause about 10% recognition 

performance reduction in most applications. 
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Dibeklioğlu et al. propose a fully automatic pose and expression invariant 3D nose recognition 

system [113]. The main contribution of this work is the segmentation and pose calibration of 

the 3D nose. The nose tip is first detected by HK classification and shape index thresholding 

and then a coarse to fine nose segmentation and pose estimation and correction algorithm is 

applied to extract the nasal region. The ICP algorithm is used for recognition and the 

performance is evaluated on the Bosphorus database, which contains a lot of captures with 

various expressions or ground-truth pose variations. The algorithm achieves a R1RR of 94.10% 

and 79.41% for frontal and rotated face captures, respectively.  

Wang et al. also explored the use of nose and its surrounding regions to build a more efficient 

classifier by shape difference boosting on different cropped region of the face [8]. To crop the 

nasal region, different radius spheres centered on the nose tip are used and it was found that 

the recognition performance improves when more regions are included in the matching. For a 

24 mm radius sphere, that mainly includes the nasal region and a 44 mm radius that contains 

the nose and some part of cheeks and mouth, a R1RR of 77.5% and 95%, respectively, is 

achieved. 

Drira et al. introduced a geometric analysis of 3D nose shape under different facial expressions 

and demonstrated the nasal region contribution in 3D face biometrics [114]. To quantify the 

shape differences, the length of a geodesic between any two arbitrary nasal surfaces is 

estimated as the geodesic length between a set of their nasal curves. This method was tested on 

a small subset of the FRGC database, including 125 neutral gallery images and 125 non-neutral 

probes. The recognition performance outperforms the baseline ICP algorithm, which 

demonstrates the potential of using the nasal region for expression robust 3D face recognition. 

Moorhouse et al. proposed a 3D nose recognition algorithm, which is mainly focused on 

extracting discriminative features on the reconstructed 3D photometric stereo captures [3]. HK 

classification is used for landmarking and nasal region segmentation. Geometric ratios, Fourier 

descriptors of the nasal ridge, a combination of the features and Eigennose are employed on 

the nasal surface to build the feature space. Compared to the previous public work, results are 

presented for a small subset of the Photoface database. Although this is one of the first 3D nose 

recognition work tested on this kind of reconstructed captures, the recognition performance is 

relatively low and the highest R1RR obtained is around 47% by the Eigennose algorithm.  

Emambakhsh et al. proposed an expression robust 3D nose recognition algorithm by matching 

nasal curves [7]. After the denoising, face region cropping and pose alignment, 16 landmarks 
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are robustly localized on the nasal region. A set of 75 curves are then defined by connecting 

selected pairs of landmarks on the cropped nasal surface. FSFS and GA are employed to select 

the most discriminative curves and a total of 28 curves are used to build the feature space. A 

novel landmarking strategy is proposed to find four main landmarks: the nose tip, root and two 

alar grooves. The Bosphorus database is used for feature selection and the extracted features 

are further tested on the FRGC v2.0 database. 

2.4.3 Using the Adjoining Cheek Regions for Recognition 

Although the cheek region has been shown to be more susceptible to expression variations than 

the eyes, forehead and the nose [5], the adjoining regions between the cheek bone and nasal 

bridge have the potential to producing rich discriminative features, which can be used as part of 

an expression robust recognition scheme. Chang et al. produced a good recognition performance 

by matching multiple overlapping 3D region of the nose and its surroundings [4], demonstrating 

that such regions have much potential for improving expression robustness. Wang et al. also 

explored the nose and its surrounding region to build a more efficient classifier [8]. Ballihi et 

al. found that the most relevant circular curves are located around the nasal region and its 

surrounding regions [80]. Therefore, extending the nasal region to include adjacent areas is 

capable of achieving a high classification performance for expression robust 3D face 

recognition. 

Recent 3D face recognition work using the nose region has drawn 28 curves joining 16 robustly 

detected landmarks on the nose [7]. However, this work only considered landmarks and curves 

directly on the nasal surface and the regions adjoining the nose, between the cheek bones and 

nasal bridge, were not included. In fact, these regions are also relatively stable and less affected 

by occlusions when compared to other patches on the face surface. These regions might contain 

additional discriminative features to those on the nose, which shows the potential of extending 

the nasal region to include adjoining parts of the cheeks for expression robust 3D face 

recognition. 

2.4.4 Expression Robustness Evaluations on Various Facial Patches 

In this section, three different evaluations are proposed to investigate the recognition 

performance of different facial patches, providing the motivation to extract the discriminative 

features for 3D nose identification. The first of these is to calculate the within-class discrepancy 
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over many kinds of expression to demonstrate that the nose region is relatively rigid and its 

structure is more stable when expression variations occur on the facial surface.  

The other two parts concentrate on evaluating the recognition performance using both large 

and small scale patches on the human face. This also proves that the nose region outperforms 

other facial parts and suffers from very few natural occlusions. Both the depth and surface 

normal maps are considered in the following three evaluations and results presented for all the 

captures in the Bosphorus database excluding those with occlusions and large pose variations. 

2.4.4.1 Within-class Dissimilarity under Different Expressions 

Dissimilarity maps were computed for globally registered faces using the point set features 

[33]. The maps were built by subtracting the captures with expressions from neutral captures 

of the same subject. Although these dissimilarity maps provide a good representation of the 

whole face and prove that the human nose is relatively stable under different expressions, only 

depth information was considered. Li et al. [6] used three components of surface normal (SNx, 

SNy and SNz) calculated from 3D point clouds and explored the expression invariant 

discriminative features for recognition, demonstrating the potential of using surface normals. 

Therefore, three components of surface normals are also considered in this experiment. As a 

preprocessing step, the pose variations are first corrected and all the captures are translated so 

that they are centred on the nose tip. 

 Combined Anger Disgust Fear Happy Sadness Surprise 

Facial 
Captures 

        

Depth 
        

SNx 
        

SNy 
        

SNz 
        

Figure 2.6: Dissimilarity maps calculated from the captures with different expressions and the neutral 

one using four components of 3D data on the Bosphorus database. Darker regions show greater 

dissimilarity on the face. Combined expression contains facial surface deformations on the upper and 

lower units. 
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The Bosphorus database [13] provides a good choice for the expression invariant feature 

extraction, which contains Face Action Units that describe the facial surface changes when 

expressions occur on different parts of face (lower, upper and combined). It also contains some 

basic human expressions, including anger, disgust, fear, happiness, sadness and surprise. All 

captures with expression variations are considered in this evaluation.  

To be more specific, all the Face Action Units are used for calculation which results in 32 

dissimilarity maps of each component (depth, SNx, SNy and SNz), including 2 combined units, 

20 lower units, 4 upper units and 6 basic expressions. To demonstrate the changes on the face, 

2 combined units and 6 basic expressions are illustrated in Figure 2.6. As can be seen from the 

maps, some small patches on the face show different variance in each component under specific 

expressions. For example, the cheek bone part is widely regarded as a non-rigid region which 

suffers more changes under expressions [5]. The depth maps shown in Figure 2.6 indicate that 

the cheek bone region has limited stability. However, the surface normals calculated on the 

cheek are more consistent, which motivates the investigation of different types of 

discriminative features extracted from the non-rigid regions. In general, as can be seen from 

Figure 2.6, the nasal region demonstrates higher stability under various expressions. 

2.4.4.2 Large Scale Patches Evaluation Using Selected Landmarks 

 
(a) 12 patches 

    
             (b) depth                             (c) SNx                              (d) SNy                             (e) SNz 

Figure 2.7: Landmarks based large scale patches evaluation on the depth and three components of 

surface normals. The brighter patches denote higher recognition performance. In general, features 

extracted from nasal region outperform other patches, which is more salient in the surface normals maps. 
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In previous studies, both 2D and 3D facial data are usually divided into fixed sized patches and 

for their recognition performance evaluation, LBP [115] is the most popular descriptor to 

extract features on each patch [6, 51, 116, 117]. For example, in [6] all the captures are first 

resampled to a fixed size and different scales of patches are used for recognition performance 

evaluation. In addition, the three components of the surface normals are also used to calculate 

the dissimilarity maps. 

However, the main problem of these methods is that different subjects or their captures may 

contain varying content in the target facial patch. The underlying reason for this is that human 

faces possess their own characteristics (e.g. the size and curvatures) and their structure and 

distribution might be varying. Although such discrepancies can preserve the within-class 

similarity, they can have a great influence on the between-class dissimilarity. Therefore, in this 

section, an improved evaluation strategy to correct the content discrepancy is proposed. In 

Figure 2.7(a), using the nose tip as a reference seven further landmarks are automatically 

detected: (1) the nose tip, root and two alar grooves [7]; (2) two cheek landmarks; (3) middle 

nose bridge (middle point between nose root and tip) and middle subnasal (symmetrical to 

middle nose bridge). On the basis of these landmarks, 12 patches are found on the central facial 

region and each patch is resampled to a fixed size.  

A set of LBP values is calculated for each patch and the resulting LBP histogram is used to 

build the final feature set. The recognition performance of each patch tested under 

identification scenarios is shown in Figure 2.7(b)-(e), where the brighter regions indicate a 

higher recognition performance. Compared to the other facial parts, the nasal and adjoining 

regions are more discriminative and has more potential to produce a good recognition 

performance. 

2.4.4.3 Local Patches Evaluation on the Main Part of the Human Face 

In addition to the large scale patches for the central face evaluation, 56 local patches, as shown 

in Figure 2.8(a), are used to further evaluate the discriminatory power on the nasal and 

surrounding regions. The local shape difference descriptor is used to extract features in each 

patch, which will be further explained in Section 5.4.1. The extracted features of each patch 

are evaluated in identification scenarios and the resulting discriminatory maps of four 

components are shown in Figure 2.8(b)-(e).  
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(a) 56 local patches 

    
                 (b) depth                         (c) SNx                            (d) SNy                            (e) SNz 

Figure 2.8: The discriminatory power maps of local patches on the main part of the human face. The 

brighter patches denote higher recognition performance. Similar to the larger patches evaluation, 

patches on the nasal and adjoining regions produce better recognition performance.  

As before, the brighter regions indicate a good recognition performance. Compared to other 

patches, patches from the nasal region generally perform better than those on the depth, SNx 

and SNy maps, especially for the lower nasal part. For the SNz map, the nasal region produces 

a better recognition performance than the eye and upper mouth regions but worse than the 

adjoining cheek region. 

2.5  Conclusions and Ongoing Challenges 

The importance of using various biometric modalities is first introduced and the motivation of 

using the 3D face as a biometric is further explained in Section 2.1. For providing an overview 

of face recognition algorithms, some key techniques proposed and widely used in literatures 

are also summarised in this chapter. To address the expression variations on human face, an 

introduction and the motivation of using nasal and adjoining regions for 3D face recognition is 

provided in Section 2.3 and 2.4. There are some ongoing challenges in 3D face recognition 

literatures: 
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The nasal and adjoining cheek regions demonstrate great potentials to produce good 

recognition performance when face captures contain expressions. However, how to select an 

appropriate descriptor to extract discriminative and robust features is challenging in feature 

space manipulation. Novel descriptor which can better represent the local nasal structure is 

encouraged in the future work.  

Also, many expression robust 3D face recognition algorithms only utilize some 3D face 

databases that contain the artificial expressions. Some of them are even exaggerated or unreal 

expressions. Although those types of expressions cause more facial surface movements and are 

more challenging in feature extraction, the naturalistic variations are still the most common 

expressions in the real world applications, which should be taken into consideration and 

evaluated in the future work. Photoface database offers access to naturalistic expression 

variations captured from a working biometric system in the field. 

The Photoface device facilitates the 3D data acquisition procedure and provide a good overall 

reconstruction in comparison with the “ground-truthed” captures. The resulting surface 

normals possess higher resolution than other commercial acquisition system. Actually, there 

have been limited 3D face recognition algorithms tested or developed for Photoface database, 

even though the usage of Photoface captures can significant improve the real world application 

possibility. The region based feature extraction methods are hard to apply to the Photoface 

capture without effective and accurate landmarking strategies. It is interesting to apply the well-

designed face recognition algorithms to the Photoface captures or investigate new techniques 

on the basis of their characteristics.  

Curvature based landmarking is sensitive to the facial rotations and the nose tip is not always 

robustly detected for some captures. One simple and effective way to address those problems 

is to add differential geometry constraints to optimize the location of candidate landmarks. As 

a first order surface differential quantity, surface normals (SNx, SNy and SNz) demonstrate the 

orientation of a surface and provide an effective way to localise landmarks.  
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Chapter 3 Databases and Preprocessing  

3.1  Introduction 

The selection of a suitable database is a vital component of 3D face recognition performance 

evaluation. The increasing number of databases that have been developed over the past decades 

has considerably helped researchers in this aspect. There is a growing need to consider 

databases’ different characteristics to select the most appropriate one to use. Therefore, an 

overview of 3D face database is first introduced in this chapter.  

The three databases, FRGC, Bosphorus and Photoface, that are used in the following chapters 

are further explained and their experimental settings are provided in Section 3.3. On the basis 

of varying characteristics in 3D face databases, the basic techniques discussed in Section 2.2 

might have different application strategies. For example, 3D captures obtained from certain 

acquisition systems might suffer from the noise or the lack of face detection, cropping and 

alignment, hence requiring more preprocessing work to address them. Meanwhile, using 

different kinds of data as shown in Figure 1.1, the facial shape might demonstrate different 

properties. As a consequence, for real world applications, feature extraction methods 

investigated on different facial data are beneficial, as existing well-designed recognition 

algorithms may not necessarily achieve good performance on captures from different 3D face 

acquisition systems.  

3.2  An Overview of 3D Face Databases 

Although 3D face recognition algorithms have the potential to address problems in 2D 

approaches and achieve high recognition performance, there are still many other important 

aspects of 3D approaches that should be considered. One of these is the consideration of 

databases’ characteristics used for recognition performance evaluations. As shown in Figure 

3.1, the databases’ characteristics considered in this chapter can be grouped into four main 

categories: Database Population, 3D Data Acquisition, Pre-processing and Landmarks, and 

Modes of Variation.  
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Figure 3.1: Classification criteria for 3D face databases. 

3D Data Acquisition – The 3D capture technology used has a great influence on the data 

properties such as the resolution and noise characteristics, which can affect the preprocessing 

procedure and the accuracy of discriminative features extracted for recognition. For example, 

the 3D data obtained from some devices may contain more accurate representation of the 

human face but with more noise. Reconstructed captures may possess less noise but may suffer 

from the distortion of facial data during the reconstruction phrase. Therefore, on the basis of 

different application requirement, researchers need to consider the properties of different data 

acquisition as it is an important feature of 3D face database evaluation and recognition 

algorithm development.  

Database Population Scope– A database’s size is a key factor in determining its usefulness. 

Both the number of subjects and the total number of captures are important, as well as their 

gender and ethnicity. As the captures obtained in different periods of the same identity are 

advantageous for research, age is also an important parameter for consideration. A recent 

development has considered the genetic relationship between subjects, thus siblings can be 

found in several databases.  

Pre-processing and Landmarks – Some databases include data/algorithms that help 

researchers in the production of the feature vectors that are used in the matching stage. 

Typically, face detection and segmentation may be included while landmarks often form the 

initial step of a face recognition algorithm. For example, the whole face region or nose region 

can be cropped using the nose tip and other landmarks can be used to find specific patches or 

curves on the 3D face surface. As a consequence, many recognition techniques require 

landmarks and some databases provide these as metadata. 
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Modes of Variation – The performance of many face recognition algorithms can be degraded 

by large facial variations including the pose, subtle skin movements by expressions, occlusions 

and lighting changes with varying posture [118]. As the development of recognition algorithms 

that are robust to variations is very desirable, databases that contain various facial variations 

can enable the robustness evaluations and at the same time more challenging captures provided 

in those databases can help contribute the development of face recognition algorithms. 

3.2.1 Basic Characteristics of 13 Widely Used 3D Face Databases 

In the last decade many 3D face databases have been collected by the research community. 

Table 3.1 presents, in chronological order, 13 publicly available databases including both true 

and reconstructed 3D data and gives details on their populations and the number of citations 

on Google Scholar on 13th February 2016. The first ten databases introduced represent the true 

3D captures group and the last three are the reconstructed group. The remainder of this section 

briefly discusses the background and development of these databases. 

Charles and Marc proposed the 3D_RMA database [119]. The 3D Data is captured by a 

prototype of a proprietary system based on the structured light. Although the quality of the 3D 

data is relatively low, it is sufficient to show the potential of 3D face recognition.  

The FRGC database has had a large impact on the development and evaluation of face 

recognition algorithms and consists of 2D and 3D captures partitioned into training (v.1) and 

validation (v.2) sets, captured under both controlled and uncontrolled lighting conditions and 

with varying expressions [12]. Since its publication, it has been become a standard 3D face 

database to evaluate recognition algorithms. ND-2006, as a superset of the FRGC v.2, is the 

largest database available to the research community [120].  

The GavabDB and FRAV3D databases were both developed by Face Recognition and 

Artificial Vision Group of Universidad Rey Juan Carlos [121, 122]. In particular, FRAV3D is 

a multimodal (2D, 2.5D and 3D) face database with 16 captures per subject [122].  

The CASIA database was developed by the Chinese Academy of Sciences and considers 

combinations of different expressions, poses and illumination conditions, in addition to 

individual variations of each of these [97]. Another famous large-scale Chinese 3D face 

database, BJUT-3D, was developed by Beijing University of Technology and contains 500 

Chinese people without expressions and occlusions [123].  
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The Bosphorus database can be employed in different aspects of face recognition research as 

it contains a rich set of expressions (35 Action Units as well as the six basic emotions), 

systematic variation of ground-truthed poses and different types of occlusions [13]. The second 

stage of the University of York 3D face database (York2) uses uncontrolled lighting conditions 

during the data acquisition and face captures have a variety of expressions and poses [124]. 

BU-3DFE is a rich 3D facial expression database which includes both 3D facial expression 

shapes and 2D facial textures. It can therefore be used for both expression robust 3D face 

recognition and 3D face expression recognition. Four intensity levels of six different emotions 

are captured for each subject [125].  

The Texas 3DFRD [126] is complementary to other existing 3D facial databases (FRGC, 

Bosphorus and BU-3DFE) and uses a high resolution stereo imaging system. Furthermore, its 

colour and range images are perfectly registered to each other as they are captured 

simultaneously. UMB-DB contains multimodal (3D+2D colour images) facial acquisitions 

with a particular focus on facial occlusions [127]. In total, there are 590 captures with 

occlusions.  

Table 3.1: Some characteristics of 13 widely used and publically available 3D face databases. 

Databases 
No. 

Subjects 

Total No. 

Captures/ 

Captures 

per subject 

Most Age 

Range 
Texture Race 

No. 

Cites 
Institute 

3DRMA [119] 120 720/6 20-60 No Caucasian 153 Royal Military Academy 

FRGC v.2 [12] 466 4007/1-22 18+ Yes White, Asian and others. 1846 University of Notre Dame 

ND-2006 [120] 888 13450/1-63 ? Yes Caucasian 42 University of Notre Dame 

GavabDB [121] 61 549/9 18-40 No Caucasian 171 Universidad Rey Juan Carlos 

FRAV3D [122] 106 1696/16 18-35 Yes Caucasian 22 Universidad Rey Juan Carlos 

BU-3DFE [125] 100 2500/25 18-70 Yes 
White, Black, East-Asian, 

Middle-east Asian, 
Hispanic Latino and others. 

527 Binghamton University 

CASIA [97] 123 4624/37-38 ? Yes Chinese 14 
Chinese Academy of 

Sciences 

BJUT-3D [123] 500 500/1 16-49 Yes Chinese 9 Beijing University of 
Technology 

York2 [124] 350 5250/15 ? Yes Various races 46 University of York 

Bosphorus [13] 105 4666/31-53 25-35 Yes Caucasian 323 Boğaziçi University 

Texas 3DFRD 

[126] 118 1149/1-89 22-75 Yes Caucasian, African, Asian, 
East, Indian and Hispanic. 85 University of Texas 

UMB-DB [127] 143 1473/9-12 19-50 Yes Caucasian 32 
University of Milano 

Bicocca 

Photoface [9, 17] 453 3187/? ? Yes Caucasian 17 University of the West of 
England 
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The Photoface database was captured in more realistic environment and also provides the 

detailed metadata for its capture [9, 17]. Each capture comprises of four differently illuminated 

images of the subject, from which surface normals, albedo and depth images can be calculated. 

It is a new reconstructed 3D face database but has more potential to achieve good recognition 

performance. 

3.2.2 3D Data Acquisition 

Capturing the 3D data in a biometric session is generally the first main step of a 3D face 

recognition algorithm and much original and significant information can be obtained during 

the 3D data capture process. One of main advantages of 3D face recognition algorithms is that, 

while 2D images are likely to be affected by the illumination in various ways, 3D 

representations can provide the illumination independent data [28-31]. Therefore, invariance 

to illumination is a significant contributory factor behind the enhanced performance of 3D face 

recognition techniques over their 2D counterparts. However, for many scenarios the process of 

capturing the 3D model is not illumination independent, as the acquisition of 3D shape by either 

the stereo or structured light involves one or more standard 2D intensity images. Similar 3D 

data acquisition problems may occur for any of 3D sensors currently used by 3D databases.  

Some 3D sensors take various approaches to cope with these problems. Different 3D sensors 

and types of 3D data that are widely used by 3D databases are shown in Table 3.2 and Table 

3.3, respectively. 3D face databases can be generally grouped into two distinct families: “True” 

3D scans use 3D sensor systems such as the Cyberware or Minolta that can generate high 

resolution 3D captures. Alternatively, 2D image databases with multiple 2D cameras or 

illuminations allow for 3D model generation using techniques such as the photometric stereo 

or multi-view stereo reconstruction to recover an approximation of the 3D structure from 2D 

images. 

Structured light is one of the most widely used methods for 3D facial data acquisition. It 

projects one or more encoded light patterns onto the scene and then measures the deformation 

on the objects’ surfaces to extract shape information. Its advantages include relatively low cost 

and the fact that it can be widely employed for real-time simultaneous acquisition of sequences 

of 3D facial surface and 2D intensity. However, it only provides lower spatial resolution images, 

resulting in samples that appear to have missing parts and holes [9]. Many acquisition systems 

are based on structured light technologies such as the Minolta Vivid 900/910 series (Konika 

Minolta Holdings, Inc., Tokyo, Japan) and the Inspeck Mega Capturor II 3D.  
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3DRMA [119] is one of the first publicly available datasets containing 3D face samples 

collected using structured light. The Bosphorus [13] and York2 [124] databases also employ 

structured light during their data acquisition but use more sophisticated commercial 

technologies [119]. 

The laser scanner uses a laser stripe projector and triangulation to build a 3D model consisting 

of a range image and a very accurately registered colour image for each session. The benefit of 

laser scanners is that they offer extremely high accuracy. However, during the reconstruction 

phase, some factors (e.g. specularities) may cause considerable artefacts which are manifested 

as spikes and holes on the surface. Therefore, as the sensor responds to a very narrow range of 

the illumination, the quality of the captured 3D shape can be degraded by relatively small 

variations in lighting [27]. In addition, full cooperation of the clients is required as there is a 

2.5 seconds delay between the captures of the range and texture [128]. FRGC v.2 [12], ND-

2006 [120], CASIA [97], UMB-DB [127] are captured by Minolta Vivid 900/910 sensor. 

GavabDB [121] and FRAV3D [122] also use a laser digitizer called the Minolta VI-700 for 

capturing the databases. BJUT-3D [123] is captured by CyberWare 3030RGB/PS laser scanner 

which can simultaneously obtain both precise shape and colour texture. In addition, its 

illumination system reduces the variations resulting from the ambient light.  

BU-3DFE [125] was captured by a 3dMD acquisition setup and combines both the passive and 

active stereo. The advantages of such systems are high accuracy and fast acquisition times. 

However, this setup is expensive and requires a time consuming calibration procedure and full 

collaboration of each individual. Texas 3DFRD [126] consists of 3D models that are captured 

using an MU-2 stereo imaging system (similar to the one used in BU-3DFE [125]) and contains 

105 subjects.  

The quality of 3D data captured by most sensors can be degraded by illumination variations 

and large variations can even result in the failure of the 3D shape estimation. Many 

manufacturers have devoted considerable effort to developing new technologies to solve this 

problem, for example by automatically adapting to illumination variations [27]. Artefacts might 

occur in range sensors even under ideal illumination conditions and the most common types of 

artefacts can be generally described as holes or spikes. 3D sensors have been improved in the 

recent years, which are less sensitive to ambient lighting, have fewer artefacts and require less 

explicit user cooperation [27].  
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Compared to other sensors that can capture the depth information with higher accuracy, the 

Photoface device uses the photometric stereo [9, 17]. It is a four light source photometric stereo 

acquisition system that can be located in the entrance of buildings, allowing relatively 

unconstrained captures. Each capture consists of four images with different light directions, 

from which surface normals and albedo can be calculated directly, with high resolution.  

The use of albedo images can address the illumination problems found in many 3D data capture 

systems. Unlike other acquisition approaches, the Photoface device can estimate the 3D 

information with the minimal computational expense and its hardware is much cheaper than 

many other 3D capture devices, as it only requires one camera and four flash lights. The 

Photoface database therefore provides an ideal test source for face recognition algorithms 

designed for real-world applications [9, 17]. Nevertheless, the depth map of the Photoface 

captures is less accurate than that reconstructed from the 3D point clouds obtained by laser 

scanners, as it is reconstructed from surface normals. The regions with higher curvatures are 

flatter, which is hard to extract features for region-based recognition algorithms [18]. 

In addition, recently, there has been increasing interest in multi-modal 2D + 3D recognition 

algorithms [118, 119, 129-131] that seek to fuse both 2D (colour or texture) and 3D depth 

modalities in either the feature or decision level. These approaches typically demonstrate an 

improved recognition performance [27]. There is therefore a requirement for databases that 

provide suitable multi-modal data sets and this is met by most of the existing 3D face databases, 

which provide both 2D and 3D captures.  

Table 3.2: Data acquisition methods of 3D face databases 

Data Capture Method Databases 

Structured Light 3DRMA [119], York2 [124] 

Inspeck Mega Capturor II 3D 

(Structured Light) 
Bosphorus [13] 

Minolta Vivid 700 (Laser) GavabDB [121], FRAV3D [122] 

Minolta Vivid 900/910 (Laser) FRGC [12], ND-2006 [120], CASIA [97], UMB-DB [127] 

CyberWare 3D scanner (Laser) BJUT-3D [123] 

Photometric Stereo Photoface [9, 17] 

3dMD (Stereo) BU-3DFE [125] 

MU-2 stereo imaging system Texas 3DFRD [126] 
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Table 3.3: Widely used 3D data representations 

Types of data Characteristics 

Range (Depth) 

Image 

The z coordinates (distance from camera plane)of the face points are mapped on 

a regular x, y grid using linear interpolation 

3D Mesh 3D object representation consisting of a collection of vertices and polygons 

Point Cloud A set of the 3D coordinates of the points of a face 

Curvature Each point in the face is described by its curvature (Gaussian, mean, principal) 

Surface Normal Each point of the face is described by its 3D (SNx, SNy, SNz) unit normal vector 

3.2.3 Database Population  

The population of each database possesses some basic characteristics including the number of 

subjects and the range of captures per subject, the composition of subjects in terms of race, age 

and gender. As there are substantial differences in these characteristics over the databases under 

consideration, they can have significant influence on the performance evaluation. The size, age 

and race of the population of 13 databases are presented in Table 3.1. A database’s size can be 

measured by the number of subjects and the number of captures. Figure 3.2 ranks 13 databases 

considered in order of their number of subjects. With the exception of the smallest (GavabDB 

[121]), these databases can be divided into two groups, medium-sized one with 100-143 

subjects and large one with 350-880 subjects. ND-2006 [120] is clearly the largest in terms of 

subjects and also contains many captures for each individual. Information on the age range of 

the subjects is provided for just over half the databases in Table 3.1. Although the lower end 

of the age range is generally 18 and the upper end varies and is up to 75 for the Texas 3DFRD 

[126]. There are also some younger individuals such as a four year olds in the UMB-DB [127].  

The ethnic composition of databases also has significant variations. Some databases mainly 

contain subjects from the dominant racial group of the country in which they were developed. 

For example, many Chinese individuals are included in CASIA [97] and BJUT-3D [123] while 

Caucasian individuals account for the majority in 3DRMA [119], GavabDB [121], FRAV3D 

[122], Bosphorus [13], UMB-DB [127] and Photoface [9, 17]. Databases with subjects from 

predominantly one race are not able to support performance evaluation across multi-ethnic 

groups. In comparison, FRGC v.2 [12], BU-3DFE [125] and Texas 3DFRD [126] contain 

individuals from many of the major ethnic groups and therefore provide the appropriate test 

data required to demonstrate the universally applicability of recognition algorithms. 
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Figure 3.2: The number of subjects and captures for the databases. 

Although many biometric methodologies have been shown to be capable of distinguishing 

between identical twins, the recognition of an individual twin using 3D facial data is still a 

challenging topic because twins often have virtually identical facial geometry. There are very 

few samples of twins in the 13 databases considered so far (e.g. only one pair in UMB-DB 

[127] and Photoface [9, 17]) and the inability of researchers to test their algorithms on identical 

twins has made it difficult to achieve further significant improvements in their recognition 

performance. 

This limitation was overcome with the development of the 3D Twins Expression Challenge 

(3D TEC) database by the University of Notre Dame [132]. 3D TEC is the only database of 3D 

face scans in existence that has more than one pair of twins. It consists of 107 sets of identical 

twins (two of the triplets are included as the 107th set of twins) with captures of both a neutral 

and a smiling expression for each subject. The combination of factors related to the facial 
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similarity of identical twins and the variation in facial expressions make this a challenging 3D 

face database.  

3.2.4 Pre-processing and Landmarks  

Pre-processing is a vital step in 3D face recognition systems and its performance will 

significantly affect the recognition performance of the whole algorithm, for example the 

accuracy of the landmarking and feature extraction. The within-class similarity and between-

class dissimilarity of some captures even might be lost without sufficient preprocessing work. 

The captures from some databases have been preprocessed to some extent or may provide 

manually detected landmarks, which can help researchers in feature space manipulation and 

landmarking performance evaluations.  

Many face recognition algorithms require a set of landmarks located on the facial surface, from 

which relative geometrical relationships can be calculated [102, 133]. Landmarks are also often 

used to align the images and manually defined landmarks are also required to assess the 

accuracy of automatic landmark detection algorithms. Some, but by no means all, of the 3D 

face databases provide manually defined landmarks. The landmarks provided vary in both 

number and position and are therefore employed different application scenarios. Figure 3.3 

presents the location of landmarks in the six databases from those in Table 3.1 for which a 

significant number of landmarks are provided.  

BU-3DFE [125] provides a set of metadata including the positions of 83 manually annotated 

feature points placed on each facial model, as depicted in Figure 3.3(a). These can be widely 

used in the development and evaluation of landmark-based face recognition algorithms. 

However, the location of tip on the nose region is not recorded in this database, which is 

arguably the most important landmark on the human face and is widely used in many face 

recognition algorithms. For example, the main face region can be cropped on the basis of the 

nose tip and it is also used to localize the nose region, which may contain sufficient information 

to recognize people. Since the nose tip plays a significant role in the face recognition, many 

methods are designed to detect it automatically. A database with accurate nose tip landmark 

will benefit this process.  

The Bosphorus database [13] provides 24 manually labelled facial landmarks for each capture 

provided that they are visible in the given scan, see Figure 3.3(b). This includes all the 

significant landmarks, such as the nose tip and inner eye corners, which play a vital role in face 
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recognition algorithms. The Texas 3DFRD [126] provides a large number (25) of manually 

annotated anthropometric facial fiducial points for each capture, as shown in Figure 3.3(c). In 

addition, all its faces have been aligned to the frontal view and the nose tip is positioned at the 

image centre, which provide a good choice for 3D facial feature analysis. Compared to the 

Bosphorus database [13], many fiducial points around the nose region provided in the Texas 

3DFRD [126] make it a useful database for nasal features extraction.  

In the UMB-DB database [127], 7 landmarks including the nose tip, eye corners and mouth 

corners have been manually annotated, see Figure 3.3(d). Only the non-occluded feature 

landmarks are given for the captures with occlusions. Photoface [9, 17] provides two sets of 

metadata, created in terms of the x and y coordinates of 11 manually marked fiducial points, 

see Figure 3.3(e). Although UMB-DB and Photoface provide fewer landmarks than the 

Bosphorus and Texas 3DFRD, those they do provide are still useful for the alignment and 

landmarking evaluation. 

Some of the other 3D face databases provide more limited landmarks information. For 

example, in FRGC v.2 [12] there are four landmarks as shown in Figure 3.3(f): two for both 

eyes, and one for the nose tip and the middle of the chin. 

                           

                   (a) BU-3DFE (83)                    (b) Bosphorus (24)                     (c) Texas 3DFRD (25) 

                         

                          (d) UMB-DB (7)                   (e) Photoface (11)                          (f) FRGC v.2 (4) 

Figure 3.3: The landmarks provided by six databases with the number of landmarks shown in brackets 
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3.2.5 Modes of Variation 

Databases that contain captures with variations in facial expressions, occlusions and poses 

provide more realistic and challenging test sets. The majority of 13 publically available 

databases, except the FRAV3D and BJUT-3D databases, contain variations of one type or 

another and these are detailed in Table 3.4.  

3.2.5.1 Expressions 

3D databases that contain substantial variations in the facial expression could significantly 

contribute to the performance improvement of 3D face recognition. This is the area of much 

current research interest and, in their excellent review paper, Smeets et al. provide a 

comprehensive overview of current 3D face databases with variations in expressions [111]. 

Table 3.4: Details of expression, occlusion and pose variations for 11 3D face databases. 

Databases Expressions Occlusions Poses 
3DRMA 
[119]  

Smile 
Spectacles, beards and 

moustaches 
Small up/down 
and left/right 

FRGC v.2 
[12] 

Anger, happiness, sadness, 
surprise, disgust, puffy 

Basic occlusions Slight pose 

ND-2006 
[120] 

Neutral, happiness, sadness, 
surprise, disgust and other 

Basic occlusions Slight pose 

GavabDB 
[121] 

Smile, frontal accentuated laugh, 
frontal random gesture 

Hands and tongues 
Left, right, up, 

down 

BU-3DFE 
[125] 

Anger, happiness, sadness, 
surprise, disgust, fear (in 4 

levels) 
No 

Two views at 
approximately 45° 

CASIA 
[97] 

Smile, laugh, anger, surprise, 
closed eyes 

Glasses 11 different types 

York2 
[124] 

Neutral, happiness, anger, eyes 
closed, eye-brows raised 

No  
Uncontrolled up & 

down 

Bosphorus 
[13] 

35 expressions (action units & 
six emotions) 

Beards, moustaches, hair, 
hands, and glasses 

13 ground-truthed 
yaw and pitch 

rotations 
Texas 
3DFRD 
[126] 

Neutral, smiling or talking faces 
with open/closed mouths and/or 

closed eyes 
No 1 

UMB-DB 
[127] 

Neutral, smiling, angry and 
bored 

Hair, glasses, hands in 
various configurations and 
positions, hats, scarves, and 
other miscellaneous objects 

1 

Photoface 
[9, 17] 

Smile, surprise, open mouth, 
scream and others 

Glasses, facial hair (beards, 
moustaches and stubble) 

1 frontal - 5 
profile 
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The most popular 3D face database is FRGC (cited by 1846 articles), which is also a very 

challenging database [12]. Compared with the training set, the validation set contains plenty of 

expressions, such as anger, happiness, sadness, surprise, and disgust, as well as puffy faces. 

ND-2006 contains a greater range of expressions than FRGC v.2, in terms of six different types 

of expressions [happiness (2230), sadness (205), surprise (180), disgust (389) and other (557)] 

in addition to 9889 neutral expressions [120]. Even though the neutral category contains the 

largest number of images, expressions account for more than a quarter of the database.  

Although ND-2006 offers multiple expressions, BU-3DFE was arguably the first dedicated 

expression database available for the research community [125]. BU-3DFE has four levels (low, 

middle, high and highest) of 6 expressions captured in two views at approximately 45°. 

Including the neutral expression, this gives 25 3D expressions for each subject and results in a 

database of 2,500 3D facial expressions. BU-3DFE therefore enables researchers to evaluate 

the degradation of recognition performance with increasing strength of expressions and has 

contributed to an increased understanding of facial behaviour and the fine 3D structure inherent 

in human facial expressions. 

The GavabDB database contains 2 frontal and 4 rotated images with neutral expressions and 3 

frontal images in which the subject presents different facial expressions (smile, laugh and a 

random gesture chosen by the individual), giving a total of 9 captures per subject [121]. 

Compared to GavabDB, the York2 database provides more captures per subject with variations, 

including 15 captures with diverse expressions (neutral, happiness, anger, eyes closed, eye-

brows raised) and poses [124]. The variations in expressions and poses of both databases occur 

independently. 

The CASIA database also considers variations in the illumination. In addition to individual 

variations of expressions, poses and illumination, each subject also contains combined 

variations of expressions (smile, laugh, anger, surprise, and closed eyes) under different 

lighting conditions and poses [97]. The Photoface database displays variations of expressions 

(> 600 smiles and > 200 surprises, open mouth, screams) [9, 17]. 

The Bosphorus database provides a rich set of expressions, systematic variations of poses and 

different types of occlusions. The facial expressions are composed from a selected subset of 35 

Action Units as well as six basic emotions. Some professional actors are used as they are 

considered to provide more realistic expressions [13]. Compared to the FRGC database, 

captures in the Bosphorus database are less noisy and have more intense expression variations.  
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3.2.5.2 Poses 

Many 3D face databases contain captures with different kinds of pose variations. Compared 

with others, the Bosphorus database possesses three types of variation in pose corresponding 

to seven yaw angles (+10°, +20°, +30°, +45°, +90°, -45° and -90°), four pitch angles (upwards, 

slight upwards, slight downwards, downwards) and two cross-rotations (right-downwards and 

right-upwards) which incorporate both the yaw and pitch [13]. Furthermore, accurate angles 

are provided for each pose and in comparison to other 3D databases with different poses, these 

angles provide ground-truthed information for research.  

Some other 3D face databases contain poses where the approximate directions are provided. 

GavabDB [121] contains 4 rotated images (right and left profiles at ~90º, and looking up and 

down at ~35º) without expressions. BU-3DFE [125] has four levels of 6 expressions captured 

in two views at 45°. CASIA [97] provides 11 different poses under certain range of directions, 

e.g. left 20º-30º. York2 [124] includes 6 different captures per subject with poses (45° in all 

directions, 90° to the left and right). The Photoface database [9, 17] contains poses from 1-5 

where 1 is frontal and 5 is extreme pitch, roll or yaw. 

3.2.5.3 Occlusions 

There are many unconstrained and challenging scenarios where faces are partially occluded by 

various objects such as hair, glasses, beards, moustaches, hands and tongues. It is only 

relatively recently that these occlusions have begun to be considered by 3D face recognition 

techniques but, as the interest in this area increases, so will the demand for suitable databases. 

Table 3.4 shows that several 3D face databases contain captures with various types of 

occlusions. 

The Bosphorus 3D face database provides 381 occluded faces from 105 subjects with three 

types of occluded objects (hands, glasses and hair). Different parts of the face are also occluded 

such as the mouth, one eye (by hands), both eyes (by glasses), and part of the forehead or face 

(by hair) [13]. 

UMB-DB is particularly designed to evaluate facial occlusions and, in comparison with the 

Bosphorus database [22], it has a larger number of occluded faces. UMB-DB provides an 

increased variability in terms of the location of the occluded regions with an average extent of 

occlusion of 42%, up to a maximum of 84%. In total, there are 590 captures with occlusions 

from various real-world objects, see Table 3.4. Other databases that contain occlusions include 
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3DRMA [119] (spectacles, beards and moustaches), Photoface [9, 17] (glasses, facial hair) and 

GavabDB [121] (hand and tongue). 

In addition to occlusions caused by objects, self-occlusions are also found in captures that have 

large head rotations, particularly in the yaw direction. Therefore, self-occlusions are found in 

those databases with wide variations in pose that were discussed in the previous section. 

3.2.6 Baseline Performance Results for the FRGC and Photoface Databases 

“Baseline performance serves to demonstrate that a challenge problem can be executed, to 

provide a minimum level of performance, and to provide a set of controls for detailed studies” 

[12]. Some methods that can be selected as baseline algorithms for face recognition include 

PCA, LDA or FDA, ICA and KFA. Therefore, the baseline performance reported on publically 

available databases can give researchers a good reference to evaluate their algorithms. In this 

chapter, a brief summary of two 3D databases will be presented, one from each of two 

categories of databases: true and reconstructed 3D captures.  

FRGC v.2 provides both large 2D and 3D training dataset. The still images training set consists 

of 12,776 images from 222 subjects, with 6,388 controlled still images and 6,388 uncontrolled 

still images, while the 3D training set contains 3D scans, and controlled and uncontrolled still 

images from 943 subject sessions. In version 2.0, six experiments are designed to demonstrate 

recognition performance by the baseline evaluation, with emphasis on 3D and high resolution 

still imagery. Experiments 3, 5 and 6 examine different potential implementations of 3D face 

recognition. Experiment 3 measures the recognition performance when both the enrolled and 

query images are 3D and Experiment 5 and 6 explore one potential scenario for 3D face 

recognition, where the enrolled images are 3D and the target images are controlled or 

uncontrolled still 2D images. 

Table 3.5: Baseline performance reported in FRGC and Photoface papers 

Databases Method Training and testing  samples 

FRGC v.2 
[12] 

Six PCA based experiments (3, 5 and 6 
are related to 3D face recognition) 

Large still and 3D training captures 
from 222 and 466 subjects 

Photoface 
[9, 17] 

PCA and NMFC based face recognition 
using albedo, depth and normalface 

images (albedo and depth images can be 
obtained by different methods) 

One Image: training (126 probes with 
one capture) and testing (126 clients 
and 135 impostors with one capture) 

Two Images: training (96 probes with 
two captures) and testing (96 clients and 

135 impostors with one capture) 
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Compared to other databases, the aim of baseline experiments in the Photoface database is to 

assess the recognition performance of all three modalities (i.e., albedo image, normals and 

depth maps) using fusing strategies [9, 17]. Experiments can be divided into two different parts 

and they evaluate the performance of “One sample face recognition”, named “One Image” 

which is the most challenging face recognition scenarios [134]. For “One Image”, the training 

set (or client set) was defined by the 126 subjects and the remaining 135 subjects with one 

image per person are considered to be impostors. This is a very challenging experimental 

procedure and exploits only the grayscale albedo image, the surface normals derived from the 

application of photometric stereo, and the depth image derived from the integration of the 

normal field. Photoface also takes Two Images experiments (two images from 96 subjects for 

training while the third is used for testing client claims) into consideration for making a 

comparison with One Image experiments. Zafeiriou et al. demonstrated that multimodal 

decision fusion, performed by combining the matching scores for each person across the 

modalities of 2D, albedo and depth image, was found to produce the best performance in the 

Photoface database [9, 17]. 

With increasingly more accurate and effective 3D face reconstruction methods developed in 

recent years, it brings more potentials to design the face recognition algorithms for 

reconstructed 3D captures. A good example is photometric stereo, the method used in the 

Photoface database. As mentioned in Section 3.2.2, this device meets the commercial 

requirement and can be easily used in real-world application scenarios. However, compared 

with other databases that contain higher resolution 3D captures, feature detection and extraction 

on this kind of captures are still very challenging, which require more novel and complicated 

approaches to improve the recognition performance rather than reuse the existing strategies for 

high resolution captures.  

3.3  3D Face Databases Used in this Thesis 

The FRGC database contains a large number of captures with many variations in the expression 

and pose and some basic occlusions. It is considered by some researchers to be the most 

challenging database for face recognition [111]. For Experiment 3 in [12], the 3D captures in 

the Spring2003 folder, consisting of 943 captures from 275 subjects, are used for training and 

the other two folders (Fall2003 and Spring2004) consisting of 4007 captures from 466 subjects 

with more variations are used for testing. The combination of these two folders is known as the 

FRGC v.2. To extract more effective discriminative features for expression robust face 
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recognition, the FRGC v.2 captures are manually divided into neutral and non-neutral parts. 

Those expressions that only cause minor changes to the face surface are considered as neutral 

and the resulting division produced neutral and non-neutral sets of size 3396 and 1554, 

respectively. Although nearly all the captures in Spring2003 are neutral, the training set is still 

defined as “All”. The testing set is either considered as “All” or divided into “Neutral” and 

“Non-neutral” and these three scenarios, “All vs All”, “All vs Neutral” and “All vs Non-

neutral”, are used in the following chapters. 

The Bosphorus database contains many kinds of action units from the Facial Action Coding 

System, which can represent different changes on the face surface caused by human muscle 

movement, and also includes the basic universal expressions. Nearly all the captures contain 

different degrees or types of expressions and thus evenly dividing them into the training and 

testing sets guarantees that the various expressions are evenly distributed in both subsets. This 

scenario is termed “All vs All” and there are 2913 captures in total. As this work aims to find 

the most discriminative and expression robust features, only those captures without large pose 

variations or occlusions are considered.  

The Photoface database consists of 3187 captures of 453 subjects for the final version and only 

1839 captures of 261 subjects are used in [17] and [9]. For the comparison of the identification 

and verification results, the same database population as [9, 17] is used. The Photoface capture 

device was located in a workplace corridor and employees walked through it, which requires a 

lower degree of cooperation in comparison with other 3D databases [18]. The Photoface 

database provides researchers with the opportunity to test the recognition performance on such 

naturally captured data and most captures contain expression, pose and occlusion variations.  

An extension of the Photoface database, the 3D Expression-VISible and InfraRed (3DE-

VISIR) database, is proposed in [18], which contains 363 relatively unconstrained captures of 

115 subjects. Compared to the Photoface data captured by the visible light, each capture in the 

3DE-VISIR database considers one session captured by the near infrared light and another 

session by the visible light. In particular, the aim of this new database is evaluating the 

recognition performance under expressions, so that for each subject there are at least three 

captures of different expressions (positive, negative and neutral). 
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3.4  Preprocessing of the FRGC and Bosphorus Databases 

Due to the limitations and variations of existing 3D data capture devices, many captures contain 

artefacts such as spikes, holes and missing data, degradations that are particularly prevalent in 

the FRGC Spring 2003 folder. These artefacts significantly affect the subsequent processing and 

degrade the final recognition performance [135]. As a consequence, this work employs a three-

step preprocessing scheme. First, the nose tip is detected by finding the largest convex region 

on the face and then the main face region is found by intersecting its surface with a sphere 

centred on the nose tip. Then, three typical filters are applied sequentially for denoising, namely 

the spike removal filter [5], hole-filling filter and smoothing filter. In addition, nearly all the 

captures within the databases contain small or large pose variations which can degrade the 

within-class similarity of each subject. To address this problem, an improved PCA based 

alignment algorithm is used to correct the pose variations [5, 7]. These stops are described 

below. 

3.4.1 Face Cropping 

            

                                   (a) one face capture in FRGC                         (b) cropped face region 

                             

                                (c) one face capture in Bosphorus                      (d) cropped face region 

Figure 3.4: An illustration of 3D face cropping: (a) and (c) show the original 3D captures in the FRGC 

and Bosphorus databases, respectively; (b) and (d) are their corresponding face cropping results 
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The captures in most 3D face databases are not always cropped correctly and invariably contain 

some irrelevant details as shown in Figure 3.4(a) and (c). Consequently, to further refine the 

detected or cropped facial region, the nose tip is first detected and then the face region as shown 

in Figure 3.4(b) and (d) is found by intersecting a sphere with radius 80 mm centred on the nose 

tip [5]. The nose tip is detected by finding the largest convex region on the face, which can be 

found by thresholding the SI using −1 < SI < −5/8 to produce a binary image [7]. The largest 

connected component is detected and the centroid is saved as the tip. 

3.4.2 Denoising  

Compared to 3D data provided in the Bosphorus and Photoface datasets, the captures in FRGC 

have more artefacts represented as spikes, holes and missing data, as shown in Figure 2.4(a) 

and Figure 3.4(a). These artefacts might significantly affect the subsequent recognition steps 

and degrade the final recognition performance. As a consequence, to remove the noises in 

FRGC, cubic interpolation is first used to correct the missing data in x, y and z coordinates and 

then spike removal, hole-filling and smoothing filters are sequentially used in the denoising 

phase.  

3D face captures are usually degraded by the impulsive noise, holes and missing data, which 

are more salient on the Z map. The outlier points are first found by standard deviation 

calculation in the Z map that uses a 3Í3 sliding window [5]. Those distances that are greater 

than a threshold dt from any one of its 8-connected neighbours. dt is automatically calculated 

using dt = µ+0.6σ (where µ is the mean distance between neighbouring points and σ is its 

standard deviation). The same interpolation procedure is employed to fill the holes again in the 

Z map. Then, the morphological filling is applied to the depth map and a larger threshold is 

selected to preserve the natural holes on the face, in particular near the eye corners. Finally, 

median filtering is used to remove the impulsive noise on the face surface. Figure 2.4(b) shows 

the denoised capture of (a). 

3.4.3 PCA Based Alignment 

Nearly all the captures in the FRGC database contain small or large pose variations which can 

significantly affect the final recognition performance. For the Bosphorus database, some frontal 

viewed captures still contain slight pose variations, even though all the captures are labelled 

with the ground-truthed rotations. To address this problem, the PCA based alignment method 
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proposed by Mian et al. [5] is used to correct the pose of the captures. This approach use a 3Ín 

matrix () of the x, y, and z coordinates of the 3D face data to generate P.  

𝑃 = 	
𝑥,, 𝑥- …𝑥*
𝑦,, 𝑦- …𝑦*
𝑧,, 𝑧- … 𝑧*

 

The points’ mean (m) is translated to the origin and their 3Í3 covariance matrix (C) is 

calculated. 
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*

[\,
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The points are then mapped onto the principal axes after multiplying them by the covariance 

matrix’s eigenvectors: 𝑃^ = 𝐶(𝑃 −𝑚). They are then uniformly resampled with a resolution 

of 0.5 mm. The missing points caused by self-occlusion, especially around the nose region, are 

replaced by the 2D cubic interpolation. The procedure processes iteratively until C converges 

to an identity matrix and the nose tip is also re-detected. Furthermore, the face will be cropped 

again on the new 3D data. After the alignment procedure is completed, a small constant angular 

rotation along the pitch direction is added to the face pose as this helps the landmarking 

algorithm to detect the nose region. 

3.5  Preprocessing of the Photoface Database 

Denoising is always considered as a significant step for preprocessing the data for the reason 

that captures from 3D devices contain some holes, spikes and missing parts to some extent 

which will significantly affect the following preprocessing steps and the consistency of the 

feature extraction. Those kinds of noisy data are prominent in the FRGC database and less 

important for the Photoface database. Therefore, it is not necessary to employ all the denoising 

steps for the Photoface, as all 3D captures in this database are reconstructed from their 

corresponding surface normals and have been smoothed during the reconstruction process. 

In a similar manner to FRGC and Bosphorus databases, the nose tip is automatically detected 

by thresholding the SI and the main facial region is cropped by intersecting a sphere centred 

on the detected nose tip. For 3D captures in the FRGC and Bosphorus databases, captures can 

be estimated with high resolution and many facial local details can be preserved. However, in 
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the Photoface database the depth information is reconstructed from the surface normals and is 

distorted to some degree. The resulting 3D captures look somewhat flat compared to real 3D 

model. Moreover, as the resolution maps are not available, the face cropping is more 

complicated, which requires methods that utilise prior information on the facial shape. Given 

the same resample setting as real 3D captures, a radius of 80 mm, which is widely used in the 

FRGC and Bosphorus databases, is too small for the Photoface captures. 150 mm has been 

found to be an appropriate setting by observing that can approximately crop the main face 

region. It is important to note that the radius used is not critical to the recognition performance 

as the subsequent features are only extracted from the nasal and adjoining regions.  

The nose region is cropped by finding the intersections of three cylinders, each centred on the 

nose tip [7]. Similarly, the coefficients of cylinders used in the Photoface database are different 

from FRGC and Bosphorus. In [7], radii of 40 mm and 70 mm are suggested for horizontal 

cylinders and 50 mm for vertical cylinder for the FRGC and Bosphorus database. For the 

Photoface database, they are set to 70 mm, 120 mm, 100mm, 100 mm, respectively, which 

provides the most consistent results. Finally, according to the location of nose tip, an improved 

PCA based alignment algorithm is used to address the pose variations on both the nose and 

cropped face region [5, 7]. During each iteration, the nose tip is relocated. 

3.6  Baseline Recognition Performance Evaluation  

To provide a comparable performance contrast among the FRGC, Bosphorus and Photoface 

databases, a subset of 18 subjects, each with 20 captures, is selected from each database. The 

captures for each subject are then split into 10 captures for training and 10 captures for testing. 

For the FRGC database, all the 360 captures are selected from FRGC v.2, Fall2003 and 

Spring2004 folders, as these two folders contain plenty of expression, pose and occlusion 

variations. For the Bosphorus database, to provide a direct comparison with features extracted 

from FRGC, only those captures without large pose variations or occlusions are considered, 

and these captures contain plenty of expressions. Similarly, nearly all the captures contain 

natural variations in expressions, poses or occlusions (glasses and scarves) in the Photoface 

database.  

The baseline performance using PCA and LDA is evaluated under both identification and 

verification scenarios. Also, different kinds of 3D data representations [depth, surface normals, 

SI and principal_curvature_minimum (kmin)] are explored in this evaluation. The R1RRs of 

identification and EERs of verification scenarios are illustrated in Table 3.6.  
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Table 3.6: Baseline identification and verification performance evaluation on the subset (18 subjects, 

each with 20 captures) of the FRGC, Bosphorus and Photoface databases. The features are extracted 

from depth, surface normals (SNx, SNy and SNz), SI and kmin, respectively. 

 Algorithm Scenarios Depth 
Surface Normals 

SI kmin 
SNx SNy SNz 

FRGC 

PCA 
R1RR 72.07% 66.48% 73.74% 79.33% 70.95% 73.18% 

EER 20.13% 28.48% 14.53% 21.72% 22.35% 16.74% 

LDA 
R1RR 96.65% 94.41% 97.21% 98.32% 93.85% 91.62% 

EER 1.68% 2.79% 1.68% 1.12% 2.23% 4.35% 

Bosphorus 

PCA 
R1RR 64.25% 41.90% 73.74% 62.57% 44.69% 54.24% 

EER 25.71% 35.70% 18.44% 24.60% 37.41% 31.48% 

LDA 
R1RR 87.71% 83.80% 91.62% 89.94% 69.83% 81.36% 

EER 7.92% 6.65% 3.91% 6.70% 11.76% 6.78% 

Photoface 

PCA 
R1RR 55.29% 58.82% 83.53% 64.12% 71.18% 76.47% 

EER 22.94% 25.80% 14.12% 20.00% 21.80% 18.82% 

LDA 
R1RR 94.71% 94.12% 96.47% 91.18% 92.35% 95.29% 

EER 2.35% 2.94% 1.76% 4.12% 2.82% 2.35% 

Instead of using the whole human face, one region-based algorithm proposed by Emambakhsh 

et al. [7] is employed for feature extraction: All the original captures are pre-processed 

sequentially by nose tip detection, face cropping, denoising and alignment. To build the feature 

space, 16 landmarks on the nasal region are automatically detected and 75 curves found by 

connecting selected two landmarks. This provides a simple and effective representation of the 

nasal region. 

For different types of data, the three databases produce diverse performances, which is mainly 

due to the properties of data itself and the facial variations discrepancy. Specifically, when 

using the PCA classifier, features extracted from the depth information from the FRGC and 

Bosphorus databases are clearly more discriminative than the Photoface database, for the 

reason that some distortions may occur during reconstruction phase. However, the SNy 

calculated from the reconstructed depth map outperforms the other two datasets. In addition, 

SI and kmin information calculated from Bosphorus contribute less to recognition performance.  
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3.7  Conclusion 

This chapter has reviewed and evaluated a selection of the publicly available 3D face databases 

that have been developed over the past decade. These databases underpin many of the recent 

advances in face recognition, for example in robustness to expressions and occlusions, by 

providing researchers with meaningful databases on which to evaluate their algorithms. A brief 

introduction to 13 of the most widely used publically available 3D face databases has been 

provided. Some of the factors which need to be considered when attempting to improve the 

recognition performance, in particular to real-world scenarios, are also discussed. By 

considering the database characteristics of Data Capture, Database Population, Pre-processing 

and Landmarks and Modes of Variation, a database classification methodology has been 

proposed. The classification methodology has been used to categorise the databases previously 

introduced, providing researchers with a useful resource to help choose appropriate databases 

on which to evaluate their recognition algorithms. 

According to varying characteristics of 3D face databases, FRGC, Bosphorus and Photoface 

are selected to be used in the following chapters. Two different preprocessing methods are 

implemented on the two true 3D (FRGC and Bosphorus) and reconstructed 3D (Photoface) 

databases, respectively. Baseline recognition performance results are then presented in Section 

3.6 show that the captures from different databases possess varying types of 3D representations, 

which might subsequently produce varying recognition performance.  
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Chapter 4 Matching Curves for 3D Face 

Recognition 

4.1  Introduction 

Facial expression is an intrinsic source of variability in human faces. Expressions deform the 

face surface to a greater or less extent, according to their type or degree of expressions. In the 

past decade, expression variations have been one of the most challenging sources of variability 

in 3D face recognition, especially for scenarios where there are a large number of face samples 

to discriminate between. Some relatively stable structures and patches on the face can be used 

to help design expression invariant face recognition algorithms. A good example is the nose 

region which, when compared to the forehead, mouth and eyes, is more consistent over 

different expressions. The nose is also very difficult to be deliberately occluded by hair, hands 

and scarves [112]. In addition, using convexity it is relatively straightforward to detect and 

segment the central region of the 3D face that contains the nose [7]. Therefore, feature 

extraction on the nose region offers many advantages for expression robust 3D face recognition.  

Although many methods can be used for extracting features from the 3D face, depth 

information is commonly used because of its efficiency. One of the most popular approaches 

is to draw curves between extracted landmarks. Drira et al. [49] and Ballihi et al. [80] achieved 

very good recognition performances using various sets of facial curves. However, the location 

of the curves covered some expression sensitive regions, presenting problems for the 

expression robust recognition. In addition, the nose tip had to be detected manually. 

Emambakhsh et al. automatically detected four significant landmarks (the nose tip, the saddle 

and the two alar) and used these landmarks to define a set of 28 nasal curves that were used for 

expression robust recognition [7]. This work only considered landmarks and curves directly on 

the nasal surface and didn’t include the regions adjoining the nose, between the cheek bones 

and nasal bridge. Indeed, these regions are also relatively more stable and less affected by 

occlusions when compared to other patches on the face surface and contain additional 

discriminative features to those on the nose. In this chapter, the nose and its environs are 

defined as the “cheek/nose” region, from which features are selected to form the feature space. 
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Figure 4.1: The block diagram of the proposed rejector. 

In addition to overcoming the problems caused by expression variations, another challenge for 

3D face recognition is the ability to discriminate between a large number of classes. Pattern 

rejection, proposed by Baker and Nayar [136], is an efficient and effective approach to improve 

the classification performance, particularly for this scenario. Mian et al. used a 3D SFR 

combined with a SIFT descriptor to form a rejector whose combined classification performance 

is very high [5]. However, it required both 2D and 3D features and the rejector’s performance 

is much reduced when only the 3D SFR features are considered.  

In this chapter, a new expression robust 3D face recognition algorithm is proposed by matching 

curves on the nasal and adjoining cheek regions. After pre-processing, 24 landmarks are 

localized on the cheek/nose region and a set of 113 curves joining the landmarks are defined. 

Feature selection using the Bosphorus database identifies just 4 curves, and further experiments 

determine that each curve only requires 15 points, to produce a rejector that quickly and 

effectively eliminates a large number of ineligible candidate faces from the gallery. A block 

diagram of this rejector is shown in Figure 4.1. In addition, the recognition performance of the 

radial and root curves extracted on the nasal and adjoining regions are investigated in this 

chapter. 

4.2  Cheek/Nose Region Landmarking and Curves Finding 

For region based face recognition algorithms, the accuracy of landmark localization plays a 

significant role in the feature extraction, which will directly affect the within-class similarity 

and between-class scatter. However, high accuracy of landmarking is always accompanied by 

more complicated algorithms or more computation time, making a difficult compromise for 

real time automatic face recognition systems. The landmarking strategy proposed in [7] 

provides a good solution to address this problem. 
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Figure 4.2: 24 automatically detected landmarks on the cheek/nose region. L9, L1, L5, L13, L20 and 

L24 are found and the reminder are found using proportions. 

As shown in Figure 4.2, the 16 landmarks proposed in [7] are evenly distributed on the 

boundary of the nasal region. To further investigate the adjoining region of the nose and cheek 

bone, 8 more landmarks are localized. Of these, L9, L1, L5, L13, L20 and L24 are detected 

directly and the remainder are found by proportional division of the lines joining the landmarks 

previously found. The method proposed in [7] is first used to locate four main landmarks L9, 

L1, L5 and L13. The approaches to find these are described below. 

4.2.1 Tip (L9) 

In the preprocessing step, the nose tip has been approximately localized by finding the largest 

convex regions on the thresholded SI map (SImap). To avoid the spike noise which is not 

removed in the denoising phase, the morphological dilation and median filter are used for 

further smoothing the candidate tip region. Specifically, the original thresholded SI map 

(SImap_o) is dilated with a disk structuring element (B) (radius is 3) and multiplied by the depth 

map (Zmap). The spike noise on the resulting Zmap is removed by median filter and the maximum 

point on the Zmap is considered as the final nose tip. 

𝑆𝐼$%_ = 𝑆𝐼$%__a	⨁	𝐵
𝑍$%_ = 𝑍 ∗	𝑆𝐼$%_

	                                                  (1) 

4.2.2 Root (L1) 

Once the location of the nose tip is fixed, the candidate root points can be found by using a set 

of planes which are perpendicular to the x-y plane. By intersecting the planes with the nose 

surface, many curves passing through the nose tip are obtained. The angles between the planes 

and y-axis are set from -15˚ to 15˚. The candidate nasal root points are located at the bottom of 

each curve and the final root is found at the maximum of those minima. 
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4.2.3 Alar Grooves (L5 and L13) 

Similar to the method used for the nasal root detection, the candidate alar grooves are first 

located by finding curves passing through the nose tip. With the angular deviation [-15˚, 15˚] 

to the x-axis, a set of planes which includes the nose tip and are perpendicular to the x-y plane 

are intersected with the nose surface. On the basis of the special characteristics of the nasal 

shape, candidate alar grooves can be located at the lower part on each curve. In particular, the 

depth value of candidate points shows a sudden drop in comparison with their neighbouring 

points.  

Therefore, to find alar grooves, each curve is differentiated and the candidate landmarks can 

be found by the maximum value of each curve’s gradient. However, as all the points on the 

curves are used for gradient calculation this method is very sensitive to the noisy data and it is 

also affected by the location of nostrils. To address this problem, K-means clustering is used 

to divide the candidate alar grooves points and outliers into two groups, using the distance from 

candidate points to the nose tip.  

4.2.4 Cheek Landmarks (L20 and L24) 

The cheek landmarks used in this chapter define the extremities of the cheek/nose region. Two 

methods are employed to accurately and consistently locate them on the facial surface and both 

methods extend the line between the nasal alar grooves and the nose tip horizontally. The first 

approach sets the distance D in Figure 4.2 as a “Proportional distance” of L5 to L9 [d in Figure 

4.2]. With this approach, the length from L9 to L24 depends on the size of the subjects’ nose, 

such that each capture in the database potentially has different proportional distances. The 

second method directly sets L20 and L24 using a “Constant distance” from L9 in the horizontal 

direction, for example 40 pixels. 

4.2.5 The Remaining Landmarks and Curves Drawing 

The remaining landmarks are found by dividing the lines (L1 to L5, L5 to L9, L9 to L13, L13 

to L1, L1 to L20 and L1 to L24) into four equal segments and the positions of the resulting 

points are shown in Figure 4.2. Different numbers of segments were investigated and it was 

found that this was not a major contributory factor in the overall recognition performance, with 

four segments offering a good compromise between the complexity and accurate representation 

of the cheek/nose region.  
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4.3  The Definition of the Pattern Rejector 

The effectiveness and efficiency of recognition systems are the crucial challenges of 

recognition algorithms, especially for the increasing number of samples enrolled. Baker and 

Nayar proposed the notion of pattern rejection, to greatly enhance the efficiency in two aspects 

of a recognition system: the case with a large number of classes to discriminate between and 

when the recognition must be performed a large number of times [5]. It is generalized from the 

basic classifier which can quickly eliminates a large fraction of the candidate classes or inputs. 

Pattern rejector is defined as “an algorithm 𝜓 that given an input, x ∈ S, returns a set of class 

labels 𝜓(x)”, where x is a measurement vector and S is the classification space. The 

effectiveness Eff(𝜓) of a rejector is the expected cardinality of the output Ex∈S (|𝜓(x)|) divided 

by the total number of classes, M [136]. The value of Eff(𝜓) is inversely proportional to the 

classification performance and, for face recognition, M is the size of gallery. 

𝐸𝑓𝑓 𝜓 = 	 ij∈l	(|m & |)
n

		                                                   (1) 

Compared to considering all the possibilities in the recognition system, this new approach 

allows the algorithms to dedicate their efforts to a much smaller subset. Also, the rejectors 

designed by different algorithms can be combined to build a composite rejector, which will 

further boost the recognition performance. 

4.4  Curves Drawing 

Using the landmarks shown in Figure 4.2, the intersection of planes passing through any two 

pairs of landmarks on the facial surface results in a total of 113 curves as shown in Figure 4.3. 

To normalize all the curves, all the original 3D data are translated to the nose tip and the number 

of the points of each curve is initially resampled to 50 points. 

The 75 nasal curves are found by connecting the following landmark pairs in Figure 4.2: L1 to 

L2-L8 and L10-L16; L2 to L6-L8 and L10-L16; L3 to L16, L10-L15 and L6-L8; L4 to L14-

L16, L10-L13 and L6-L8; L5 to L13, and L6-L7; L9 to L1-L5 and L13-L16; L14 to L5-L8, 

L10-L12; L15 to L5-L8, L10-L12; L16 to L5-L8, L10-L12. Also, the 38 cheek/nose curves are 

found by connecting: L17-L20 to L13-L16; L21-L24 to L2-L5; L1 to L20 and L1 to L24; L17 

to L21, L18 to L22, L19 to L23 and L20 to L24. 
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Figure 4.3: 113 curves found on the cheek/nose region 

4.5  Feature Selection Using the Bosphorus Database  

4.5.1 Motivation and Feature Selection  

Instead of using the whole face region, extracting features on the cheek/nose region, which is 

relatively robust under various expressions, provides an effective approach for 3D face 

recognition. The 113 curves found in Figure 4.3 provide a comprehensive coverage of the 

cheek/nose region. However, selecting all the curves as features produces a high dimensionality 

feature vector which is unlikely to have a good classification performance [95, 96]. This so-

called “curse of dimensionality” requires a large number of training samples to be added to the 

classifier when the dimensionality increases. To address these, feature selection is used to find 

a subset of curves that can produce a high recognition performance. 

There are a lot of feature selection methods for dimensionality reduction. FSFS is applied to 

reduce the feature space dimensionality in this chapter for the reason that it provides a simple 

and effective way of selecting the curves step by step. FSFS starts from an empty set and first 

selects the best single curve, in terms of classification performance. Then, other curves which 

produce the highest R1RR based on the leave-one-out method, when combined with the 

previously selected curves, are iteratively added to the set. The recognition rate of each single 

curve is calculated by the nearest neighbour city-block distance that has been shown to have a 

better discriminatory power when the feature space is sparse [74]. The feature selection employs 

the Bosphorus database, as the majority of its captures contain little noise, enabling relatively 

accurate landmarking and curve drawing.  
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4.5.2 Feature Selection Results of 75 Nasal Curves 

The feature selection results of 75 curves are shown in Figure 4.4 and the number of points on 

each curve is resampled to 50. To produce the best recognition performance, 21 curves are 

selected by FSFS to build a feature vector whose R1RR reaches to 82.5%. This implementation 

outperforms the result in [7] to some extent as they achieved the highest R1RR, ~82.5%, when 

28 curves are selected, which are using more curves than this implementation. Furthermore, 

for the recognition performance of each single curve, the most discriminative curve is the nasal 

bridge one (L9L1) with the highest R1RR, 45.65%, which is much higher than the one recorded 

in [7], ~38%. 

 

Figure 4.4: R1RRs against the number of curves selected by the FSFS algorithm using 75 nasal curves  

4.5.3 Feature Selection Results of 38 Curves on the Cheek/Nose Region 

Using the detected cheek landmarks and their neighbouring nasal landmarks, 38 curves are 

found mainly on the cheek region for recognition performance evaluation. A constant distance 

of 40 pixels, was used to localize two cheek landmarks, which is a reasonable setting for 3D 

captures in the Bosphorus database and could be further evaluated in the following sections. 

R1RRs against the number of curves selected by the FSFS algorithms is shown in Figure 4.5 

and Table 4.1. To achieve the highest R1RR, 6 curves which produce 82.77% of the R1RR are 

selected by the FSFS method. It is higher than that of 21 nasal curves (82.5%), which produce 

the highest R1RR in 75 nasal curves selection. If only using 4 curves, they achieve 82.5% of 

R1RR, which is the same as the performance of 21 nasal curves but using a very small sized 

feature vector. This result is very promising and shows great potential of extracting expression 

invariant features on the adjoining regions between the nose and cheeks. 
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Figure 4.5: R1RRs against the number of curves selected by the FSFS algorithm using 38 curves  

Table 4.1: R1RRs using the curves selected by FSFS 

 Curves selected by FSFS R1RR 

1 L18L22 58.31% 

2 L18L22, L20L24 76.98% 

3 L18L22, L20L24, L19L23 81.18% 

4 L18L22, L20L24, L19L23, L1L20 82.50% 

5 L18L22, L20L24, L19L23, L1L20, L17L21 82.31% 

6 L18L22, L20L24, L19L23, L1L20, L17L21, L16L18 82.77% 

  
                         (a) Three horizontal curves                                           (b) CMC curves 

Figure 4.6: Three horizontal curves across the cheek/nose region and their recognition performance 

tested under identification scenarios 
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As can be seen from Table 4.1, the three curves (L18L22, L20L24, L19L23) across the 

cheek/nose region shown in Figure 4.6 are the most significant curves of the 38 curves when 

selected by FSFS. The R1RR of each selected curve is higher than the best curve selected on 

the nasal region, L9L1. Moreover, using all the three horizontal curves the R1RR is 81.18%, 

which is comparable with the recognition performance of 21 selected nasal curves found in 

Section 4.5.3, despite the fact that 18 fewer curves are used.  

4.5.4 Feature Selection Results of 113 Curves on the Cheek/Nose Region 

FSFS has been successfully applied on the nasal (75) and cheek (38) curves selection, which 

shows the potential for using small subset of curves to produce higher recognition performance. 

In this section, the combination of the cheek/nose curves (75+38) is further evaluated by using 

the FSFS method. The number of points of each curve is resampled to 50 and the distance 

between L20 and L9 is set to 40 (pixels). The feature selection results from 113 curves on the 

cheek/nose region using the FSFS algorithm is shown in Figure 4.7. The selected curves and 

their corresponding R1RRs are provided in Table 4.2. 

Table 4.2: Curves selected by FSFS 

 Curves selected by FSFS R1RR 

1 L18L22 58.31% 

2 L18L22, L20L24 76.98% 

3 L18L22, L20L24, L9L1 82.65% 

4 L18L22, L20L24, L9L1, L4L12 84.66% 

5 L18L22, L20L24, L9L1, L4L12, L15L5 85.68% 

6 L18L22, L20L24, L9L1, L4L12, L15L5, L19L23 86.24% 

7 …L1L20 87.07% 

8 …L1L20, L3L6 87.53% 

9 …L1L20, L3L6, L16L10 87.72% 

10 …L1L20, L3L6, L16L10, L14L6 87.98% 

11 …L1L20, L3L6, L16L10, L14L6, L17L21 88.10% 

12 …L1L20, L3L6, L16L10, L14L6, L17L21, L9L16 88.10% 

13 …L1L20, L3L6, L16L10, L14L6, L17L21, L9L16, L1L14 88.36% 

 L18L22, L19L23, L20L24, L9L1 84.35% 
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Figure 4.7: Rank one recognition rate against the number of curves selected by the FSFS algorithm 

using 113 curves on the cheek/nose region 

To achieve the highest recognition performance, 13 curves were finally selected using FSFS to 

construct feature space. They are L18L22, L20L24, L9L1, L4L12, L15L5, L19L23, L16L18, 

L3L6, L16L10, L14L6, L17L21, L9L16 and L1L14. The R1RR of those features is 88.36%, 

which shows that this feature combination can achieve good recognition performance. 

Therefore, using features from both the nasal region and its adjoining cheek region is beneficial 

for expression robustness. Finally, 4 curves are selected to form a low dimensionality rejector 

whose aim is to effectively and quickly eliminate a large number of ineligible candidate faces 

from the gallery. 

4.6  Features Analysis 

4.6.1 A Comparison between Proportional and Constant Distances for Cheek Region 

Boundary 

For feature selection, three different proportional distances are tested: 2, 2.5 and 2.8 times the 

length of L5L9, respectively. For the constant distance, the horizontal length between the nose 

tip and cheek landmarks is set 40 mm and, for both methods, each curve is resampled to 50 

points. The FSFS results for the 113 curves on the cheek/nose region presented in Figure 4.8 

show that the recognition performance of the constant distance is always higher than the 

proportional distance, for all feature set sizes and proportional lengths. The highest R1RR of 

88.36% is obtained when 13 curves (L18L22, L20L24, L9L1, L4L12, L15L5, L19L23, L16L18, 

L3L6, L16L10, L14L6, L17L21, L9L16, and L1L14) are selected by constant distance. This 
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encouraging performance is significantly higher than that of [7] and shows the high potential 

of the cheek/nose region as a robust biometric.  

The results in Figure 4.8 are interesting as, in theory, the proportional distances can preserve 

the whole face shape information and so can better represent the cheek landmarks for each 

person. However, in the experiments a constant distance performs much better than the 

proportional ones. The main reason for this is believed to be the instability of L5 and L13 

landmarks, due to its sensitivity to noise. In comparison, the constant distance that only uses 

the location of nose tip is more reliable as the detection of nose tip is more accurate than those 

of the alar grooves and the root.  

 

Figure 4.8: Rank one recognition rate against the number of curves on the cheek/nose region selected 

by the FSFS algorithm using a constant and proportional distances to locate landmarks L20 and L24. 

 

Figure 4.9: 4 curves extracted on the cheek/nose region. 



74 

The ideal scenario for pattern rejection is a high R1RR achieved using a small number of 

features. In Figure 4.8, the highest R1RR of 88.36% requires 13 curves, each of 50 points. If 

only the 4 curves shown in Figure 4.9 (L18L22, L19L23, L20L24, and L9L1) are selected the 

R1RR drops to 84.35% but this performance is achieved using only 4×50 points. Therefore, 

using the cheek/nose region to form the feature set meets many of the requirements of a pattern 

rejector [136]. In the next three sections the use of different constant distances and the number 

of points on each curve are evaluated. 

4.6.2 Requirements of Fixed Number of Points 

According to a priori knowledge of the structure of the human face, these four curves in Figure 

4.9 are generally represented with different lengths. Therefore, it is better to set different 

numbers of points on each curve to provide a more reasonable representation. To enable a 

comparison with fixed 50 points in the above experiments, the number of points are set to 50 

(L9L1), 75 (L18L22), 100 (L19L23) and 125 (L20L24) respectively as the length of cheek 

curves is generally longer than curve L9L1. Figure 4.10 illustrates the CMC curves for both 

settings, 50-75-100-125 shown in blue and 50-50-50-50 that uses the constant number of points 

in each curve shown in red.  

As can be seen from Figure 4.10, 50-50-50-50 is slightly better than 50-75-100-125 under 

identification scenario. Instead of using 50-75-100-125, different numbers have also been 

investigated in this experiment and the recognition performance is always lower than a constant 

number.  

 

Figure 4.10: CMC curves for 50-75-100-125 and 50-50-50-50 
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4.6.3 The Choice of Constant Distances  

The final lengths of the curves L18L22, L19L23 and L20L24 depend on the location of two 

cheek landmarks, which also directly determine how much of cheek region is used in the 

features. In the previous experiments, the constant distance was set to 40, as this enabled a fair 

comparison with the proportional distances. This is not necessarily the value that produces the 

best recognition results and here other values for the constant distance are investigated. As the 

cheek region is relatively constant over different expressions, using a large distance should be 

beneficial. However, larger distances have a higher probability of suffering from hair and hand 

occlusions. Therefore, to find the best performing distance, seven constant distances (30, 32.5, 

35, 37.5, 40, 42.5 and 45) are defined and their recognition performance under the identification 

scenario is evaluated. 

Figure 4.11 presents the Cumulative Match Characteristic (CMC) curves for the 7 different 

constant distances using the ‘leave-one-out’ identification scenario. Although the R1RRs of all 

seven distances are similar, three distances (35, 37.5 and 40) outperform the shorter and longer 

ones. 37.5 and 40 produce higher recognition rates at lower ranks while 35 is better at higher 

ranks. This means that any distance between 35 and 40 will perform well and 40 is used in the 

following experiments.  

 
Figure 4.11 CMC curves for the 4 curves from Figure 4.9 with 50 points per curve using different 

constant distances to locate L20 and L24. 

4.6.4 The Number of Points on Each Curve 

During the feature selection phase, each curve was resampled to a fixed number of points. 50 

points was chosen for the earlier experiments as initial results showed that it produced a very 
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similar R1RR performance to 60 or 70 points but with fewer features to match. Generally, if 

the number is increased, more points will be extracted to construct the feature space which 

means more features are considered to represent the human face. However, the increase feature 

points do not necessary possess more discriminative information and such a high 

dimensionality also makes it hard to obtain a good classification performance [95, 96]. This 

fact is called “the curse of dimensionality”, which means a large number of training samples 

should be added to classifier when the dimensionality increases. If the number decreases, less 

information will be used to evaluate the recognition performance. Therefore, 70 points per 

curve are chosen as the upper limit and 40 as the smallest one in the first tentative experiment. 

The results demonstrate that their recognition performances are approximately the same and 

simply increasing the size of the feature space cannot obtain high R1RR. 

In addition, the impact on the recognition performance of using fewer points is further 

investigated. The range used is from 5 to 45 points, in steps of 5 points, giving the 9 different 

CMC curves shown in Figure 4.12. The results in Figure 4.12 show that the recognition rate is 

maintained as the number of points reduces until a limit of 15 points is reached. After this, 

there is a small drop in performance for 10 points, particularly for ranks 12 and below, and a 

more significant decrease for 5 points. Therefore, using only 15 points can still produce a high 

recognition rate and, due to its low dimensionality, has much potential for pattern rejection.  

 

Figure 4.12: CMC curves for the 4 curves from Figure 4.9 using 5 to 45 points per curve. L20 and L24 

are located using a constant distance of 40. 
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To further verify the best number of points for each curve, the classification performance of 4 

curves (L18L22, L19L23, L20L24 and L9L1) is tested by KFA [137] with the polynomial 

kernel. The Bosphorus database is used for this experiment as it contains a wide repertoire of 

facial expressions. 1346 captures from 105 subjects are used as the training set and an 

additional 1300 captures from the same subjects provide the testing set. Ten different numbers 

from 5 and 50 are tested in this experiment and the resulting ROC and CMC curves are shown 

in Figure 4.13 and Figure 4.14, respectively. The R1RR and EER for each number of points are 

given in Table 4.3. The EER is the most important parameter in the ROC curve and describes 

the trade-off between FAR and FRR, with a low EER indicating a good verification 

performance.  

Table 4.3: R1RR and EER for 5 to 50 points per curve using the KFA on the Bosphorus database. 

No. Points R1RR EER No. Points R1RR EER 

5 70.96% 7.71% 30 92.22% 4.38% 

10 90.29% 4.64% 35 91.83% 4.40% 

15 93.61% 3.63% 40 91.29% 4.25% 

20 93.76% 4.08% 45 90.83% 4.62% 

25 92.30% 4.16% 50 91.06% 4.86% 

 
Figure 4.13: ROC curves for 5 to 50 points per curve using the KFA classifier on the Bosphorus database. 
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Figure 4.14: CMC curves for 5 to 50 points per curve using the KFA classifier on the Bosphorus database. 

For the ‘Leave-one-out’ identification scenario, 15 is the smallest number which can still 

preserve a high R1RR. As can be seen from Figure 4.13 and Figure 4.14, and Table 4.3, 15 

points generally produces the best recognition performance for both scenarios, even though it 

only uses a total of 60 points across the four curves. For identification, using 15 and 20 points 

produces the highest recognition rate for all ranks. For verification, 15 points results in the 

lowest EER and clearly outperforms all higher or lower numbers. The R1RR and EER results 

show that only 15 points per curve produces the best overall performance using only 60 points 

on the cheek/nose region. The classification performance of this rejector is evaluated in the 

next section.  

4.7  Classification Performance Evaluation on the FRGC Database 

To evaluate the classification performance of the rejector the FRGC database is used, as it has 

been reported to be the most challenging 3D face databases over varying expressions [111]. 

The Spring 2003 folder is used as the training set while the Fall 2003 and Spring 2004 folders 

provide the testing set. In addition, the sensitivity of the performance to the choice of constant 

distance to locate L20 and L24 is evaluated over a range distances. The ROC and CMC curves 

for 6 distances, ranging from 35 to 40, are shown in Figure 4.15 and Figure 4.16, respectively. 

Details of the parameters used and the resulting R1RR and EER for the identification and 

verification scenarios, respectively, are provided in Table 4.4. 
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Table 4.4: Recognition performance using 4 curves with different constant distances 

Scenarios No. Points/Distance  R1RR EER 

All vs All 

15/35 86.08% 4.71% 

15/36 86.08% 4.36% 

15/37 86.23% 4.46% 

15/38 86.33% 4.17% 

15/39 86.28% 4.30% 

15/40 86.33% 3.95% 

For both the identification and verification scenarios, the recognition performance using 

different constant distances show few variations. This shows that, within certain limits, the 

recognition performance is relatively insensitive to the constant distance used to select the 

landmarks. In general, the R1RR increases and the EER decreases if larger distances are 

selected. Therefore, a constant distance of 40 with 15 points per curve is a good parameter 

choice for building the low-cost expression robust rejector for 3D face recognition.  

The identification results in Figure 4.16 show that the recognition rate exceeds 98% at rank 20 

which means the rejector can robustly reject a significant proportion of the gallery images using 

simple, low dimensional features from the cheek/nose region. The proposed rejector therefore 

has much potential to be applied in an efficient and robust classifier when combined with other 

features in a cascade classifier. 

 
Figure 4.15: ROC curves produced by the KFA classifier on the FRGC database using different constant 

distances to locate L20 and L24. 
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Figure 4.16: CMC curves produced by the KFA classifier on the FRGC database using different constant 

distances to locate L20 and L24. 

To further evaluate the classification performance under different scenarios, the test sets Spring 

2004 and Fall 2003, are further manually divided into neutral and non-neutral parts. During 

this process, it was observed that nearly all the captures in Spring 2003 (training) can be 

classified as neutral because only a few contain expressions and even these are low level 

expressions. Table 4.5 compares the R1RR and the EER of the All vs All, All vs Neutral and 

All vs Non-neutral scenarios. In comparison, the EER value is much lower than the NCM 

algorithm of [7], which was ~8% for neutral and ~18% for non-neutral, respectively. The 

verification performance of proposed rejector is also much better than the reported EER of ~12% 

(neutral) and ~23% (non-neutral) for the multiple nose region algorithm of Chang et al. [4].  

The proposed rejector shows a high classification performance, in particular for the non-neutral 

classes. Furthermore, the complexity is much lower than the NCM [7], as it only uses 4 curves 

with total of 60 points, compared to 28 curves with 1400 points. In addition, the location of 

these four curves mainly depends on the nose tip, resulting in more stable curves. 

For an additional comparison, the proposed rejector is compared to that of Mian et al. [5]. 

Although [5] combined both 2D (SIFT) and 3D (SFR) features to form the rejector, to provide 

a comparable classification performance only the 3D SFR results are used here. A comparison 

of the effectiveness of proposed rejector and SFR-based rejector of [5] is shown in Figure 4.17 

and Table 4.6. At the 98% verification rate the Eff(𝜓) of proposed rejector for the whole gallery 
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is 8.4%, such that all bar 39 of the 466 faces are remained for further classification. This is 

much lower than SFR-based rejector’s result of 38% and shows that the proposed rejector can 

quickly eliminate 92% of the gallery faces. When the gallery is divided into neutral and non-

neutral, the Eff(𝜓) is still significantly lower for the proposed technique than for the SFR-based 

rejector for both scenarios. 

Table 4.5: The R1RRs and EERs of proposed pattern rejector under different scenarios, including “All 

vs All”, “All vs Neutral”, “All vs Non-neutral”. 

No. Points/Distance Scenarios R1RR EER 

15/40 

All vs All 86.33% 3.95% 

All vs Neutral 92.68% 2.73% 

All vs Non-neutral 75.32% 5.78% 

 

Figure 4.17: Rejection classification results at the 98% verification rate compared to SFR in [5]. 
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Table 4.6: Effectiveness evaluation of the proposed rejectors 

Methods 
Eff(𝜓) 

All Neutral Non-neutral 

4 curves 0.084 0.036 0.118 

SFR (Mian et al. [5]) ~0.38 ~0.24 ~0.47 

4.8 Radial and Root Curves Evaluations 

Instead of using the horizontal curves, some other kind of curves, radial and root, are also 

investigated on the detected nasal and adjoining cheek regions. After the preprocessing and 

normalization of the 3D captures, 16 landmarks are detected on the perimeter of a triangular 

structure containing the nose region, as shown in Figure 4.18(a). The first set of curves are the 

nine radial curves shown in Figure 4.18(c), connecting the nose tip to the landmarks on the 

edge of the triangular region. Compared to the radial curves in [49, 80], the nose tip is 

automatically detected in the preprocessing stage and the curves only contain the nose and 

adjoining cheek regions, which are relatively stable on the human face and are not affected by 

natural occlusions.  

Similarly, nine root curves from the tip to the lower boundary of the triangular structure and 

evenly distributed on the nose and adjoining cheek region can be defined, as shown in Figure 

4.18(d). Previous work has found that resampling curves on the nose surface to 15 points per 

curve produced the best recognition performance [138]. As the radial and root curves are 

shorter than the horizontal curves used in [138], and smaller feature sets are generally desirable, 

the R1RR and EER performance using 10 and 15 points per curve for both the radial and root 

curves are evaluated and the recognition results presented in Table 4.7 and Table 4.8, 

respectively. For the radial curves, Table 4.7 shows that using 10 or 15 points produces similar 

R1RR and EER for the three scenarios evaluated for the FRGC database. However, when tested 

on the Bosphorus database using 10 points performed better than using 15. For the root curves, 

the recognition performance in the Table 4.8 demonstrates that 15 points per curve is 

marginally better than 10 which may be because the root curves are longer than the radial 

curves. 
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(a)                                                                 (b) 

  
(c)                                                                (d) 

Figure 4.18: Landmarks and curves extracted on the cheek/nose region. (a) 16 landmarks; (b) three 

horizontal curves in [138]; (c) nine radial curves from the nose tip; (d) nine curves from the nose root. 

Table 4.7: Recognition performance of the radial curves tested under different scenarios using the 

Bosphorus and FRGC databases. 

 Scenarios 10 points  15 points 

R1RR EER R1RR EER 

Bosphorus[13] All vs All 94.07% 3.49% 92.30% 3.70% 

FRGC [12] 

All vs All 88.88% 4.46% 89.18% 4.40% 

All vs Neutral 93.69% 2.71% 94.31% 2.72% 

All vs Non-neutral 80.22% 5.75% 79.94% 6.17% 

Features set size for each capture 10×9 = 90 15×9 = 135 

Table 4.8: Recognition performance of the root curves tested under different scenarios using the 

Bosphorus and FRGC databases. 

 Scenarios 10 points  15 points  

R1RR EER R1RR EER 

Bosphorus[13] All vs All 91.60% 3.86% 91.60% 3.69% 

FRGC [12] 

All vs All 86.68% 4.66% 87.23% 4.75% 

All vs Neutral 91.82% 3.12% 92.13% 3.11% 

All vs Non-neutral 77.42% 6.14% 78.40% 6.31% 

Features set size for each capture 10×9 = 90 15×9 = 135 
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4.9  Conclusion 

To improve the classification performance under different expressions and over a large number 

of classes, a new 3D face recognition algorithm is proposed in this chapter by matching the 

curves extracted on the nasal and adjoining cheek regions. After preprocessing, consisting of 

face cropping, denoising and alignment, 24 landmarks and 113 curves on the cheek/nose region 

are generated to form the feature set. Using the Bosphorus 3D database, FSFS is applied to select 

the most effective 4 curves over various expressions.  

The key landmarks are those located on the cheeks, either side of the nose, and using a constant 

horizontal distance from the nose tip was found to perform better during this stage than 

extrapolating a proportional distance from the nose tip to the alar; this was due to the 

inconsistencies in the alar landmarks. Performance evaluation using the FRGC database further 

showed that, for a constant distance on 40 mm, the best recognition rates are achieved using 15 

points per curve, giving only 60 points in total. This low dimensionality feature set can be used 

as a pattern rejection classifier for 3D face recognition. 

In addition to the horizontal curves, some other kind of curves, radial and root, are also 

evaluated on the detected nasal and adjoining cheek regions, using 10 or 15 points per curve 

for both the radial and root curves. Compared to the root curves, the radial curves produce 

higher recognition performance in both scenarios, especially when the expressions occur. 
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Chapter 5 Matching Multi-Component Local 

Shape Descriptors  

5.1  Introduction 

Overcoming variations in human expressions, poses and occlusions are some of the most 

challenging topics in face recognition. Using 3D data facilitates the correction of pose and can 

help address the problems caused by occlusions. However, variations in expression which lead 

to muscle movements and deform the face surface still present challenges to recognition systems 

using 3D data. One way to address these problems is to select relatively stable structures and 

patches on the facial surface and use these to explore its discriminative features to design 

expression invariant face recognition algorithms. The use of the ‘cheek/nose’ region in Chapter 

4, defined by a triangular structure containing the nasal and adjoining cheeks, showed the 

potential of extending the nasal region to include adjoining parts of the cheeks for expression 

robust 3D face recognition. The use of the nasal and adjoining cheek region supports the 

hypothesis that they are relatively stable under expressions and less affected by occlusions.  

To explore the recognition potential of local patches, many works employed some local 

descriptor to extract features such as Local Binary Patterns [115]. Li et al. successfully used 

multi-scale and multi-component local normal patterns to find expression robust patches on the 

whole 3D face, showing the discriminatory power of both Local Binary Patterns and surface 

normals [6]. However, their use of three scales and three components on the whole face results 

in high dimensional feature set for matching and can also be adversely affected by occlusions 

and expression variations. Therefore, exploring the local normal features on relatively rigid 

regions of the face is an attractive area of investigation.  

Most 3D face recognition algorithms are focused on using depth information to select features 

and produce good recognition performance. In addition to depth, the surface normals of each 

point determine the orientation of the surface and contain the information on local shape 

variations. For example, Zafeiriou et al. obtained the surface normals information from 

photometric stereo captures and used it as a normal face for face recognition [9]. In comparison, 

Li et al. used the surface normals calculated from 3D point cloud data which is captured from 

laser scanner and demonstrated a good recognition performance [6]. These works provide the 
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motivation for the fusion of depth and surface normals data to exploit more discriminative 

features for 3D face recognition. 

This chapter further investigates the use of the nasal and immediately adjoining cheek regions 

as a biometric. It proposes a novel local shape descriptor to find expression robust discriminative 

features on both depth and surface normals maps. This descriptor is calculated from the points 

selected from a set of three horizontal lines and their eight neighbours at a fixed separation. 

Evaluating the features over various scales demonstrates that this local shape descriptor provides 

a novel way to represent the shape changes on the face surface and produce a better recognition 

performance than using depth or surface normal values independently. In addition, a further 

analysis of the discriminatory power using 24 patches on the nose and adjoining cheek regions 

is also evaluated. A discriminatory power map is produced, showing the potential of the region 

immediately adjoining the nose as a biometric. On the basis of the resulting discriminative map 

of the depth and three normal components, an extension of this new local shape descriptor is 

applied to the nine patches on the selected region. The recognition performance demonstrates 

that features extracted on this combined region by the proposed local shape descriptor can be 

developed as an expression robust 3D face recognition algorithm. 

5.2  3D Landmarks Localization  

After the preprocessing and normalization of the 3D captures, 16 landmarks are detected on 

the perimeter of a triangular area containing the nasal region, as shown in Figure 5.1. Surface 

features are extracted to first defined planes connecting any two landmarks, which are 

perpendicular to the x-y plane. This results in a series of curves on the face surface [7, 138]. 

Feature sets can then be found by normalizing the curves and then resampling them to a fixed 

number of points using bicubic interpolation. Gao et al. found that using 15 points from 

horizontal lines was an effective approach to capturing the discriminative features [138]. 

  

Figure 5.1: 16 Landmarks and 3 horizontal curves extracted on the cheek/nose region. 
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5.3  An Expression Robust Multi-Component Local Shape Descriptor 

5.3.1 Building Local Shape Descriptors by Horizontal Curves 

As an alternative to using the direct depth values of points from curves on and around the nasal 

region, this chapter presents a novel representation for describing the shape changes by 

computing depth differences, in a similar manner to Local Binary Patterns [9]. From the points 

extracted on the three horizontal curves shown in Figure 5.1, a series of windows (the white 

quadrilaterals in Figure 5.2) are used to compute the depth differences between the central 

points (red points) on the middle curve and the surrounding points (white points) on the top, 

middle and bottom curves. Specifically, all the even points on the middle curve are considered 

as the central points of 3×3 windows and the depth differences with their eight neighbours are 

stored as Dw = [dd1, dd2, dd3, dd4, dd5, dd6, dd7, dd8]. Therefore, the feature vector for each 

capture can be defined as (Dw2, Dw4, Dw6, … , Dw(i-1)), in which i is the number of points on 

each curve. In the experiments, i is set to 15 so there are 15 points on each curve and a total of 

7 windows for calculation, giving a feature set size of 8×7 = 56. For comparison, a feature set 

of size 15×3 = 45, consisting of the depth values at the 15 points on each curve is used.  

The recognition performance is measured by the EER for verification and the R1RR for 

identification. KFA [139] with the polynomial kernel is used to calculate the similarity between 

the gallery and probe captures and the cosine distance is used in the feature matching. A 

comparison of recognition results between this new local shape descriptor and direct depth 

features is shown in Table 5.1. The results show that using the depth differences performs better 

for all scenarios. In particular, they produce a R1RR that is about 9% higher than the linear 

depth features for the “All vs Non-neutral” scenario. This demonstrates that this local shape 

descriptor has the potential to produce a better recognition performance than using the depth 

values directly, especially when the captures contain different kinds of expressions. 

 
Figure 5.2: Depth difference calculation using three horizontal curves. 
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Table 5.1: A comparison of the R1RRs and EERs between the depth difference and direct depth features 

extracted from the horizontal curves shown in Figure 5.2. The captures from Bosphorus and experiment 

3 in FRGC are used for recognition performances evaluation. 

 Scenarios 

Depth 

Difference 
Direct Depth 

R1RR EER R1RR EER 

Bosphorus [13] All vs All 88.98% 4.93% 85.82% 5.10% 

Experiment 3 in 

FRGC [12] 

All vs All 83.53% 5.34% 79.32% 5.32% 

All vs Neutral 90.50% 2.88% 89.02% 3.42% 

All vs Non-neutral 70.91% 7.02% 61.85% 8.56% 

Features size of each capture 8×7 = 56 15×3 = 45 

5.3.2 Local Depth and Normals Features Extraction on the Nose and Adjoining Cheeks 

The results in the previous section support the conclusions of previous researchers, that the 

nose and adjoining cheek regions provide a good source of discriminative features [8, 80, 138]. 

In addition, in comparison to using the depth directly, using the proposed local shape descriptor 

to build the feature vector by calculating the depth differences is an effective and efficient 

method to describe the shape of the nasal region. In the previous section, the depth differences 

were calculated over a relatively large scale and in this section the discriminative features for 

expression invariant 3D face recognition are further explored by computing the depth 

difference more locally on the nose and adjoining parts of the cheek. 

With reference to Figure 5.3, the local depth descriptor is found using the points on the three 

horizontal curves shown in Figure 5.2. Again, the curves are resampled to 15 points using 

bicubic interpolation and all the even points on the curves (marked as red points in Figure 5.3) 

are taken as the central points of the 3×3 windows for which the depth differences are found. 

For each central point, the eight neighbouring points are given by the left and right points on 

the same curve and the three points directly above and below from curves at a vertical 

separation D, shown in blue in Figure 5.3. D is measured in pixels at the resolution of the 

original 2D maps produced from the 3D point cloud. To allow the scale for different regions to 

be explored independently, the vertical distances D1, D2 and D3 are used for the top, middle 

and bottom curves, respectively. For the seven central points on each of the three curves the 

resulting depth features produce a feature vector of size 8×7×3 = 168. 



89 

 

Figure 5.3: Local features extraction by calculating depth difference around three horizontal curves. 

  

                                    (a) FRGC                                                              (b) Bosphorus 

Figure 5.4: Rank one recognition rate of depth difference extracting around the three horizontal curves 

under different distances on the FRGC database. 

Figure 5.4 plots the R1RRs achieved by the depth descriptor for the top, middle and bottom 

curves using different values of distance D for both the FRGC and Bosphorus databases. In 

general, the depth descriptors extracted from each horizontal curve produce better results as 

the vertical separation D increases. Depth differences from the middle curve produce a higher 

R1RR than those from the top and bottom curves, yielding the highest R1RR of 86.03% when 

D2 = 20 for the FRGC database and 92.37% when D2 = 22 for the Bosphorus database. The 

R1RR of depth differences from the top curve increases up to D1 ≈ 15 and becomes more stable 

afterwards. In contrast, the R1RR of depth differences from the bottom curve increase more 

slowly and when D3 ≥ 10 it becomes relatively constant, with some fluctuations.  
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An improved performance can be achieved by combining the depth differences from all three 

curves. However, as the vertical separation D increases the depth differences from the top and 

bottom curves are more affected by natural occlusions (e.g. glasses and hands) and shape 

changes caused by expression, respectively, and so simply combining the best performing 

distances from each curve will not necessarily produce the best combined performance. An 

evaluation of the combined depth difference features on the FRGC and Bosphorus databases 

using different distances for D1, D2 and D3 was undertaken and the best performance was found 

to occur when D1 and D3 are ~15 and D2 is ~20. 

Using these parameters, the recognition performance is evaluated under both the identification 

and verification scenarios and the results are presented in Table 5.2. The performance for 

captures with expression variations is significantly better than those achieved using the large 

scale depth difference (see Table 5.1), albeit with a larger feature set. In addition to depth 

difference calculation, the local difference descriptor is also applied to the surface normals 

maps to find the discriminative features from the SNx, SNy and SNz components, producing 

another three different representations of this region. The scale of the windows for the normals 

was the same as that used for the depth and the recognition performances for both databases 

are illustrated in Table 5.2. 

Surface normal features outperform the depth ones on the Bosphorus database, which contains 

many variations in expression, and also for the FRGC “All vs Non-neutral” scenario. Results 

also show that the R1RR for the Bosphorus database is much higher than for FRGC experiment 

3. This is most likely due to the noisy training captures in the Spring 2003 folder. 

Table 5.2: Recognition performance of the depth and surface normals differences extracted around the 

three curves shown in Figure 5.3. 

 Scenarios 
Depth Features Normal Features 

R1RR EER R1RR EER 

Bosphorus [13] All vs All 94.99% 3.47% 97.76% 1.32% 

Experiment 3 in 

FRGC [12] 

All vs All 89.63% 4.51% 89.08% 3.90% 

All vs Neutral 93.38% 3.03% 91.67% 3.11% 

All vs Non-neutral 82.89% 5.88% 84.13% 4.91% 

Features size of each capture 8×7×3 = 168 8×7×3×3= 504 
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Table 5.3: R1RRs of features extracted from three components of surface normals (SNx, SNy and SNz) 

and three horizontal regions (Top, Middle and Bottom). The Bosphorus, experiment 3 setting in FRGC 

and FRGC v.2 captures are used for recognition performances evaluation. 

 Components Size Bosphorus[13] 
Experiment 3 

in FRGC [12] 

FRGC v.2 

[12] 

Surface 

Normal 

SNx 168 94.60% 83.62% 94.72% 

SNy 168 90.28% 78.42% 90.19% 

SNz 168 94.83% 83.78% 92.77% 

Top 168 91.52% 81.87% 92.26% 

Middle 168 95.14% 83.93% 94.21% 

Bottom 168 93.37% 79.36% 92.08% 

All 504 97.76% 89.08% 96.29% 

Depth 

Top 56 84.81% 83.22% 84.16% 

Middle 56 92.06% 86.03% 91.39% 

Bottom 56 87.12% 81.47% 87.12% 

All 168 94.99% 89.63% 96.17% 

 
 

In addition to the analysis of the recognition performance for the depth component in Figure 

5.3, some additional identification evaluations are used to further explore the discriminatory 

power of different locations on the selected region (Top, Middle and Bottom) and three surface 

normal components (SNx, SNy and SNz) using a fixed scale, see Table 5.3. The R1RR results are 

for the Bosphorus database, experiment 3 of FRGC and the FRGC v.2 databases. In general, 

the results in Table 5.3 show that the SNx and SNz possess more discriminative features than 

SNy and produce a performance that is ~4% better. For the horizontal regions of cheek/nose 

region, both the depth and normal features extracted from Middle part outperform those from 

the Top and Bottom parts.  

An additional evaluation on the relationship between the R1RR and different scales is shown 

in Figure 5.5, where horizontal curves with separations ranging from 15 to 25 pixels are 

investigated. The results show that the R1RR remains stable when different separations are 

selected, proving that the proposed local shape descriptor is scale robust to some extent. Also, 

the SNx, SNz and Middle components always produce better R1RRs, regardless of which scale 

is selected. 



92 

 
(a) Bosphorus 

 
(b) FRGC v.2 

Figure 5.5: R1RR of features extracting from horizontal curves with different separation distances using 

three components of surface normals (SNx, SNy and SNz) and three horizontal parts (Top, Middle and 

Bottom) of the nose and adjoining regions on the Bosphorus and FRGC v.2 databases. 
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The recognition results for the whole FRGC database shown in the Table 5.2 and Table 5.3 

reveal that surface normals are much more sensitive to the noise caused by lighting and the 

capture device. Training data from noisy folder, Spring 2003, affects the within-class similarity 

and between-class dissimilarity and so cannot reliably be used to select the most discriminative 

normal features. To investigate this, Figure 5.5 evaluates the surface normal features on the 

FRGC v.2 database, 466 subjects with 4007 captures in total, and presents the R1RR of features 

selected from three components (SNx, SNy and SNz) and three parts (Top, Middle and Bottom) 

using different distances. The recognition performance achieved is quite similar to that of the 

Bosphorus database, showing the adverse effect of the noisy FRGC Spring 2003 captures on 

the recognition performance. 

5.3.3 Recognition Performance Comparison 

For classification and matching, the KFA classifier with the cosine distance produces a R1RR 

of 97.76% and an EER of 1.32% for the Bosphorus dataset, which is competitive with methods 

whose algorithms are more sophisticated and require a larger feature set. Comparison with 

other research that considers the nasal region and its environs, see Table 5.4 and Table 5.5, 

shows that the proposed method has much potential.  

For verification, using the FRGC database (Experiment 3), the EER for both depth and surface 

normals was found to be ~3% for neutral and ~5% for non-neutral which compares favourably 

with the results of Chang et al. [4] (12% and 23%, respectively) and Emambakhsh et al. [7] (8% 

and 18%, respectively). For identification, compared to the algorithms using both the selected 

region and whole face in Table 5.5 and Table 5.6, the combined surface normals results exceed 

96.29% and 97.76% on the FRGC v.2 and Bosphorus databases, respectively, with a relatively 

small and simple feature set which is within 2% of the state-of-the-art performance using the 

whole face.  

Table 5.4: A comparison of EERs of features extracted from the nasal region and its environs on the 

FRGC database (Experiment 3). 

Algorithm Matching Neutral Non-neutral 

Chang et al. [4] ICP 0.12 0.23 

Emambakhsh et al. [7] KFA-Poly 0.08 0.18 

Gao et al. [138] KFA-Poly 0.03 0.06 

Proposed method KFA-Poly 0.03 0.05 
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Table 5.5: A comparison of R1RRs of features extracted from the nasal region and its environs on the 

FRGC (Experiment 3) and Bosphorus databases. 

Algorithm 
FRGC 

Bosphorus 
Neutral Non-neutral 

Chang et al. [4] 96.6% 82.7%  

Emambakhsh et al. [7] 90.87% 81.61% 97.44% 

Gao et al. [138] 92.68% 75.32% 93.61% 

Proposed method 93.38% 84.13% 97.76% 

Table 5.6: A comparison of R1RRs of different recognition algorithms tested on the FRGC and 

Bosphorus databases. 

 Algorithm 
FRGC 

Bosphorus 
Experiment 3 v.2 

Nasal and its 

environs 

Gao et al. [138] 86.33%  93.61% 

Wang et al. [8]  ~92%  

This work 89.63% 96.29% 97.76% 

The whole 

face 

Wang et al. [8]  98.3%  

Li et al. [6]  96.3% 95.4% 

Kakadiaris et al. [140]  97.9% 98.2% 

Ballihi et al. [80]  98.02%  

Drira et al. [49]  97%  

Faltemier et al. [141]  97.2%  

Using a simple descriptor to extract features results in a very small feature set, which has much 

potential for real time automatic face recognition system as all the preprocessing parts (face 

cropping, alignment and landmark localization) are fully automated and no feature selection is 

required after the feature extraction.  

5.4  Local Patches Evaluation on the Nasal and Its Environs  

The proposed local shape descriptor demonstrates good potential for extracting expression 

robust features on a larger scale with a small sized feature set, using the nose and adjoining 

cheek regions as an expression robust biometric. It is therefore interesting to use this descriptor 

to explore the discriminatory power more locally. 
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5.4.1 Discriminatory Power Evaluation on Local Patches  

The nasal and adjoining cheek regions shown in Figure 5.6(a) are used to further investigate 

the discriminative features for expression robust face recognition, which is determined by two 

cheek landmarks, and the top and bottom horizontal curves shown in Figure 5.1. This is an 

extension of the region discussed in Section 5.3, which is further divided into 24 small local 

patches, each of which is resampled to 5×11 pixels, as illustrated in Figure 5.6(b). Calculating 

the local shape descriptor proposed in Section 5.3 builds the feature set from both the depth 

and surface normals components.  

The R1RR of each patch is obtained using the KFA classifier and cosine distance. To illustrate 

the discriminatory power, the R1RRs for the patches are presented as grayscale images in 

Figure 5.6(c) - (f), where a brighter patch represents a higher R1RR. Results show that the R1RR 

of patches on the nasal region and its adjoining cheek regions is always higher than those on 

the cheek bone region, for all four components.  

                
                                           (a) 24 patches                                    (b) Proposed Local shape descriptor 

    
                                    (c) Depth                                                               (d) SNx 

    
                                      (e) SNy                                                                  (f) SNz 

Figure 5.6: The patch weights corresponding to depth image and three normal components images 

learned from the Bosphorus database. The weights are presented as grayscale values, where brighter 

values denote larger weights. 
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Furthermore, it is more interesting to observe from Figure 5.6 that those patches located on the 

boundary of the nasal and adjoining cheek regions perform better than those only wholly in the 

nasal region which shows the potential of the cheek regions immediately adjoining the nose. 

The features were also evaluated on the FRGC v.2 database, producing similar recognition 

performances and discriminatory power distribution for the depth and three normal components 

to that shown in Figure 5.6. This analysis shows that the grayscale images in Figure 5.6 can be 

considered to be a good representation of the discriminatory power on the nasal and adjoining 

cheek regions. 

5.4.2 Square Local Shape Descriptor 

As can be seen from Figure 5.6, the proposed local shape descriptor produces better recognition 

performance on the nasal and its neighbouring patches. Therefore, to further investigate the 

proposed descriptor and extract the discriminative features, nine landmarks (red points) shown 

in Figure 5.7(a) are localized accurately to define the nasal and its environs region. The two 

nasal alar landmarks are found by intersecting a set of planes which are perpendicular to the x-

y plane. This results in a set of curves and the alar landmarks are located at the minimum of the 

curves’ maxima [7]. The vertical middle three landmarks are determined by the location of 

saddle and tip and are evenly distributed on the line from tip to saddle. Similarly, the three 

squares on the right and left three are located using the two alar and saddle landmarks.  

The nine square windows centred on the nine landmarks are shown in Figure 5.7(a). The edge 

of each window can be resampled to a series of points and the local features are found by 

calculating the differences between those edge points and central point in each window, which 

is an extension of the proposed local shape descriptor presented in 5.3.1 using the following 

equation: 

𝐹pq_rs = 	 (𝐸pq_rs 𝑖 − 𝐶pq_rs(𝑗))$
)

*
v

𝐹w = 	 (𝐸w 𝑖 − 𝐶w(𝑗))$
)

*
v

𝐹x = 	 (𝐸x 𝑖 − 𝐶x(𝑗))$
)

*
v

𝐹y = 	 (𝐸y 𝑖 − 𝐶y(𝑗))$
)

*
v

                                     (1) 

where n is the number of windows, m is the number of points on the edge, E refers to the value 

of each edge points and C denotes the central points. In this experiment, each of the nine 

windows has 16 edge points resulting in feature sets of size 9×16 = 144 for features extracted 

from each component. FDepth is depth component and FX, FY and FZ are SNx, SNy and SNz 

components.  
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                                               (a)                                                                          (b) 

Figure 5.7: 9 landmarks and their corresponding patches on the nasal region 

5.4.3 Recognition Performance Evaluation Using Different Scales 

The influence of the scale of the window on the recognition performance can be evaluated by 

altering the vertical distance from centre to edge of the square patch. To this end, sizes ranging 

from 4 to 26 are used to evaluate the recognition performance using the Bosphorus database 

under two identification scenarios: the KFA classifier using cosine distance and the leave-one-

out (LOO) classifier using the city block distance.  

 

Figure 5.8: Rank one recognition rate calculated by both KFA and LOO classifier using different size 

of windows (patches) on the Bosphorus database. 
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The LOO scenario employs every capture as a probe against a gallery of all other captures from 

different identities. The benefit of using LOO is that all sessions are used for the probe and 

gallery captures, which makes it a far more efficient scenario than using a fixed partition. The 

L1-norm [74], city block distance is used to compare the probes and gallery captures as it has 

been shown to have better discriminatory power when the feature space is sparse.  

The R1RRs for the KFA and LOO classifiers using different patch sizes are shown in Figure 

5.8. Although the R1RR improves with increasing scale for all components, it remains stable 

with only a small improvement after the patch size reaches 12. Thus 12 is a good compromise 

scale, as it covers the whole nasal and adjoining regions without the risk of potential occlusions 

that affects larger patch sizes. 

5.5  Conclusions 

In this chapter, the use of nasal and adjoining cheek regions have been explored as an 

expression robust biometric for 3D face recognition. Focusing on these regions is advantageous 

as they have been shown to be more invariant to variations due to universal expressions and 

natural occlusions. Thus, extracting features from these stable patches on the nasal region and 

its environs has a high potential to build a more powerful 3D face recognition algorithm.  

In addition, a novel 3D face local shape representation method is proposed to provide a simple 

way to generate a small feature set that produces high recognition performance. A set of 

features from the 3D face are found by calculating the depth differences between central points 

and eight neighbouring points from horizontal curves on the face surface. Experiments show 

that using the depth differences from three horizontal curves as a feature vector produces a 

better recognition performance than using the depth values on the curves directly, providing 

motivation for further work. More localized depth and normal differences were found by 

including additional points from above and below each horizontal curve and experiments for 

both the identification and verification scenarios demonstrated that a good performance can be 

achieved with a relatively small feature set.  

Using the proposed local shape descriptor, a further analysis on the discriminatory power of 24 

patches on the nose and adjoining cheek regions was evaluated, producing a set of novel 

discriminative maps for both depth and surface normals (x, y and z). On the basis of the 

resulting discriminative maps, an extension of the new local shape descriptor was applied to 
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the nine patches on the nasal and adjoining cheek regions. Results showed that the work has 

potential for use as an expression robust 3D face biometric or possibly a pattern rejector. 

A series of experiments have been presented to evaluate the recognition performance of the 

proposed multi-component and multi-scale local shape descriptor on the nasal and adjoining 

cheek regions, focusing on addressing the problem of expression variations on the human face. 

This method has not evaluated the single training sample scenario. Therefore, one area of future 

work will focus on exploiting an effective subset from the original features using some feature 

selection methods or fusing other features to build a new feature vector with more 

discriminative information for matching.  
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Chapter 6 3D Face Recognition Using 

Reconstructed Captures from Photometric 

Stereo 

6.1  Introduction 

In the past decades, many 3D data acquisition methods have been developed to produce a better 

approach to capturing the 3D human face and accommodate both the research and commercial 

requirements. An appropriate 3D acquisition approach can provide geometric information of the 

facial surface and hence potentially address the problems of illumination, expression, pose and 

occlusion variations. The acquisition system should also effectively and accurately capture the 

human face within a short time period and require minimal cooperation from the candidates. 

The captures used in most of the literature are from laser scanners or structured light which 

generate a higher accuracy 3D point cloud. However, these widely used acquisition systems 

have limitations in the real world applications, for example the requirement of candidates’ 

cooperation. The Photoface device was proposed to address this problem which aims at 

providing a low-cost and unconstraint 3D face acquisition system [9, 17]. 

Feature space manipulation on various types of facial captures are very challenging in 

biometrics as the resulting captures from different acquisition systems contain varying 

characteristics or the extracted features might be database specific. For example, the Photoface 

captures have higher resolution surface normals but more distorted depth information in 

comparison with other widely used captures. Very few works have investigated the use of the 

Photoface captures for face recognition, even though they possess great potential to produce 

promising recognition performance in real world applications. Therefore, this chapter addresses 

the problem of extracting discriminative features from the Photoface captures for face 

recognition.  

Inspired by the successful use of nose recognition algorithm proposed in [7] and the 

explorations of Zafeiriou et al. [9] and Moorhouse et al. [3] on the Photoface captures, this 

chapter investigates the recognition performance by matching curves on various components 
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(depth, surface normals and shape index) captured or reconstructed from photometric stereo. 

As the depth information can be successfully aligned by PCA, instead of the original SNs the 

SNs calculated from the depth is applied to the whole chapter for comparison. The main 

contributions are as follows:  

• Development of preprocessing, alignment and landmarking algorithms for the 

reconstructed captures  

• Discriminative features extraction from the shape index map.  

• Multi-component feature space manipulation (depth, surface normals, shape index) and 

feature-level fusion to build a more efficient feature set. 

• A comparison of recognition performance among the Photoface, FRGC and Bosphorus 

databases.  

• ‘One training sample’ scenario evaluation on the 3DE-VISIR database 

6.2  Landmarks and Curves on the Nasal Region 

To define a set of curves, the 1-16 landmarks shown in Figure 4.2 are automatically detected 

on the perimeter of a triangular structure containing the nasal region [7]. In Chapter 4 and 

[138], after the nasal landmarks localization, the cheek landmarks were found by calculating 

two types of distance from the nose tip: a proportional distance and a constant distance. The 

main difference between these two methods is that the accuracy of the proportional distance is 

based on the location of previous detected alar grooves. The results obtained in Chapter 4 

demonstrate that the constant distance outperforms the proportional one as the alar grooves are 

less consistent than the nose tip. 

Inspired by the benefit of using the constant distance, this chapter proposes to use the constant 

distance to define the nasal region. The potential benefits of this are the preservation of the 

within-class similarity and the between-class scatter. The average distances from the detected 

root to nose tip in the Photoface and 3DE-VISIR databases are defined as Drtp and Drtv, 

respectively, where the subscript p and v denote “Photoface” and “3DE-VISIR”, respectively. 

Also, the average distances, Daap and Daav, between two alar grooves of two databases are 

calculated. As shown in Figure 4.2, the Drtp and Drtv are the average length of L1L9 and the 

Daap and Daav are the average length of L5L9. Using the calculated average coefficients, the 

nasal root and alar grooves are localized and the nasal region is cropped from the whole face. 
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6.3  Nose Identification by Matching 75 Curves from Depth and Normals 

In this section, 75 nasal curves found on the four components (depth, SNx, SNy and SNz) shown 

in Figure 6.1 are evaluated under identification scenarios. To make a comparison between 

different types of captures, 360 captures of 18 subjects are selected from the Photoface, FRGC 

and Bosphorus databases, respectively.  

 
             (a) Depth                            (b) SNx                          (c) SNy                              (d) SNz  

Figure 6.1: 75 nasal curves representations on the depth and surface normals components 

6.3.1 Recognition Performance for 75 Nasal Curves 

In Chapter 4, instead of using 50 points, each curve is resampled to only 15 points and the 

results demonstrated that using fewer points on the nasal and cheek regions can produce a 

comparable recognition performance, even though the dimensionality of the feature space is 

greatly reduced. Therefore, in this chapter, 75 nasal curves with 15 points per curve are 

extracted for recognition. To make a comparison of the recognition performances generated 

from different types of captures, the subset (360 captures of 18 subjects) of each database is 

employed for evaluation.  

To reduce the dimensionality and find the most discriminative curves or curves combination, 

FSFS was applied to the 75 curves, combined with the leave-one-out cross validation and 

nearest neighbour classifier. The R1RRs obtained from set of captures for the three databases 

and different components (depth, SNx, SNy and SNz) are shown in Figure 6.2, which describes 

the changes of R1RRs when the number of selected curves varies from 1 to 30. The recognition 

performances are not provided when more curves are selected as all the R1RRs reduce for ≥ 30 

curves.  

The R1RRs for the FRGC database, shown in red, outperform those for the Bosphorus (blue) 

and Photoface (black) databases for the reason that the captures from Bosphorus and Photoface 

databases contain more expression variations. In addition, for all three databases, features 
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extracted from the surface normals (SNx, SNy and SNz) are shown to be more discriminative 

than those from the depth component. Only the features extracted from the depth component 

were explored in [7] and so there is potential to further evaluate the surface normals or combine 

both depth and surface normals to build a stronger feature set. 

The L9L1 curve, from the nasal root to tip, is always first selected (except for the SNx map) 

and makes a significant contribution to the overall recognition performance. L9L1 is located 

on the central profile of human face, which can better and more robustly describe the nasal 

surface changes. However, in the SNx map, this curve suffers significant feature-level changes 

as long as it is not localized accurately, for example the sign of the points on the L9L1. For the 

depth, SNy and SNz components of the FRGC database and the SNy component of the Photoface 

database, all the R1RRs of L9L1 exceed 80%. 

 

Figure 6.2: R1RRs against the number of curves selected by the FSFS and leave-one-out. Four 

components, depth, SNx, SNy and SNz, from each subset (360 captures of 18 subjects) of the Photoface, 

FRGC and Bosphorus databases are used in this experiment. Only the first 30 selected curves are 

provided for recognition performance comparison. 
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6.3.2 Recognition Performance for the Landmarks Localized by the Constant Distance  

For the Photoface captures, the nasal root and two alar grooves are not always robustly 

localized, as few local nasal structures are provided in the reconstructed depth map. Therefore, 

instead of using the NCM landmarking [7] employed in Section 6.3.1, this section uses two 

constant distances, Drtp (from the tip to root) and Daap (from the tip to alar grooves), to localize 

the root and alar grooves, resulting in 75 curves on a fixed sized nasal region. For Daap, the 

nose tip is located in the centre, which results in an isosceles triangle covering the whole nasal 

region. This means that whatever is the real size of nasal region, all the captures use the same 

window to crop the nasal region.  

The R1RRs shown in Figure 6.3 are calculated by the same settings, as for Figure 6.2. This 

enables a direct comparison with the recognition performances by using the NCM landmarking 

for the Photoface database from Figure 6.3. It is clear that the features extracted from the fixed 

sized nasal region described by green curves outperform the region found by NCM 

landmarking, which proves the conclusion stated in [138]. The constant distance is likely to 

preserve the within-class similarity and between-class scatter, as the captures from the same 

subject contain similar geometric distributions after pose calibration. 

 
Figure 6.3: A comparison of R1RRs between fixed sized (constant distance) and calculated (NCM 

landmarking) nasal region in the Photoface database using depth (D), SNx (X), SNy (Y) and SNz (Z) 

components. Only the first 30 selected curves are provided for comparison.  
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6.3.3 Classification Evaluation Using the Features Extracted from the SNy Map 

Compared with the other two databases, the recognition performance of the features extracted 

from the SNy map in the Photoface database is apparently better than those from the depth, SNx 

and SNz maps. Using only 9 selected curves on the SNy map, the R1RR can reach 98.84%, which 

demonstrates the potential of extracting discriminative features for face recognition from the 

Photoface captures. Compared to the SNx and SNz components, these 9 curves on the SNy map 

produce a higher recognition performance. Therefore, instead of using the less accurate depth 

map of the Photoface captures, it is very promising to investigate new discriminative features 

on the surface normals components.  

A further classification evaluation is explained in this section to demonstrate the recognition 

performance of features extracted from the SNy map. KFA [139] with the polynomial kernel is 

applied for nonlinear projection and dimensionality reduction. Instead of using 18 subjects with 

20 captures per subject, this evaluation takes all the captures in the Photoface database into 

account and tests the recognition performance using from 1 to 10 of training samples. Figure 

6.4 shows the R1RRs against the number of training samples per subject. 

 
Figure 6.4: R1RRs against the number of training samples using the selected curves from the SNy map 

of the Photoface captures. All the captures in the Photoface database are used in this evaluation. 

When the training set only contains one or two samples for each subject, the R1RRs (62.22% 

and 85.79%, respectively) are very comparable to the results reported in [9]. Furthermore, the 

efficiency is much improved using the proposed method as only the human nasal region and a 

small number of features (135 values) are considered for face recognition. When the number 

of training samples increases to 10, the R1RR reaches 97%, demonstrating that the recognition 

performance can be greatly improved provided there are enough training captures of each 
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identity. Instead of exploiting other feature selection and classification strategies, there is great 

potential for improved performance by fusing with the features extracted from other 

components. 

6.4  Using the Shape Index for Nose Recognition 

Although many published works have considered the SI as a new type of 3D face representation 

to generate discriminative features, it is still an under-explored representation [18]. Huang et 

al. [142] used a multi-scale local binary pattern depth map together with the SI map to increase 

the distinctiveness of smooth range faces. Vijayan et al. [132] also explored the use of the SI 

map for 3D face recognition of twins. In [19], a comparison of a series of 3D facial features 

showed that the SI map outperformed the depth map but was worse than the point cloud and 

surface normals.  

Despite some advantages, using the original SI map may encounter some unexpected problems. 

For example, the SI coefficients calculated on the planar region are relatively noisy as the 

curvatures of such regions are low, which makes it hard to extract robust features on such 

regions. Therefore, the original SI map is not an appropriate representation for describing all 

the face, especially for the cheeks. To avoid this drawback, the SI features can be restricted to 

the less flat regions, for example on the nasal region.  

To smooth the original SI map, some effective filters that have successfully been applied to 

image denoising can provide a good solution to address this problem, for example the median 

filter. In addition, the curvedness [35], a positive number that specifies the amount of curvature, 

can remove the noisy data by thresholding the original SI map. In the next section, the 

discriminative SI features are extracted from the nasal region and the recognition performances 

obtained by using different SI smoothing approaches are also discussed.  

6.4.1 Median Filtering the SI Map 

Figure 6.5(a) and (b) demonstrate the original SI map of one sample capture selected from the 

Bosphorus database. The noisy points, shown in both the frontal and side views, might affect 

the region segmentation and feature extraction. A recent summary and evaluation of different 

denoising methods applied to 3D face recognition suggests that the median filter is a good 

choice for denoising [135]. Therefore, the median filter is employed to smooth the original SI 

map and the resulting denoised SI map is shown in Figure 6.5(c) and (d). Experiments have 

shown that 3×3 is a suitable size of median filters for denoising both the depth and SI maps. 
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                                          (a) Original SI                                      (b) Frontal view 

 
                                       (c) Denoised SI                           (d) Frontal view (denoised) 

Figure 6.5: Median filter applied to the original SI map calculated from one sample capture selected 

from the Bosphorus database. 

The set of nasal curves used in the previous section is also extracted from both original and 

denoised SI maps and the corresponding recognition performances are shown in Figure 6.6 

(blue curves). The R1RR is much higher when the median filter is applied and, in particular, 

the R1RR of the curve L9L1 increases by ~17% after denoising. To compare the recognition 

performance of features extracted from both original and denoised SI maps among different 

databases, a subset of the FRGC v.2, Bosphorus and Photoface databases are used for 

evaluation, which employs the same number of captures and experimental settings (FSFS based 

feature selection of 75 nasal curves) as the comparisons described in Section 6.3.  

In general, as can be seen from Figure 6.6, the recognition performance of the Photoface 

captures, shown by black curves, outperforms the Bosphorus (blue) and FRGC v.2 (red) 

databases. The R1RRs of the curve L9L1 experience ~20% improvement for all three databases. 

However, for the combination of curves, using the denoised SI map brings more recognition 

performance improvement in the FRGC v.2 and Bosphorus databases, which is about 5-10% 

higher than using the original one. In contrast, the median filter brings less improvement when 

more than 4 curves are selected in the Photoface database. Denoising is of limited benefit as 

the captures in the Photoface database are relatively smoothed.  
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Figure 6.6: A comparison of the recognition performance of the 75 curves extracted from both original 

and denoised SI maps among three databases. The curves are sequentially selected by FSFS. 

6.4.2 Curvedness Thresholding 

The curvedness can be considered as a rotation invariant gradient operator, which measures the 

degree of regional curvature. It has true geometrical significance as it is coordinate independent. 

Therefore, curvedness has the potential to be considered as a new and effective representation 

of the 3D facial surface to describe curve degree of each point.  

In Figure 6.7, the original capture from the Bosphorus database is thresholded by different 

curvedness values. With the thresholds increasing, the regions contain a high degree of curved 

surfaces are more prominent, for example the nasal alar grooves and mouth. To remove the 

noise points on the relatively flat regions in the SI map, the threshold 0.1 is first applied. Each 

point in the SI map is first smoothed by the median filter and used for feature extraction if the 

curvedness is bigger than 0.1. However, as can be seen from Figure 6.8, using the curvedness 

thresholding did not improve the recognition performance. Data loss might be the main reason 

for this phenomenon as some useful features are removed during the thresholding phase. 

Therefore, although curvedness thresholding can provide a good approach to smooth the SI 

map, some discriminative information might be lost and selecting an appropriate threshold for 

face recognition is still a challenging issue. In comparison, the median filter or other effective 

filters are more suitable for low complexity SI map denoising. 
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                     (a) original                                       (b) 0.1                                         (c) 0.2 

 

                        (d) 0.3                                           (e) 0.4                                         (f) 0.5 

Figure 6.7: An example of the curvedness thresholding by different parameters using the capture 

selected from the Bosphorus database 

 
Figure 6.8: R1RRs against the number of curves selected by FSFS using the capture selected from the 

Bosphorus database. It is a comparison of the recognition performance using the SI maps denoised by 

the median filter and curvedness thresholding. 
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6.4.3 Gabor Filtering the SI Map 

The Gabor filter, a Gaussian kernel function modulated by a sinusoidal plane wave, is one of 

widely used image denoising filters and has been introduced to smooth the depth map for robust 

feature extraction [143]. The recognition performances after introducing the Gabor filters with 

different parameters on the SI map are shown in Figure 6.9 and Figure 6.10.  

 
Figure 6.9: R1RRs against the number of nasal curves selected for face recognition using the Gabor 

filters with different variances. For example, in Gabor (2,4), “2” and “4” are the variances along x and 

y axis, respectively. The frequency is set to “16”. 360 captures of 20 subjects from the Bosphorus 

database are used.  

 
Figure 6.10: R1RRs against the number of nasal curves selected for face recognition using the Gabor 

filters with different frequencies. For example, in Gabor (8,8,16), “8” and “8” are the variances and “16” 

is the frequency. 360 captures of 20 subjects from the Bosphorus database are used. 
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The denoised SI map, G (x, y), can be obtained by 

𝐺 𝑥, 𝑦 = 	 ,
-{|j|}

∗ 𝑒
~�
� [(

j
lj
)��( }l}

)�]
∗ cos[2𝜋𝑓 𝑥- + 𝑦-]                          (1) 

where Sx and Sy are the variances along x and y axes, respectively. f is the frequency of the 

sinusoidal function. As can be seen from Figure 6.9, the R1RRs have been significantly 

improved when the Gabor filters were applied to the denoised SI map by the median filter. The 

Gabor filters with different variances and frequencies are explored in Figure 6.9 and Figure 

6.10, respectively, which demonstrate similar contribution to the recognition performances 

improvement.  

6.5  Denoising of the Surface Normal Components 

Denoising is always executed in the preprocessing step to smooth the original facial captures 

for improving the accuracy of feature detection. In this section, to extract more robust features 

from the surface normals maps or enrich the diversities in the feature space, the Gabor filters 

used in the SI map are further applied to the data smoothing before feature extraction. Features 

are extracted from different resulting maps filtered by various Gabor wavelets as some distinct 

features or structures can be found in specific frequencies or scales.  

For all three databases, the surface normals are calculated from the depth information, which 

might still contain some noisy points even though the depth map has been already smoothed 

by the median filter. Any residual noise in the depth data can be amplified during the estimation 

of the surface normals. Therefore, it is interesting to investigate the denoising effect on the 

surface normals computed from various types of captures. The recognition performances of 75 

nasal curves on the surface normals maps from three databases are evaluated in this section, 

using the same FSFS based feature selection method and leave-one-out cross validation, as 

described in Section 6.3.  

As shown in Figure 6.11(a)-(c), the denoised surface normal components provide different 

contributions to the recognition performance improvement in the three databases. In Figure 

6.11(a), for 75 nasal curves found from the SNx map, there is a 2-3% improvement on the 

Photoface and Bosphorus databases when 20 curves selected. The recognition performance 

increases by ~8% when all the 75 nasal curves are used in the Photoface database. In Figure 

6.11(b), the captures from the FRGC v.2 and Bosphorus databases experience 2-3% increase 

using the denoised SNy map and there is no significant improvement in the Photoface database. 
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In contrast, as shown in Figure 6.11(c), the improvement of using denoised SNz map in the 

Photoface database is prominent, about 5%. 

 
(a) denoising applied to SNx 

 
(b) denoising applied to SNy 
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(c) denoising applied to SNz 

Figure 6.11: R1RRs against the number of nasal curves selected for face recognition using the Gabor 

filters. A comparison of the recognition performances of original and denoised surface normals 

components of 360 captures of 20 subjects from the FRGC v.2, Bosphorus and Photoface databases are 

used. The SNs used in the Photoface are calculated from the depth map. 

These results confirm the conclusions found in Section 6.3 and 6.4, which indicate that 3D 

captures obtained from different types of acquisition systems might contain various 

characteristics for face recognition. Different feature space manipulation strategies for each 

type of data are able to contribute to the recognition performance. When 20 denoised nasal 

curves are selected, the improvements of the R1RRs in three databases are further examined in 

Table 6.1. The results show that further data smoothing on the SNx and SNz components before 

feature extraction is necessary for the Photoface database and the effect of denoising is actually 

modest for higher accuracy captures.  

Table 6.1: The improvements of R1RRs when 20 curves selected from each component 

 SNx SNy SNz 

FRGC v.2 —— ~2% —— 

Bosphorus ~3% ~3% ~1.5% 

Photoface ~2% —— ~5% 
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6.6  Classification Performance Evaluation on the 3DE-VISIR Database 

The 3DE-VISIR database was originally proposed for expression classification and contains at 

least three sessions, positive, negative and neutral, for each identity [18]. The captures are 

obtained from both visible (VIS) and near infrared (IR) lights. 3D facial information estimation 

using these two types of illumination produces different influence on the reconstruction, 

resulting in 3D captures with different characteristics.  

As a subset of the 3DE-VISIR database, the IR captures possess a lot of advantages for 3D face 

recognition and can significantly contribute to the real world applications. Hansen et al. [10, 

18] proposed the use of near infrared light to capture the 3D face as it is very directional and 

gives a more accurate overall depth reconstruction than visible light. Furthermore, the 

acquisition systems using the near infrared light are more covert and less intrusive in real world 

applications. However, some fine surface details might be lost due to sub-surface scattering 

[144], even though the overall reconstruction by using the IR light is better than the VIS light 

[18]. 

Compared to other face databases containing expressions, the 3DE-VISIR database does not 

contain multiple expressions for each subject and only categorizes the expressions into positive, 

neutral and negative groups. Such classification provides a wider range of happy and sad 

related expressions and makes candidates feel more relaxed, which is likely to result in more 

natural expressions [18]. Therefore, it is a useful source for expression robust features 

evaluation. 

In addition, the ‘one training sample’ scenario is another challenging issue in biometrics, which 

requires that the features extracted and selected for each identity should be more effective and 

discriminative for matching. It is interesting to apply the nasal curves found from the Photoface 

database to this new database. Therefore, in this section, the neutral capture of each identity is 

used for training and the other two captures from the same identity with positive or negative 

expressions are used for testing. To make a comparison of the VIS and IR captures, the 

recognition performance of ‘one training sample’ scenario using both positive and negative 

captures from VIS and IR groups will be evaluated individually. 

6.6.1 Feature Extraction and Recognition Performance Evaluation Using VIS Captures 

The VIS part in the 3DE-VISIR database can be considered as an extension of the Photoface 
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database as their acquisition conditions use the same setting. As a consequence, features 

extracted by 75 nasal curves and FSFS based feature selection used in the Photoface database 

can be directly applied to this database.  

After drawing the 75 nasal curves, feature selection is applied to each component, which results 

in different curves combinations and can build a stronger classifier. The resulting R1RRs of 

each component tested on the VIS part are illustrated in Table 6.2. Features extracted from the 

depth, SNx, SNz and SI components produce similar recognition performance no matter whether 

the positive or negative probes are used. The R1RRs generated from the surface normals and 

SI components significantly outperform the depth component. Furthermore, the resulting 

R1RRs are higher than those reported in [9]. 

Table 6.2: R1RRs of the best curves combinations of four components using VIS captures under ‘neutral 

vs. non-neutral’ one training sample scenario.  

 
R1RR  

Positive Negative 

Depth 53.49% 51.72% 

SNx 70.93% 70.11% 

SNy 80.23% 72.09% 

SNz 75.58% 71.26% 

SI 73.26% 71.26% 

 

Using the positive captures, the R1RR of SNy clearly outperforms the other four components 

and the R1RR of 80.23% is produced from only 10 curves from SNy map. The feature-level 

fusion of the SNy and SNz components produces a R1RR of 87.21%, which is very competitive 

in ‘one training sample’ scenario as the size of features set is very small and the nasal curves 

extraction is relatively low complexity. For the negative captures, the R1RR (72.09%) of SNy 

component is also the highest but is much lower than that using the positive probe. The curves 

used for matching in each component and groups (positive or negative) are varying as the FSFS 

results produce different numbers or combinations of curves in each feature selection. 

6.6.2 Feature Extraction and Recognition Performance Evaluation Using IR Captures 

Compared to the landmarking on the VIS captures, the nasal root localization fails on nearly 

all the IR captures and the consistency of two alar grooves is less accurate than using VIS 

captures. As can be seen from Figure 1.1, there are not enough fine details provided on the 
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depth map of IR captures, especially for the nasal and adjoining regions, although the overall 

estimation of depth information is more accurate [18]. As a consequence, it is hard to apply the 

well-designed landmarking approaches proposed for the captures with higher accuracy depth 

map directly to the IR captures. Alternatively, the method proposed in Section 6.3 provides an 

effective solution to address this problem, which used the constant distances to localize the root 

and alar grooves.  

Using the landmarks found by the constant distances, 75 nasal curves extracted from depth, 

surface normals and SI maps are used to investigate the IR captures and the resulting R1RRs 

are illustrated in Table 6.3. The recognition performances of each component tested on the IR 

captures outperform those of the VIS captures. Using positive captures as the probe, R1RRs 

have ~10% improvements for SNx and SNz components and ~5% improvements for the depth 

and SI components.  

Table 6.3: R1RRs of the best curves combinations of four components using IR captures under ‘neutral 

vs. non-neutral’ one training sample scenario. A fixed sized structure is applied instead of using the 

detected landmarks.  

 
R1RR  

Positive Negative 

Depth 56.98% 60.92% 

SNx 80.23% 78.16% 

SNy 79.07% 77.01% 

SNz 80.23% 80.46% 

SI 79.07% 78.16% 

 

In contrast, for the negative probes, the R1RRs of all the components increase by ~10%. 

Moreover, the curves selected from the SNy map do not have the best performance and the 

surface normals components are still better than the depth and SI. Compared to using the VIS 

captures, the IR captures have higher probability to produce discriminative features for 

recognition, which mainly results from the high accuracy of surface normals reconstruction 

using IR light. 

6.7  Discussion and Conclusion 

In the past decade, many works have focused on developing recognition algorithms for captures 

with higher accuracy depth maps obtained by the laser scanners or structured light. However, 
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these 3D data acquisition systems that can generate captures with higher accuracy are hard to 

employ in the real world applications. The Photoface device was developed to address this 

problem and brought the potential to using this new type of captures for 3D face recognition. 

Therefore, to boost the development of 3D face recognition system, this chapter has an 

emphasis on employing existing well-designed algorithms for discriminative features 

extraction on the Photoface captures. To make a comparison of the recognition performances 

of various types of 3D captures, 360 captures of 20 subjects are selected from the Bosphorus, 

FRGC and Photoface databases, respectively. Using the surface normals components of the 

Photoface captures outperforms those of the Bosphorus and FRGC databases. The use of the 

shape index map and the recognition performances of the denoised shape index and surface 

normals are also explored in this chapter. 

To further extract the expression robust features for 3D face recognition, a subset of the 

Photoface database, the 3DE-VISIR database, is used to evaluate the recognition performance. 

The results demonstrate that it is likely to extract more robust features from the SNy and shape 

index maps in the VIS part. The recognition performance can be significantly improved using 

the captures reconstructed from IR light. However, the landmarking approaches proposed for 

captures with higher accuracy depth maps are not so effective for the IR captures as some 

protrusions, such as the nose and eye sockets, on the depth maps reconstructed from surface 

normals are flatter than their real-world counterparts, mainly resulting from the data loss during 

the reconstruction. Therefore, novel landmarking algorithms designed for such kind of 3D 

captures should be further explored. The original surface normals calculated directly from the 

outputs of Photoface device possess higher resolution, which will be further evaluated for the 

landmarking of Photoface captures in the next chapter. 

A comparative test using other published algorithms is not presented in this chapter as it is the 

first work that emphasizes the extraction of discriminative features on the nasal region using 

the Photoface captures. The 3DE-VISIR database was originally proposed for expression 

classification and therefore for one training sample scenario classification evaluation on the 

two types of light are not evaluated in other literature.    
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Chapter 7 Landmarking Using Surface Normals 

7.1  Introduction 

In the previous chapters, the advantages and motivations of using the Photoface captures have 

been discussed, which demonstrate the high potential to produce good recognition performance. 

However, as shown in Figure 7.1(f), the depth maps produced from the Photoface surface 

normals are flatter than their real-world counterparts with most protrusions understated [18], 

such as the nose tip, eye sockets and the sides of the nose, resulting in failed landmarking on the 

Photoface database using the curvatures based algorithms. Therefore, simply applying well-

designed landmarking algorithms to the Photoface captures is not guaranteed to produce a good 

performance. New landmarking algorithms designed for such kind of 3D captures should be 

further explored to address this problem. 

Surface normals (SNs) are an effective 3D shape representation and provide a good solution to 

address this problem, as the original data computed from the photometric stereo captures is full 

field SNs and albedo. Instead of using depth maps, the SNs of each point determine the 

orientation of the facial surface and provide a comprehensive description of facial local details 

and more facial geometrical information. Both the surface normals estimated from the high 

accuracy depth maps and recovered directly by the Photoface device have been reported to 

produce better recognition performance than the depth [9, 19], which demonstrate that SNs are 

a good 3D shape representation with high discriminatory power for both types of 3D captures. 

It is therefore interesting to explore the use of SNs for landmarking. To provide a good 

compromise between the accuracy and efficiency, a novel landmarking algorithm is proposed 

in this work for the captures with higher or lower accuracy of depth maps.  

In addition, to improve the overall consistency of the detected landmarks, the proposed 

approach can address the pose variations in yaw and roll directions and the deviation of nose 

tip. The Bosphorus and FRGC databases contain many 3D captures with high quality depth 

maps derived from their 3D point clouds and various expressions. The 3DVISIR database [18] 

is a small subset of the Photoface database captured by both visible light and near infrared light 

based photometric stereo acquisition system. These three databases that contain varying types 

of captures are used for landmarking performance evaluation, which shows the robustness of 

the proposed algorithm as well as the contribution of recognition performance improvement. 
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(a) 4 images captured using different light directions 

        
           (b) SNx                    (c) SNy                    (d) SNz                 (e) Albedo                     (f) Depth 

Figure 7.1: The outputs and reconstructed 3D captures of the Photoface device using near infrared light. 

(a) shows four 2D images obtained directly from the acquisition system. Captures from (b) to (e) are 

the SNs and albedo, respectively, estimated by 4 images. The depth in (f) is reconstructed from the SNs. 

7.2 Landmarking on the 3D Captures with High Accuracy Depth Maps  

Following [7], the nose tip is first detected by thresholding the SI and then the initial nasal 

region is cropped by the tip. After Principal Component Analysis (PCA) based alignment, most 

pose variations are corrected and the tip is further localized. However, some rotations still 

remain, especially in the yaw and roll directions, due to the unexpected facial occlusions or 

special facial structures, which are hard to correct using PCA based alignment. Therefore, in 

this section a novel landmarking algorithm is proposed, which aims to address the remaining 

pose variations using the nasal geometrical structure and the detected nasal landmarks, as well 

as further improve the accuracy and consistency of nasal landmarks.  

A brief description of the main steps of the proposed approach are shown in Figure 7.2. Using 

the thresholded SNs maps, the nasal bridge is first localized to approximately correct the roll 

variations. A new nose tip detection method is proposed, which uses the nasal bridge and nose 

profile signature. On the basis of the tip, candidate alar grooves regions are found by 

thresholding the SNs, which can help calibrate self-yaw rotations, relocate the tip and provide 

a reference map for the final alar grooves localization on the depth map. The nasal root and 

subnasal are localized in a similar manner to that used for the tip detection. As the nasal root 

detection is sensitive to roll rotation, a fine roll rotation calibration is proposed and the rotation 

angle is estimated using the detected root and tip. Finally, five nasal landmarks (the tip, root, 

subnasal and alar grooves) are localized on the well aligned 3D nose, as shown in Figure 7.2. 
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Figure 7.2: The flow chart of the proposed landmarking algorithm: Using the direct outputs of PCA 

based alignment, the cropped nasal region and the initial tip, the thresholded SNs and nasal bridge are 

first found for the coarse roll and self-yaw calibration. Then, the location of the root and tip are used 

for further roll calibration. Finally, the nose tip, root, two alar grooves and subnasal are localized on the 

aligned nasal region. Eye corners can be localized by thresholding the SNs. 

7.2.1 Nose Tip Detection and Coarse Roll Calibration 

As shown in the example capture in Figure 7.3(a), some pose variations still remain on the face 

after the PCA based alignment. These are mainly in the roll direction due to the occlusions by 

hair, which cannot be addressed by PCA based alignment and might greatly destroy the within-

class consistency of the extracted features and the recognition performance. To this end, a 

coarse roll rotation calibration is first employed to roughly align the nasal region before 

landmarking. As one of the most salient parts on the nasal region, the nasal bridge is found to 

estimate the approximate roll rotation angle.  

7.2.1.1 Nasal Bridge Detection  

As a distinct geometrical structure on the facial surface, the location of the nasal bridge can 

indicate the degree of roll variations as its centre should be vertical in the frontal view face. 

Therefore, using this prominent structure can provide a good reference to rapidly correct 

approximate facial roll variations. Compared to using the depth information, the thresholded 

SNx map (TSNx) provides an effective way to detect the nasal bridge as the SNx values in this 

region are close to zero, which can be easily detected by thresholding the SNx map. The TSNx 

region shown in Figure 7.3(c) is a matrix with the same size as SNx and is found by, 
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𝑇𝑆𝑁& = 𝑇𝑆𝑁&),v 𝑇𝑆𝑁&),v = 𝑓& 𝑖, 𝑗 			                                     (2) 

where  

𝑓& 𝑖, 𝑗 = 	1								𝑖𝑓	𝑆𝑁& 𝑖, 𝑗 < 𝑇&
	0								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                         (3) 

Tx is set to 0.1 for nasal bridge detection in subsequent experiments.  

To detect the nasal bridge in thresholded maps such as that shown in Figure 7.3(c), the main 

nasal region is first cropped on the basis of the location of the nose tip obtained in the PCA 

based alignment as shown in Figure 7.3(d). The nasal bridge is located as the largest connected 

region of the main nasal region as shown in Figure 7.3(e). For some 3D captures from the 

Bosphorus database, the extracted main nasal region is not fully connected, which mainly 

results from the noisy points or varying minor structure for some identities. Therefore, a 

morphological closing is applied to the thresholded SNx to correct this. 

        
(a) rotated capture                               (b) after alignment 

     
                        (c) TSNx                           (d) main nasal region              (e) detected nasal bridge 

Figure 7.3: Coarse roll rotation calibration using the detected nasal bridge: (a) An example of wrongly 

aligned captures from the Bosphorus database. (b) Results of calibration by the detected nasal bridge 

region. The candidate nasal bridge is first detected by TSNx in (c) and the main nasal region shown in 

(d) is further extracted on the basis of the location of nose tip. The biggest connected area shown in (e) 

is then detected from (d). Using the estimated ‘top’ (red rectangle) and ‘bottom’ (green rectangle), the 

rotation angle (α1) can be estimated, as describe in Section 7.2.1.2. 
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7.2.1.2 Coarse Roll Calibration 

As can be seen from Figure 7.3(e), the detected nasal bridge is an irregular structure whose 

vertical deviation is hard to estimate. Linear regression provides an effective approach to detect 

the central line on such structure and can be directly applied to compute the rotation angle. 

However, this method can greatly increase the computation complexity, which is not desirable 

for the coarse roll rotation correction. Therefore, an alternative and efficient method is 

proposed in this section to rapidly estimate the rotation angle of the y axis (α1) by finding the 

centroids, (topx, topy) and (bottomx, bottomy), of ‘top’ (red) and ‘bottom’ (green) of the nasal 

bridge.  

The previously detected nose tip is used to help localize the ‘top’ and ‘bottom’ centroids. On 

the detected nasal bridge map shown in Figure 7.3(e), the position of the nose tip detected in 

the alignment phase can indicate the horizontal range and the ‘bottom’ can be localized by the 

neighbouring points of the tip. The top of detected nasal bridge, shown as the red rectangle is 

used to estimate the ‘top’. Using the nasal bridge, all the pose variations in the roll direction 

have been approximately calibrated. As shown in Figure 7.3(b), the rotated capture F1(x1, y1, z1) 

is computed from the original capture F(x, y, z) with the rotation angle α1 in the x-y plane. 

𝛼, = 	 tanQ,
ra_jQ�arra$j
ra_}Q�arra$}

	                                                 (4) 

The new coordinates are then given by 

𝑥, 	= 	𝑥 ∗ 	cos 𝛼, − 𝑦 ∗ sin 𝛼,	
𝑦, = 𝑥 ∗	sin 𝛼, + 𝑦 ∗ cos 𝛼,

𝑧, = 𝑧
                                           (5) 

7.2.1.3 Nose Tip Detection 

The curvatures and SI are widely used for the nose tip detection as they can effectively detect 

the convex regions, with the tip located in the largest convex region. However, the main 

challenge of this method is how to accurately locate the tip within this region. In many 

landmarking algorithms, finding the centroid or the highest point is the most popular approach, 

which produces high accuracy and consistency tip’s location. In fact, this method is not always 

reliable when some unexpected problems occur during the data acquisition or the target 

captures contain special nasal structures, which cannot be addressed by general denoising 

algorithms. Figure 7.4 gives an example of such kind of captures. Simply considering the depth 

information of nasal region might not necessarily produce an accurate tip position. 
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          (a) Frontal view                      (b) Side view                                   (c) Upward view 

Figure 7.4: An example facial capture from the Bosphorus database (shown in three views) that suffers 

unexpected problems during the data acquisition, and fails in the tip detection when only the depth 

information is used. 

 
Figure 7.5: Using the nasal profile to detect the position of the nose tip in the y axis  

It is hard to apply a generalized denoising approach to address such problems as they may 

cause other unaffected captures to lose fine details. Also, the detection of such captures is a 

challenging issue. Instead of further smoothing those captures, using the TSNx map, for 

example that in Figure 7.3(c), and the nasal profile shown in Figure 7.5 can provide a novel 

and effective nose tip (Tipx, Tipy) detection approach. First, for a frontal view facial capture, 

the position of the nose tip in the x axis, Tipx, is determined by the nasal bridge, which can be 

estimated from its neighbouring points on the nasal bridge by finding the centroid of the green 

box shown in Figure 7.3(e). Using this estimated Tipx, the nasal profile is found by intersecting 

a plane that is perpendicular to the x-y plane, which results in a curve on the nasal surface, such 

as that shown in Figure 7.5. This curve is further smoothed to remove the noise and the position 

of the nose tip in the y axis, Tipy, is located at the top of the profile. 

7.2.2 Alar Grooves Detection and Self-Yaw Rotation Calibration  

In most landmarking methods employing the depth map, the location of the alar grooves might 

suffer the influence caused by the noisy points or inaccurate nose tip position. In this section, 

the use of thresholded SNs aims to predict an accurate candidate alar grooves map and further 

correct the inaccurate tip and yaw rotations at the same time. Using the candidate adjusted 

maps, the alar grooves are localized on the depth map. The main steps are shown in Figure 7.6. 
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Candidate region detection by TSNs

Alar grooves map

Tip relocation Self-yaw correction

Candidate region adjustment

Alar grooves localization on the depth  

Figure 7.6: The flow chart of the proposed alar grooves detection approach. 

7.2.2.1 Candidate Region Detection 

Compared to other nasal and adjoining cheek regions, the SNs of nasal alar grooves and nostrils 

possess higher values in the SNx and SNy maps, which results in very small value in SNz. 

Therefore, in the example SNz map shown in Figure 7.7(a), the outline of the nasal alar grooves 

and nostrils is very salient in comparison with other regions around the nasal region and the 

candidate alar grooves can be obtained directly from the SNz map. By thresholding the SNz map, 

the initial candidate region is found, see Figure 7.7(b). This approach is more straightforward 

than using both the SNx and SNz maps [145]. Although some small patches on the upper nasal 

region are also included in the thresholded map, these can be further excluded by using the 

nose tip as a reference.  

           
                                            (a)                                                     (b) 

Figure 7.7: Candidate alar grooves detection: (a) shows the SNz map of nasal region and darker region 

denotes lower value. The alar grooves and nostrils are more salient than the other parts on the SNz map. 

(b) The thresholded SNz map used to find the candidate alar groove region. Based on the location of 

nose tip (green point), two horizontal red lines are used to determine the upper and lower boundary of 

the target region.  
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The 𝐴𝑙𝑎𝑟	𝑔𝑟𝑜𝑜𝑣𝑒𝑠	$%_, see Figure 7.7(b), is a matrix with the same size as SNz and is given 

by 

𝐴𝑙𝑎𝑟	𝑔𝑟𝑜𝑜𝑣𝑒𝑠	$%_ = 𝐴𝑔),v 𝐴𝑔),v = 𝑓� 𝑖, 𝑗 			                               (6) 

where, given SNz, 

𝑓� 𝑖, 𝑗 = 	1								𝑖𝑓	𝑆𝑁� 𝑖, 𝑗 < 𝑇�
	0								𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                          (7) 

Tz is set to 0.3 for candidate alar grooves thresholding. Using the location of the nose tip [green 

point in Figure 7.7(b)] detected in the previous part [7], two red lines are defined at a fixed 

vertical separation from the original nose tip, which is detected from the depth map.  

The resulting horizontal region between the two red lines of height i pixels is regarded as the 

target region in which to find the candidate nasal alar grooves. In experiments, a suitable value 

has been found to be i = 17. For each line in this region, the initial candidate alar grooves points, 

init_Lefti and init_Righti, are obtained by finding the left and right extrema, respectively. 

However, self-occlusion caused by pose variations and inaccurate nose tip location greatly 

reduce the landmarking accuracy. To address this problem, nose tip relocation, self-yaw 

calibration and missing points interpolation are proposed. 

7.2.2.2 Nose Tip Relocation  

In the last section, the position of nose tip (Jtip) has been localized by the nasal bridge, which 

provides a coarse and reliable estimation. To further refine the previous detected nose tip and 

calibrate the remaining yaw rotations, the candidate alar grooves is proposed to generate a new 

nose tip location (J_newtip). Combined with these two types of estimations of the nose tip, the 

rotation angle in yaw direction is estimated by their discrepancy. 

The initial candidate points, init_Lefti and init_Righti, can be presented as i pairs of candidate 

points. Most pairs on the frontal view captures are relatively symmetrically distributed on each 

side of the nose. Therefore, it is possible to further refine the location of the nose tip using the 

detected pairs. Those pairs can be found by  

𝐷𝑖𝑠𝑡_𝑙𝑒𝑓𝑡) = 𝐽r)_ − 𝑖𝑛𝑖𝑡_𝐿𝑒𝑓𝑡)	
𝐷𝑖𝑠𝑡_𝑟𝑖𝑔ℎ𝑡) = 𝑖𝑛𝑖𝑡_𝑅𝑖𝑔ℎ𝑡) − 𝐽r)_
𝐷) = 𝐷𝑖𝑠𝑡_𝑙𝑒𝑓𝑡) − 𝐷𝑖𝑠𝑡_𝑟𝑖𝑔ℎ𝑡)

𝐷� = min 𝐷)	 𝐷𝑖𝑠𝑡_𝑙𝑒𝑓𝑡) ≠ 0	 ∩ 𝐷𝑖𝑠𝑡_𝑟𝑖𝑔ℎ𝑡) ≠ 0 		

                         (8) 
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where the distances between the initial candidate points (init_Lefti and init_Righti) and current 

nose tip (Jtip), Dist_lefti and Dist_righti, are first calculated. Then, the absolute distance, Di, is 

obtained by calculating the inconsistencies between Dist_lefti and Dist_righti, which helps find 

the most appropriate and symmetric pairs, Ds, for the nose tip relocation.  

Some initial candidate pairs with an invalid distance are first removed and the pairs with 

minimum distance difference are used to predict the new nose tip. Also, there is no further 

adjustment of the nose tip when the value of Ds is smaller than Ts, which means the current 

nose tip only possesses a small offset when compared to the estimation of the points pairs. It is 

not necessary to address such deviations as the human nose is not strictly symmetric. However, 

if the value of Ds is bigger than Ts, which means the offset of current nose tip is very big, the 

current tip should be relocated by calculating the average distance of the existing set of pairs 

with low Di, using  

𝐽_𝑛𝑒𝑤r)_ =
	 ,
-*
∗ 𝑖𝑛𝑖𝑡_𝑅𝑖𝑔ℎ𝑡� 𝑖*

)\, + 𝑖𝑛𝑖𝑡_𝐿𝑒𝑓𝑡� 𝑖 	 								𝐷| > 𝑇�
																																							𝐽r)_																																													𝐷� ≤ 𝑇�

              (9) 

Therefore, using the candidate alar grooves points, nose tip locations with big deviations can 

be approximately calibrated and further used for yaw rotation calibration. Noisy data remaining 

on the facial surface might be the main reason for these less accurate tip locations. However, 

some other captures fail in the tip detection due to their intrinsic nose characteristics, for 

example of self-yaw rotated nose, which will be further explained and addressed in the next 

section 

7.2.2.3 Self-yaw Rotation Calibration 

For the majority of frontal view facial captures, the position of the nasal bridge is generally in 

the centre of the whole nasal region, which should also contain the nose tip. Therefore, if the 

estimated J_newtip is not within the nasal bridge region, the captures must contain the yaw 

rotation. Actually, in the PCA based alignment, nearly all the pitch and yaw rotations have 

been successfully addressed. However, for around 10% of captures, some pose variations in 

yaw on the nasal region still remain. In addition to the basic facial pose variations, some yaw 

rotations result from special nasal anatomical structure variations for some identities, as shown 

in Figure 7.8(a). The main drawback of such structure is that the x axis might be reversed after 

PCA based alignment, which greatly decreases the within-class consistency of landmarking.  
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                                  (a) Self-yaw rotation                          (b) Corrected nasal region 

Figure 7.8: An example capture with self-yaw rotation from the Bosphorus database and its calibration 

results. The colour changes shown on the nasal region of (a) demonstrate that the nose suffers the yaw 

rotation, which is not caused by the facial pose variations as the cheeks regions are shown as frontal.  

 

(a) Facial transection  

 
(b) Self-yaw rotation estimation 

Figure 7.9: An example of facial transection passing through the nose tip: Using planes that are 

perpendicular to the x-y plane results in a series of intersection curves shown in blue on the nasal surface. 

The rotation angle can be estimated by the detected points on this curve in terms of the tip (red) that is 

computed by the candidate alar grooves (lake blue) and bridge point (green). 
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This kind of yaw rotation presents more difficulties to the alar grooves localization: the rotated 

nose will cause the self-occlusion on one side of the nose corner and it is also hard to find the 

accurate features in the SNs. In general, most frontal view noses possess a relatively symmetric 

structure centred on the nose bridge, which can help design an effective landmarking strategy 

based on the symmetry. Therefore, such individuals with self-yaw variations might increase 

the computational complexity of the alar grooves detection.  

To address the self-yaw rotation, the locations of the previous detected nose tip, Jtip and J_newtip, 

are first applied to detect such rotations. Then, the detected nasal bridge shown Figure 7.3(c) 

and candidate alar grooves maps can help address the self-yaw variations. The nasal bridge is 

one of the most salient geometrical structures on the face surface, which is not be presented 

upright when face is rotated in the yaw direction. The detection of nasal bridge is complicated 

using depth information. However, the nasal bridge is more salient on the SNx map and can be 

robustly detected by thresholding SNx (TSNx), even when the whole nasal region has self-yaw 

rotations.  

When combined with the candidate alar grooves (init_Right and init_Left) matrix obtained in 

the previous section, which provide a reliable prediction of nose corners, the yaw rotation angle 

(β) is estimated by n valid pairs of corner candidate points and their corresponding nasal bridge 

points (Nasalbridge) shown as green in Figure 7.9(b). The rotated capture F2(x2, y2, z2) is 

computed from F1(x1, y1, z1) with a rotation angle β in the x-y plane.  

To calculate the rotation angle, n facial transections around the nasal tip are found by 

intersecting planes that are perpendicular to the x-y plane. Figure 7.9 illustrates an example of 

transection passing through the nose tip, resulting in an intersection on the 3D facial surface 

shown in blue. On this transection, there are two nose corners (lake blue) which are the 

candidate alar grooves, a bridge point (green) and the centre point (red). β is obtained by 

calculating the rotation angle from the bridge point to the tip by 

𝛽 = ,
*
∗ tanQ,

�%�%������ 	())Q
�
�∗()*)r_¡)¢sr ) �)*)r_£q¤r ) )

pq_rs	(�%�%������ 	 ) )
*
)\,                       (10) 

and the rotated coordinates (x2, y2, z2) are found by 

𝑥- 	= 	 𝑥, ∗ 	cos 𝛽 − 𝑧, ∗ sin 𝛽	
𝑦- = 𝑦,

𝑧- = 𝑥, ∗ 	sin 𝛽 + 𝑧, ∗ cos 𝛽
                                            (11) 
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After the coarse roll and self-yaw calibrations, the nose tip is relocated using both the 

neighbouring points found on the nasal bridge and the prediction by the candidate alar grooves 

points. 

7.2.2.4 Reconstruction of Missing Points and Candidate Region Adjustment  

Noise or self-occlusion can result in some missing or false detected points in the candidate alar 

grooves region defined in Figure 7.7(b). To address these problems, using the newly adjusted 

nose tip (J_newtip), the distances from the candidate points to the central point are recalculated 

and the missing points are reconstructed by the points from the same lines or interpolated by 

the neighbouring points, on the basis of the threshold Tc. According to the pairs previously used 

to predict the new nose tip, Tc is found by calculating the average distance from the candidate 

points to the new nose tip using,  

𝐷𝑖𝑠𝑡_𝑙𝑒𝑓𝑡) = 𝐽_𝑛𝑒𝑤r)_ − 𝑖𝑛𝑖𝑡_𝐿𝑒𝑓𝑡)	
𝐷𝑖𝑠𝑡_𝑟𝑖𝑔ℎ𝑡) = 𝑖𝑛𝑖𝑡_𝑅𝑖𝑔ℎ𝑡) − 𝐽_𝑛𝑒𝑤r)_
𝐷) = 𝐷𝑖𝑠𝑡_𝑙𝑒𝑓𝑡) − 𝐷𝑖𝑠𝑡_𝑟𝑖𝑔ℎ𝑡)

𝐷� = min 𝐷)	 𝐷𝑖𝑠𝑡_𝑙𝑒𝑓𝑡) ≠ 0	 ∩ 𝐷𝑖𝑠𝑡_𝑟𝑖𝑔ℎ𝑡) ≠ 0

𝑇¥ = 	
,
$
∗ 𝐷𝑖𝑠𝑡_𝑙𝑒𝑓𝑡� 𝑖$

)\, 	

                         (12) 

where Dist_lefti and Dist_righti, are the distances between the initial candidate points and 

current nose tip. The absolute distance, Di, is obtained by measuring the difference between 

Dist_lefti and Dist_righti, which helps find the most appropriate and symmetric pairs (Ds). s 

indicates the selected pairs for the missing points reconstruction.  

Points reconstructed 

by the left point in the same line

by the neighbouring points

Candidate alar grooves points  

Nose tip

Nose 
Alar

Missing points  

Figure 7.10: The diagram describes the missing points reconstruction and candidate alar grooves 

adjustment. For each missing or false detected point on the right alar, Dist_righti, they are reconstructed 

on the basis of the pair on the same line. If the pair on the left is well detected, which is measured by 

Tc, the point on the right can be reconstructed directly by this pair and the location of nose tip. Otherwise, 

the point on the right should be interpolated by the neighbouring points. 
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For each missing or false detected point, the distance between its symmetrical point in the same 

line and the nose tip is first compared with Tc, which determines whether it is reconstructed by 

the pair in the same line or neighbouring points. The correction methods of different kinds of 

missing or false detected points are described in Figure 7.10. 

7.2.2.5 Alar Grooves Localization on the Depth Map  

By using the thresholded SNs maps and the location of the nasal bridge, the resulting alar 

grooves provide an accurate reference map for final alar grooves landmarks on the depth map. 

Finally, the depth information is further applied to produce more accurate alar grooves on the 

3D facial surface. More specifically, the candidate alar grooves points shown in lake blue are 

first localized on the facial transection, as shown in Figure 7.9(b), which produce an 

approximate location on the surface normal maps.  

To refine the alar grooves more locally on the depth map, the facial surface curve resulting 

from intersecting the plane, which is perpendicular to the x-y plane, is used. On the facial curves 

shown in Figure 7.9(b), the two alar grooves should be located at the inflexion points on the 

facial curve. In a similar manner to the nose tip localization shown in Figure 7.5, the most 

effective way to detect these points is using the rotated curves. Specifically, from the nose tip, 

the facial curve is first divided into two halves and the left and right half are then rotated 

clockwise and counter-clockwise in the x-y plane, respectively. The two alar grooves are then 

located at the local minima of two halves. 

7.2.3 Fine Roll Rotation Calibration and Root Localization 

7.2.3.1 Nasal Root and Subnasal Localization 

Nasal root localization is the most challenging step in the landmarking process. It is hard to 

define an accurate root location as the root area is relatively flat for some types of human nose. 

Using a reference area provided by thresholded surface normal maps can successfully estimate 

the candidate nasal root position. However, simply calculating the centre of this area might not 

produce an accurate root position [145]. Therefore, using a similar approach to the nose tip 

adjustment, the position of nasal root and subnasal in x axis are first narrowed by using the 

detected nasal bridge shown in Figure 7.3(d), as these two landmarks should be located within 

the nasal bridge. The fusion of both thresholded SNs maps and nasal bridge produces a 

relatively accurate horizontal positions of the root and subnasal, respectively.  
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For their positions in y axis, the facial profile curves which are generated on the basis of the 

horizontal prediction by the nasal bridge are proposed to draw on the depth and SNy maps in 

Figure 7.11.  

 

(a) Nasal profile signature on the depth map: the blue curve is the original profile signature, whose clockwise 
(red) and counter clockwise (green) rotation are generated to localize the root and subnasal, respectively. 

 

(b) Nasal profile signature on the SNy map. The nasal root is located on the top of nasal bridge, which is 
relatively flat. The nose tip presents as the inflexion point on this curve. The subnasal locates at the fast 
decreasing point. 

 

(c) Gradient of the blue curve in (b) 

Figure 7.11: Root and subnasal localization using facial profile signatures on the Bosphorus database. 
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These two landmarks should locate at the local minima of facial profile curves on the depth 

map. However, it is hard to find the local minima on the profile curves of certain captures, for 

example of the blue curve shown in Figure 7.11(a). To address this problem, the clockwise 

rotated curve with the rotation angle 10˚ shown in red in Figure 7.11(a) has been proposed to 

find the local minima and finally used to localize the root [143]. In a similar manner, the 

subnasal is located at the local minima of the counter clockwise rotated green curve with 

rotation angle 15˚, as shown in Figure 7.11(a). 

According to the structure of nasal region, the nasal root is located on the top of nasal bridge, 

which is relatively flat on the SNy map and the subnasal locates at the fast decreasing point. 

Therefore, combined with the position provided by the SNy map as shown in Figure 7.11(b), 

the nasal root and subnasal can be localised at the inflexion points in Figure 7.11(a). The only 

difference is that the reference area of subnasal cannot be directly provided by the SNy maps, 

which is presented as the fast decreasing point on the profile signature curve obtained from SNy 

map, as shown in Figure 7.11(b). Therefore, the gradient of the SNy profile signature curve is 

generated to help localize the subnasal, as illustrated in Figure 7.11(c), where the subnasal is 

clearly marked as local minimum. 

Therefore, all of those significant steps mentioned above in terms of thresholded surface 

normal maps, the detected nasal bridge and nasal profile signatures produce a relatively 

accurate prediction in both vertical and horizontal position of the nasal root and subnasal. 

7.2.3.2 Fine Roll Rotation Adjustment by Landmarks 

As the detected nasal bridge region is an irregular structure, it can only help provide an 

approximate rotation angle and a rough pose alignment. In some captures, such as the one 

shown in Figure 7.12(a), there is slight roll rotation that can be effectively detected by the 

locations of the nasal root and tip. A simple way to address this problem is using the detected 

root and tip, shown as blue points in Figure 7.12(a), to calculate the rotation angle (α2) between 

the blue line from root to tip and the y axis (shown in red). As shown in Figure 7.12(b) the 

rotated capture F3(x3, y3, z3) is computed with α2 in the x-y plane from F2(x2, y2, z2) by 

𝛼- = 	 tanQ,
¦aarjQr)_j
¦aar}Qr)_}

                                                   (13) 

and the rotated coordinates (x3, y3, z3) are found by 
𝑥3 	= 	𝑥2 ∗ 	cos𝛼2 − 𝑦2 ∗ sin𝛼2	
𝑦3 = 𝑥2 ∗	sin𝛼2 + 𝑦2 ∗ cos𝛼2

𝑧3 = 𝑧2
                                         (14) 



133 

 
               (a) facial capture with slight roll rotation                  (b) aligned capture 

Figure 7.12: Roll rotation calibration using the detected landmarks.  

7.2.4 Eye Corners Detection 

7.2.4.1 Eye Regions Localization by Thresholded SNs 

In the first stage, the approximate eye region in horizontal is found by thresholding surface 

normal maps. The concave region on both sides of nasal root, as the white lines shown in Figure 

7.13(a), possess distinct geometry structure from other parts around the nasal root on the depth 

and surface normal maps. Instead of calculating and thresholding the curvatures, simply 

thresholding SNs can also produce a reliable candidate eye corner (CEC) position. The surface 

normal on this region is partial to x and deviates from y direction, which brings the possibility 

to find the regions shown in Figure 7.13(b), according to the following equation. Tx and Ty are 

set to 0.7 and 0.15. 

𝐶𝐸𝐶 = 𝐶),v 𝐶),v = 𝑓&,¨(𝑖, 𝑗)                                             (15) 

Where given 𝑆𝑁& and 𝑆𝑁¨ 

𝑓&,¨ 𝑖, 𝑗 = 1				(𝑖𝑓	𝑆𝑁& 𝑖, 𝑗 > 𝑇&) ∧	(𝑆𝑁¨ 𝑖, 𝑗 < 𝑇 )	
0				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                         (16) 

   
(a) Target concave region around the root      (b) Thresholded SNs                    (c) SNs after postprocessing 

Figure 7.13: Candidate eye corner localized by the thresholded SNs 
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As shown in Figure 7.13(b), because of the noisy points, the detected CEC region might not be 

connected in some parts. Therefore, the morphological close is first applied on the initial CEC 

using a disk-shaped structuring element with radius 5. Also, the morphological erosion is 

employed to remove some small noisy points. Figure 7.13(c) illustrates the final candidate 

region after post-processing. 

7.2.4.2 Corner Localization 

Using the detected CEC region as well as the alar grooves found above, the final eye corner 

region can be fixed in the rectangular region. As shown in Figure 7.13(c), the top and bottom 

boundary (red lines) are found according to the CEC region and the left and right ones (green 

lines) are determined by the detected alar grooves. The whole final eye corner region can be 

divided into two sides on the basis of the nasal root and the eye corners are located in the global 

minimum of each side. 

7.3 Landmarking Performance Evaluations 

7.3.1 Within-class Consistency Evaluation 

Although the Bosphorus database provides some manually detected landmarks, finding the 

ground truth locations for these landmarks is still very challenging. Evaluating the within-class 

consistency is a widely used strategy, which is verified by calculating the Euclidean distance 

between each landmark for captures from the same subject. To be more specific, all the captures 

are pose aligned and translated to the nose tip and the mean and standard deviation (std) of the 

distance (in mm) of the detected landmarks for all the subjects are illustrated in Table 7.1. 

These results demonstrate that the proposed landmarking method possess high within-class 

consistency in comparison with [7].  

In a similar manner, the landmarks’ consistency is also estimated using the FRGC v.2 database 

as this version contains more expression variations in comparison with Spring 2003 folder. As 

can be seen from Table 7.1, the within-class consistency of nasal root has been significantly 

improved. For comparison with [7], the subnasal evaluation is not included in this evaluation. 

Using the landmarks’ within-class consistency can determine whether the target landmark is 

localized in the same point or area for each capture of the same identity. It does produce a good 

reference for landmarking evaluations, especially for the neutral captures or captures with very 

few variations on the nasal region. However, in real world application scenarios, most captures 

have expressions which might cause facial surface movements. Therefore, the target landmarks 
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might shift as the shape of the nasal region changes, and it is not appropriate to evaluate the 

landmarking by the widely used within-class consistency calculation method in these cases. 

To further explain the drawback of current within-class consistency evaluation methods and 

demonstrate the high consistency of the proposed landmarking algorithm when the captures 

contain less nasal region variations, the within-class consistency is further computed using 

different types of expressions from the Bosphorus database. The Bosphorus database contains 

various types of expressions, including 6 basic expressions, the expressions occur on different 

face action units (UFAU or LFAU) and their combinations (CAU). On the basis of the labels 

provided in the database, all the captures from 105 subjects are divided into 34 groups as shown 

in Table 7.2 and the consistency of the nasal root and two alar grooves are calculated in each 

group. The neutral capture of each identity is applied to compute the consistency. 

As can be seen from Table 7.2, different expression variations on the nasal region have more 

or less influence on the landmarking consistency. For example, upper face action units (UFAU), 

which cause the nasal root area to stretch or extrude, show poor consistency of nasal root. In 

contrast, the lower face action units which exhibit movement in lower parts of face demonstrate 

poor consistency for the alar grooves, especially for the captures contain happy expression. All 

of those confirm the drawback of using the consistency to evaluate the landmarking 

performance of some non-neutral captures.  

Table 7.1: A comparison of within-class landmarks consistency tested on the Bosphorus and FRGC v.2 

databases. All the captures are pose aligned and translated to the nose tip and the mean and std of the 

distance of the detected landmarks for all the subjects are illustrated. 

Database Landmarks 
Emambakhshm et al. [7] Proposed 

Mean Std Mean Std 

Bosphorus 

Root  3.72 2.40 1.79 1.53 

Alar_L  2.06 1.50 1.31 1.03 

Alar_R  2.06 1.53 1.32 1.03 

FRGC 

Root  3.27 2.10 1.84 1.15 

Alar_L  1.29 0.98 1.24 0.89 

Alar_R  1.29 0.92 1.17 0.89 
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Table 7.2: Within-class landmarks consistency evaluation using different types of expressions. All the 

captures contain the expression variations from the Bosphorus database are divided into 34 groups and 

the mean distance of the landmarks for all the subjects in each group is calculated. 

Types of 

expressions 

Mean Types of 

expressions 

Mean 

Root Alar_L Alar_R Root Alar_L Alar_R 

CAU_A12A15_0 1.81 1.75 1.45 LFAU_17_0 1.42 1.60 1.39 

CAU_A22A25_0 1.33 1.30 1.05 LFAU_18_0 1.57 1.40 1.28 

CAU_A26A12lw_0 1.29 1.18 1.15 LFAU_20_0 1.63 1.40 1.40 

E_ANGER_0 2.02 1.27 1.13 LFAU_22_0 1.66 1.33 1.24 

E_DISGUST_0 2.68 1.57 1.69 LFAU_23_0 1.64 1.33 1.27 

E_FEAR_0 1.55 1.33 1.14 LFAU_24_0 1.50 1.32 1.26 

E_HAPPY_0 1.54 2.67 2.29 LFAU_25_0 1.18 1.10 1.07 

E_SADNESS_0 1.79 1.63 1.30 LFAU_26_0 1.29 1.31 1.13 

E_SURPRISE_0 1.40 1.25 1.27 LFAU_27_0 1.69 1.28 1.35 

LFAU_10_0 2.26 1.95 1.84 LFAU_28_0 2.15 1.57 1.45 

LFAU_12LW_0 1.28 1.07 1.39 LFAU_34_0 1.76 1.28 1.27 

LFAU_12L_0 1.34 1.41 1.57 LFAU_9_0 4.52 1.67 2.03 

LFAU_12R_0 1.47 1.44 1.34 UFAU_1_0 2.05 1.18 1.31 

LFAU_12_0 1.50 1.95 2.26 UFAU_2_0 1.61 1.15 1.04 

LFAU_14_0 1.44 1.53 1.32 UFAU_43_0 1.52 1.12 1.14 

LFAU_15_0 1.46 1.63 1.27 UFAU_44_0 1.97 1.16 0.98 

LFAU_16_0 1.30 1.11 0.99 UFAU_4_0 2.25 1.31 1.28 

Compared to captures containing nasal region variations, the proposed landmarking algorithm 

demonstrates good within-class consistency for the landmarks that have less surface changes. 

These include most of the alar grooves detected in UFAU groups, the root detected in LFAU 

groups and some alar grooves detected in LFAU groups. Some types of expression which cause 

very few facial movements, for example LFAU_16_0 and LFAU_25_0, provide a promising 

within-class consistency. 

Therefore, the widely used within-class consistency evaluation method is not an appropriate 

manner to demonstrate the landmarking accuracy, when the subjects contain both the neutral 

and non-neutral captures. For the captures contain expression variations, the successfully 

detected landmarks might not produce a good consistency due to the facial surface movement. 

The measurement of such movement by a generalized method is a challenging issue. The 
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recognition performance evaluation on the features extracted by the detected landmarks 

provides a reasonable and effective way to indicate the landmarking accuracy, which will be 

further discussed in the next section. 

Emambakhshm et al. [143] proposed a new within-class consistency calculation method, which 

is obtained by calculating the standard deviation. For each given landmark, the standard 

deviations of x, y and z axis are first estimated and their mean standard deviation is considered 

as the consistency. Using this calculation method, a comparison of the within-class consistency 

between the proposed landmarking and the landmarking explained in [143] is shown in Table 

7.3.  

The results demonstrate that the proposed landmarking algorithm is more consistent than that 

illustrated in [143]. The within-class consistency of all the detected landmarks have been 

significantly improved, especially for the captures in the FRGC database. 

Table 7.3: A comparison of within-class landmarks consistency tested on the Bosphorus and FRGC 

databases using the method proposed in [143]. All the captures are pose aligned and translated to the 

nose tip and the mean and std of the standard deviations of the detected landmarks for all the subjects 

are illustrated. 

Database Landmarks 

Emambakhshm et al. 

[143] 
Proposed 

Mean Std Mean Std 

Bosphorus 

Root  1.06 0.58 0.75 0.20 

Alar_L  1.06 0.62 0.49 0.12 

Alar_R  1.19 0.60 0.48 0.12 

Eye_corner_L 1.76 1.03 1.03 0.22 

Eye_corner_R 2.12 1.14 1.01 0.22 

Subnasal 1.11 0.38 0.58 0.21 

FRGC 

Root  2.04 1.09 0.55 0.32 

Alar_L  1.29 0.82 0.29 0.20 

Alar_R  1.22 0.62 0.31 0.21 

Eye_corner_L 2.95 1.61 0.87 0.48 

Eye_corner_R 2.91 1.53 0.91 0.51 

Subnasal 1.86 0.85 0.47 0.29 
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7.3.2 Recognition Performance Evaluation 

In addition to using the within-class consistency, the effectiveness of these newly detected 

landmarks can also be evaluated by using the recognition performance, especially for the 

captures containing nasal region variations. Using the location of nasal root, tip and alar 

grooves, the Nasal Curves Matching (NCM) algorithm proposed in [7] is applied to extract 75 

nasal curves to build the feature space. In NCM, each curve was resampled to 50 points. Gao 

et al. [34] used only 15 points per curve instead of 50 points and proved that fewer points on 

the nasal and cheek region can also produce an acceptable recognition performance, even with 

the dimensionality of the feature space greatly reduced. The 75 nasal curves with 15 points per 

curve that were used to extract discriminative features are shown in Figure 6.1, and these are 

used to evaluate the recognition performance of the new landmarking algorithm. 

Using the leave-one-out (LOO) cross validation with city-block distance, the recognition rate 

of each single curve is obtained. To demonstrate the recognition performance improvement of 

the proposed landmarking algorithm, the method proposed in [7] is used for comparison. In 

Figure 7.14, the recognition rate improvement of each curve is calculated by the subtraction of 

recognition rate obtained from that of the proposed algorithm [7]. Positive value means the 

recognition performance using the proposed one is higher. The four components, Depth, SNx, 

SNy and SNz, are evaluated individually. 

As can be seen from Figure 7.14, the recognition performance of most curves extracted from 

Depth (63 curves) and SNx (68 curves), and some curves on the SNy (54 curves) and SNz (55 

curves) are improved by using the proposed landmarking algorithm. The recognition rate of 

some curves can increase by ~15%, in particular on the Depth and SNz maps. In general, the 

recognition performance has been greatly improved using the proposed method and curves 

extracted from Depth and SNx experience greater increase. There are very few curves suffered 

about 5% decrease, especially for{ features extracted from SNy and SNz maps. 

To reduce the dimensionality and find the most discriminative set of curves, forward sequential 

feature selection is applied to the 75 curves, combined with the leave-one-out cross validation 

and nearest neighbour classifier. The R1RRs obtained from different components of the 3D 

data as the size of the feature set increases, determined by the number of curves selected, are 

shown in Figure 7.15. Compared to the NCM [7], the recognition performance of all the 

components (Depth, SNx, SNy and SNz) has been significantly improved by the proposed 

landmarking algorithm.  
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(a) Depth                                                              (b) SNx 

     
(c) SNy                                                                       (d) SNz 

Figure 7.14: Recognition performance improvement of each single curve using the proposed 

landmarking algorithm on the Bosphorus database. The red dots in each curve indicate recognition rate 

improvement in comparison with using the landmarks in NCM algorithm [7]. Positive recognition rate 

improvement means the recognition performance using the proposed landmarking is higher. 

Given the best combination of curves selected by FSFS in Figure 7.15 for each component, the 

recognition performance is further evaluated under both identification and verification 

scenarios using these selected curves. The equal err rate (EER) is used for verification and the 

R1RR for identification. Kernel Fisher’s Analysis [139] with the polynomial kernel is used to 

calculate the similarity between the gallery and probe captures and the cosine distance is used 

in the feature matching. 

In the Bosphorus database, nearly all the captures contain different degrees or types of 

expressions and thus evenly dividing them into the training and testing sets guarantees that the 
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various expressions are evenly distributed in both subsets. As this work aims to find the most 

discriminative and expression robust features, only those captures without large pose variations 

or occlusions are considered. The number of curves and the recognition rate they produce are 

illustrated in Table 7.4. The recognition performance of the four components tested under both 

scenarios has been significantly improved by the new landmarking method, especially for 

Depth and SNx, where the improvement is 8-10%. 

 
Figure 7.15: Rank one recognition rate against the number of nasal curves selected by the FSFS 

algorithm on the Bosphorus database, using both the proposed landmarking algorithm shown in bold 

and NCM [7] shown in the line with dots. 

Table 7.4: Recognition performance evaluation using selected curves combination for four components 

under both identification and verification scenarios on the Bosphorus database. LOO cross validation 

and KFA classifier are used for feature selection and recognition performance evaluations, respectively. 

  Depth SNx SNy SNz 

NCM [7] 

No. of Curves 
selected by LOO 

(R1RR) 

37 

(83.64%) 

31 

(85.52%) 

37 

(87.33%) 

42 

(91.89%) 

R1RR (KFA) 84.02% 82.24% 91.72% 93.79% 

EER (KFA) 5.78% 6.92% 3.07% 2.85% 

Proposed 

No. of Curves 
selected by LOO 

(R1RR) 

29 

(91.19%) 

34 

(90.81%) 

38 

(94.79%) 

23 

(95.03%) 

R1RR (KFA) 92.51% 92.29% 95.29% 95.22% 

EER (KFA) 3.21% 3.27% 1.71% 2.07% 
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The recognition performance has also been evaluated on the FRGC v.2 database, which 

produces similar results to the Bosphorus captures. The proposed landmarking algorithm 

clearly outperforms the NCM in terms of the single curve comparison, LOO cross validation 

for curves selection and recognition performance evaluation under identification and 

verification scenarios. 

7.4 Landmarking Using Reconstructed 3D Captures from Photometric 

Stereo  

As shown in Figure 7.1(a), the original outputs of the Photoface device is four images with 

different light directions. The surface normals and albedo with high resolution and accuracy 

shown in Figure 7.1(b)-(e) can be calculated from these four images on the basis of the 

Lambert’s law. Compared to the depth maps reconstructed from 3D point clouds in other 

databases, the depth maps of Photoface captures as shown in Figure 7.1(f) is reconstructed 

from the SNs. The nasal landmarking approaches that successfully applied to the higher 

accuracy depth maps might not necessarily achieve good performance using relatively lower 

accuracy depth maps reconstructed from surface normals as many fine details and local minor 

structures on the nasal region for feature detection are missing, especially for employing the 

near infrared light.  

Instead of using the smoothed depth maps, the resulting dense field of SNs and albedo from PS 

device might well suitable for the feature detection on the Photoface captures. Therefore, to 

avoid the loss of useful local features during the reconstruction and inspired by the landmarking 

approach using SNs in the previous sections, an alternative landmarking approach is proposed 

by utilising the SNs and albedo under near infrared light. The main advantage is that SNs can 

provide better representations of the 3D captures from photometric stereo, as more significant 

information is missing during depth reconstruction (see Figure 7.1). In addition, it is beneficial 

for the real world applications, as the reconstruction of depth information increases the 

computation complexity. 

7.4.1 Nose Tip and Root Localization 

7.4.1.1 Candidate Region Detection by Thresholding the Surface Normals 

Nose tip detection is a vital and initial step in nasal landmarks localization, which provides the 

reference position for other nasal landmarks. However, for the Photoface captures, the 
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reconstructed depth map is not used in the landmarks localization, which means that the 

landmarking diagram proposed in Figure 7.2 cannot be applied directly as no initial tip position 

provided for other landmarks localization. Therefore, the nose tip should be first detected in 

the landmarking of the Photoface captures. Compared to other parts on the face, the nose tip is 

also easy to localize as its geometrical properties are salient in most 3D representations, 

including depth, surface normals, shape index and curvatures. For example on the SNs, the 

nose tip and its neighbouring points present higher values on the SNz map and very small values 

on the SNx and SNy maps, which help localize the nose tip by thresholding three components 

of SNs. 

In addition, the upper part of the nasal root has similar properties on the surface normals maps. 

Therefore, both the candidate nose tip (CTip) and root (CRoot) region can be found by 

𝐶])_	𝑎𝑛𝑑	𝐶¦aar = 𝑇𝑅),v 𝑇𝑅),v = 𝑓&,¨,�(𝑖, 𝑗)                                   (17) 

where, given SNx, SNy and SNz, 

𝑓&,¨,� 𝑖, 𝑗 = 1					𝑖𝑓	(𝑆𝑁& 𝑖, 𝑗 < 𝑇&	) ∧ (𝑆𝑁¨ 𝑖, 𝑗 < 𝑇 ) ∧ (𝑆𝑁� 𝑖, 𝑗 < 𝑇�	)
0				𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         (18) 

        
(a) Thresholded SNx (TSNx)                 (b) Thresholded SNy  (TSNy) 
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(c) Thresholded (TSNz)                      (d) TSNx ∩ TSNy ∩ TSNz 

Figure 7.16: The candidate nasal tip (red rectangle) and root (green rectangle) region localization on the 

Photoface captures by thresholding three components of surface normals. An example capture from the 

near inferred light part of the 3DE-VISIR database is used for demonstrating the resulting map of each 

component after thresholding.  

The thresholds for the captures using near infrared light, Tx, Ty and Tz, are set to 0.1, 0.1 and 

0.98, respectively. The surface normals thresholding results of an example capture from the 

3DE-VISIR database by the near infrared light are illustrated in Figure 7.16(a)-(c) demonstrate 

the selected facial patches of each component and (d) is the result of the combining three 

components.  

As shown in Figure 7.16(d), thresholding the surface normals can quickly eliminate most 

irrelevant regions on the face, except some convex regions on the month, cheek and eye areas 

that possess similar characteristics in surface normal maps. The candidate nasal root and tip 

areas are successfully detected shown as the green and red, respectively. However, to localize 

the tip root, all the candidate regions should be further refined as this is considered in the next 

section. 

7.4.1.2 Nasal Tip and Root Localization by SNs and Gradient Calculation 

The nasal bridge, as a salient structure centred on the human face, narrows the vertical location 

of the detected candidate region, which can quickly eliminate the irrelevant parts around the 

eye and cheek regions. Therefore, the nasal bridge is first detected before the nasal tip and root 

localization. Generally, the characteristic of the nasal bridge is distinct on the human face, 

especially in the SNx. For the captures with higher accuracy depth maps, using the threshold 

SNx is an effective approach, with the reference provided by the nose tip. However, it is hard 

to detect the bridge directly in TSNx [Figure 7.16(a)] as there is no initial tip information 

provided. 

Therefore, the calculation of the gradient of SNx (gx) as shown in Figure 7.17(a), is proposed 

for the bridge detection, as the sign changes occur on the bilateral nasal bridge and also the 

gradient is bigger than the other nasal parts. The candidate bridge is found by the thresholded 

gx map as shown in Figure 7.17(b). Using the morphological processing, regions in Figure 

7.17(b) are vertically grouped to several parts and the largest connected region is found by K-

means clustering, which is the nasal bridge.  
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The horizontal location of the candidate region can be narrowed on the basis of the special 

properties of the subnasal and mouth areas. The subnasal and mouth areas have higher SNy 

values than the root and nasal bridge, as they contain some convex and concave regions with 

the peaks and sign changes. Therefore, using the thresholded SNy map shown in Figure 7.17(c), 

the boundary of the subnasal and mouth area is found, which can help eliminate the irrelevant 

regions in Figure 7.16(d) and provide an appropriate prediction of the candidate tip region.  

     
        (a) gradient of SNx (gx)                      (b)thresholded gx                          (c) thresholded SNy 

Figure 7.17: Nasal bridge detection on the Photoface captures by thresholding the gradient of SNx and 

SNy maps. An example capture from the near infrared light part of the 3DE-VISIR database is employed. 

Combined with both the horizontal and vertical prediction, it is easy to differentiate the 

candidate nasal root (green) and tip (red) region as shown in Figure 7.16(d). The nose tip is 

located in the centre of box. For the nasal root, the candidate region in the green box provide a 

relatively accurate position of the root in horizontal, whose lower boundary denotes the root. 

Although the approximate region has been found in the green box, it is still challenging to 

localize it vertically as some deviations might cause big changes in SNx map, even changing 

the signs. To address this instability, the vertical position of the nasal root is estimated by the 

neighbouring points on the nasal bridge. 

7.4.1.3 Nasal Tip and Root Localization by Albedo Central Profile 

In addition to the use of thresholded SNy map shown in Figure 7.17(c), the vertical position of 

the nasal root and tip can be found by the central profile of the human nose on the albedo map 

as shown in Figure 7.18, which provides the approximate vertical distribution of the hair, nasal 

root, nasal tip and mouth. The central profile is found on the basis of the estimated centre of 

the nasal bridge detected in Figure 7.17(b). Combined with the candidate region found in 
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Figure 7.16(d), some extrema points shown in Figure 7.18, which indicate the root, tip and 

month, are found to predict the final positions. 

 

Figure 7.18: The central profile of the human face on the Photoface albedo map. The extrema points 

marked on the curve are the forehead, nasal root, nasal tip and month. 

7.4.2 Alar Grooves and Subnasal Detection 

With a reference of the nose tip, the alar grooves and subnasal can be localized by using the 

method proposed in Section 7.2. This is less complicated for the captures reconstructed from 

photometric stereo as the SNs possess relatively high resolution, which provide enough 

effective information for the nasal landmarking. The candidate alar grooves region is found by 

thresholding SNs but setting different thresholds in comparison with those used in the 

Bosphorus and FRGC databases. It is not necessary to adjust the location of the nose tip in this 

step as less noise data affects the performance of tip detection in the Photoface database. 

7.4.3 Recognition Performance Evaluation  

In a similar method to the recognition performance evaluations on the Bosphorus and FRGC 

databases, using the locations of the nasal root, tip and alar grooves, the NCM algorithm 

proposed in [7] is applied to extract 75 nasal curves with 15 points per curve, as shown in 

Figure 6.1. The recognition performance evaluations of the Photoface captures employ the 

3DE-VISIR database as it contains the captures obtained by both visible (VIS) light and near 
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infrared (IR) light acquisition systems. For each part (VIS and IR), there are 73 subjects and 

three captures per subject, with the positive, neutral and negative expressions, respectively. 

The recognition performance of the extracted features is first evaluated by using the LOO cross 

validation. To achieve the best performance, the FSFS is used for curves selection and the 

R1RRs of each curve or curves combinations are calculated by LOO with city-block distance. 

The R1RRs obtained from different components versus the size of the feature set is shown in 

Figure 7.19. The curves extracted from the surface normals achieve better recognition 

performances than the depth map for both the IR and VIS captures.  

In addition, to explain the advantages of using the original surface normals for landmarking 

and feature extraction, the same feature extraction method is applied to the surface normals 

estimated by re-differentiating the reconstructed depth map. Generally, the R1RRs obtained 

from both parts experience the decrease when the estimated surface normals are used, which 

mainly results from the loss of discriminative features during the depth reconstruction and 

surface normals estimation. Therefore, using the original surface normals has more potential 

to achieve good recognition performance with the low complexity feature detection and 

extraction.  

 
(a) IR 
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(b) VIS 

Figure 7.19: Rank one recognition rate against the number of nasal curves selected by the FSFS 

algorithm using various components. The results of surface normals and the depth reconstructed from 

surface normals are shown in bold. R1RRs using the surface normals found by re-differentiating the 

reconstructed depth map are shown with dots. 

Table 7.5: R1RRs of the best combination of curves for SN and depth components using IR and VIS 

captures under ‘neutral vs. non-neutral’ one training sample scenario.  

 
R1RR (IR) R1RR (VIS) 

Positive Negative Positive Negative 

Depth 49.31% 42.47% 42.47% 47.95% 

SNx 80.82% 84.93% 84.93% 87.67% 

SNy 84.93% 72.60% 82.19% 68.49% 

SNz 82.19% 83.56% 80.82% 73.97% 

Instead of using the LOO cross validation, ‘neutral vs. non-neutral’ one training sample 

scenario is also investigated in both parts. The captures with positive or negative expression 

are compared with their neutral capture, respectively. As the matching results shown in Table 

7.5, the surface normals components outperform the depth for each part and kind of expressions. 

Also, the NCM feature extraction by using the proposed landmarking algorithm produces 
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similar recognition performance for both IR and VIS parts only with varying results for 

different expressions. Matching the negative captures from the VIS part achieves the best 

R1RRs of 87.67%, which means that only several curves with 15 points per curve on the SNx 

map can produce high recognition performance. 

To extract more discriminative feature and achieve a better recognition performance, the newly 

developed spherical patches in [143] are also applied to IR part. Specifically, using the detected 

landmarks, tip, root and alar grooves, 21 new landmarks as shown in Figure 7.20 are found on 

the nasal region by dividing the horizontal lines that connect the landmarks. Considering each 

landmark as the centre, a sphere is intersected with the nasal region on three components of 

surface normals and the histograms of the inner parts are calculated. 

 

Figure 7.20: 25 landmarks used for spherical patches extraction. 

In this implement, the radius is set to 11mm and there are 41 bins in each histogram. Combine 

all the spherical patches extracted from surface normals, there are 75 patches in total for each 

capture and FSFS is applied to select the most discriminative features. It achieves 97.26% of 

R1RR when only 24 patches are selected for matching. 

7.5 Conclusion 

The main contribution of this paper is the new landmarking algorithm proposed for captures 

from different 3D acquisition systems, including laser scanners, structured light and 

photometric stereo. In addition to using the other descriptors calculated from the depth 

information, this landmarking algorithm employs the surface normals to quickly find the 

candidate regions and further localizes the main nasal landmarks by using profile signatures 

and thresholded surface normals maps. Finally, five landmarks, including the nasal tip, root, 

subnasal and alar grooves are automatically detected on the nasal region. 
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The proposed landmarking algorithm is evaluated on the Bosphorus and FRGC captures with 

higher accuracy depth map as well as the Photoface captures. The results tested on the 

Bosphorus and FRGC captures demonstrate that the detected landmarks possess higher within-

class consistency and the features extracted from them can generate higher recognition 

performance using both LOO cross validation and KFA classifier in comparison with the 

method proposed in [7]. 

For the Photoface captures, there is no literature utilizing the landmarking on this kind of 

captures, even though they have much potential to generate good recognition performance and 

contribute the real world applications. The proposed nasal landmarking algorithm only utilizes 

the original surface normals and albedo maps of the Photoface captures and fills this gap in the 

landmarking literature. Both the results of the LOO cross validation and neutral vs. non-neutral 

matching can show the effectiveness of the proposed landmarking algorithm.  
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Chapter 8 Conclusions 

8.1 Summary  

This thesis has provided an investigation into the benefits of using the nasal and its environs 

for expression invariant 3D face recognition as well as an exploration of various types of 

captures from 3D acquisition systems. The background knowledge, basic techniques and the 

main challenges are first explained in Chapter 1 to give the motivation of this thesis: 

• Expression robust discriminative feature extraction on the nasal and adjoining cheek 

regions. As one of the main challenging issues in face recognition, expression variations 

might adversely affect the within-class similarity of extracted features. To address this 

problem, this thesis aims at selecting some relatively stable structures on the 3D 

captures to extract the expression robust discriminative features, such as the nasal 

region and its environs.  

• Investigating the use of reconstructed captures from photometric stereo. Another main 

motivation of this topic is improving the real world application possibility, for example 

of utilising reconstructed captures from photometric stereo. Although using the 

Photoface captures has a lot of advantages and promising application prospects, region 

based expression robust feature extraction algorithms are still unexplored. It is 

interesting to apply the well-designed face recognition algorithms to the Photoface 

captures or investigate new techniques on the basis of their characteristics. 

• Landmarking on various types of captures from 3D acquisition systems. For most 

region based algorithms, landmarking is the most significant step, whose accuracy will 

directly determine the effectiveness of feature detection and extraction. For captures 

with high accuracy depth maps, both the efficiency and effectiveness of the 

landmarking should be improved. For the Photoface captures, region based face 

recognition algorithms are still unexplored due to the lack of effective landmarking 

algorithms. Therefore, this thesis aims to fill in the gap in the 3D landmark detection 

literature and further improve the recognition performance. 

In Chapter 2, an overview of 3D face recognition algorithms is first provided, including 

preprocessing, landmarking, features extraction, postprocessing, matching and decision 

marking. The recognition algorithm for addressing the expression variations and feature 
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extraction on the nasal and adjoining cheek regions are further explained. Three whole face 

evaluations on the Bosphorus database are also provided in Chapter to demonstrate the 

advantages of using 3D nasal and adjoining cheek regions. 

A classification methodology and review of 3D face databases are introduced in Chapter 3 to 

provide researchers with meaningful databases on which to evaluate their algorithms. 

Considering the various characteristics of 3D databases, a classification methodology has been 

proposed to categorise them, which provides a useful tool to help choose appropriate databases 

to address specific problems. On the basis of this overview, FRGC, Bosphorus and Photoface 

databases are finally chosen in the following chapters for the propose of better evaluating the 

proposed algorithms.  

In Chapter 4, instead of using the whole face or other complicated shape descriptors, matching 

nasal curves is an effective algorithm for expression robust 3D face recognition [7]. Inspired 

by this work, this thesis takes effort to improve the recognition performance by finding more 

discriminative curves or features with low complexity, which can be proposed as a pattern 

rejector for 3D face recognition. To be more specific, the target region is first enlarged to the 

nasal environs and instead of using 28 nasal curves in [7], only 4 curves are finally selected by 

FSFS to generate the feature space. Also, the number of points on each curve is reduced from 

‘50’ to ‘15’, resulting in only 60 points on the target region to build the feature set. The 

recognition performance tested on both Bosphorus and FRGC databases is improved, even 

though the dimensionality has been significantly reduced, from 1400 to 60, which mainly 

results from the contribution of discriminative features extracted from the nasal environs. 

In Chapter 5, to further investigate the discriminative features on the nasal and its environs, a 

novel low complexity local shape descriptor for expression robust 3D face recognition is 

proposed, which is proven to be more effective than matching curves on the same target region. 

Instead of using selected curves on the depth map, a new shape descriptor which is inspired by 

Local Binary Patterns is proposed that uses depth difference to form its discriminative features. 

This newly proposed shape descriptor is applied to the nasal and adjoining cheeks of depth and 

three components of surface normals. To build a stronger classifier, a comprehensive analysis 

of the discriminative features extraction on multi-component and multi-scale horizontal regions 

or small patches is provided in Chapter 5. Using this proposed descriptor to extract features on 

the nasal and adjoining cheek regions results in a very small feature set, which has much 

potential for real world applications. For classification and matching, the KFA classifier with 
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the cosine distance produces a R1RR of 97.76% and an EER of 1.32% for the Bosphorus dataset, 

which is competitive with the algorithms that are more computationally intensive and require 

a larger feature set. 

The main purpose is extracting discriminative features from the Photoface captures using the 

3D captures with higher accuracy depth maps, in Chapters 4 and 5. In order to investigate the 

recognition performance of reconstructed captures from photometric stereo, Chapter 6 

evaluates the performance using the well-designed nasal curves matching algorithm. Subsets 

of FRGC v.2, Bosphorus and Photoface databases, 360 captures of 18 subjects, are selected to 

enable a direct performance comparison. In addition, the 3DE-VISIR database is used for one 

training sample scenario evaluation. The advantage of using this database is that each subject 

is obtained under both visible and near infrared light with two different expressions and a 

neutral capture, resulting in 6 captures for each identity. Recognition performance evaluations 

on this kind of captures contributes to real world face capture as the Photoface device is more 

effective and efficient and does not require candidates’ cooperation. 

In Chapter 7, a new landmarking algorithm is proposed to improve the nasal landmarks’ 

accuracy and hence the robustness of extracted features. This new landmarking strategy is 

originally inspired by the successful applications of using the surface normals for feature 

extraction, which can provide an additional and effective representation for 3D surface 

geometry structure analysis. Therefore, in Chapter 7, the surface normals are further 

investigated for the roll and yaw rotations calibration and nasal landmarks localization. Using 

the thresholded surface normal maps and facial profile signatures, five landmarks (the nose tip, 

root, two alar grooves and subnasal) are robustly detected on the well-aligned 3D nasal region.  

This new landmarking strategy provides an effective way to localize the key landmarks on 

human nose and can be applied to depth maps from captures obtained using laser scanner and 

photometric stereo. The proposed landmarking algorithm is tested on the Bosphorus and FRGC 

databases which contain a large number of expression variations. The results show that the 

detected landmarks demonstrate high within-class consistency and good recognition 

performance under expressions. For the Photoface captures, the main nasal landmarks are 

robustly detected, which is the first landmarking work on this kind of 3D captures. Instead of 

using the reconstructed depth information that suffers more distortion, the proposed 

landmarking approach utilises the surface normals, to achieve more accurate landmarking and 

high recognition performances. 
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In conclusion, this thesis is dedicated to extracting relatively expression robust features on the 

nasal and its environs for 3D face recognition using various 3D representations of captures 

from different 3D acquisition systems, which consists of the following innovative steps.  

• An expression robustness analysis using both depth and surface normals information is 

explained for the first time.  

• An overview and a classification methodology of the public 3D face database are first 

introduced to provide an appropriate reference for the choice of 3D face databases.  

• A low complexity pattern rejector for expression robust 3D face recognition  

• A novel multi-scale and multi-component local shape descriptor for expression robust 

discriminative features extraction.  

• A comparison of the feature extraction and recognition performances using the 

Bosphorus, FRGC and Photoface databases.  

• A novel 3D facial landmarking approach for the Photoface captures.  

• Facial roll and yaw rotations calibration by detected nasal bridge and landmarks.   

• Recognition performances evaluation on the 3DE-VISIR database. 

8.2 Discussion and Future Work  

The algorithms proposed in this thesis could be improved in a number of different aspects. 

Some examples are given in the following subsections. 

8.2.1 The Improvement of Denoising 

It is very challenging to find an appropriate denoising algorithms as the remaining noise might 

significantly affect the accuracy of post-processing and over-smoothed captures might lose 

their discriminative features. It is hard to propose a generalized and effective approach to 

compromise these two aspects. Median filtering has been shown to be the best choice, which 

has been tested by several holistic algorithms [135]. However, for region based face recognition 

algorithms, it is still not clear which filters are more effective. 

The original output of most 3D acquisition systems is the point clouds from which other 3D 

representations, such as surface normals and curvatures, can be estimated. Therefore, any noise 
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not removed from the point clouds might be amplified in the other representations. In Chapter 

6, the median and Gabor filters are applied to further smooth the normals and shape index maps, 

which have significantly improved the performance of single nasal curve matching. However, 

how to extract more discriminative features on the smoothed maps or employ more effective 

filters is still very challenging and worth to further investigate.  

8.2.2 Feature Extraction on Surface Normals  

In Chapter 7, the recognition results show that the original SNs outperform the SNs estimated 

by the reconstructed depth information, which demonstrates the potential of the proposed 

landmarking approach and also the use of SNs for feature space manipulation. However, the 

recognition algorithms used in performances evaluations are originally proposed for the depth 

map, which might not the most appropriate approach for the Photoface captures. Using the 

newly detected landmarks on the nasal region, the new feature extraction algorithms are 

required to apply to the SNs maps. In Chapter 6, different variances or frequencies of Gabor 

filters have been used to denoise the SNs, which provide a great contribution to the 

improvement of recognition performances. Therefore, in future work, the Gabor wavelets will 

be applied to the feature extraction on the Photoface captures as they can smooth the original 

surface normals maps and various discriminative features can be extracted from their different 

scales or frequencies. 

8.2.3 More Effective Feature Selection 

Feature selection is very crucial in feature space manipulation, which determines the 

dimensionality and discrimination of the feature set for recognition. Therefore, this step might 

directly affect the face recognition performance. In this thesis, the FSFS method is primarily 

used in feature selection and the demonstration of the recognition rate versus the number of 

curves in the leave-one-out cross validation. However, the FSFS does not evaluate all the 

curves combinations, which cannot produce the global optimal features set. Although it is clear 

to know the selected curves in each iteration by FSFS, it is still interesting to employ some 

other feature selection methods, for example of GAs, to further enhance the recognition 

performance.  

8.2.4 One Training Sample Scenario Evaluation 

Most classification evaluations in this thesis use at least one capture for each subject in the 

training set, which has higher probability to produce good recognition performance as the 
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features for matching are learned from more captures. Another more challenging scenario is 

when each person only has one capture in the gallery, which requires the matching features 

should possess high discrimination. In Chapter 6, this ‘One Training Sample’ scenario has been 

evaluated on the 3DE-VISIR database by matching the nasal curves. However, most features 

extracted in this thesis have not been evaluated under this scenario due to the lack of effective 

feature selection method. Therefore, one area of future work will focus on building an effective 

subset from the original features using some feature selection methods or fusing other features 

to build a new feature vector with more discriminative information for matching.  

8.2.5 Artificially Creating Facial Captures with Expressions 

Instead of extracting more discriminative features for one-to-one matching, the recognition 

performance can be improved by adding more artificial training captures of each subject. To 

artificially create new captures, all kinds of facial variations caused by various expressions and 

occlusions can be first learned from the predefined facial captures. For example, various 

expressions and occlusions have been labelled in the Bosphorus database and the variations 

can be learned from it. These learned facial variations are then added to the single neutral 

capture of each subject in the training set, resulting in many captures with different kinds of 

variations. With the increasing numbers of training captures, the recognition performance can 

be significantly improved. A related work has been done in my PhD study and the recognition 

performance only obtained incremental improvement as it is very challenging to model 

different kinds of variations. More effective methods for artificially creating the facial captures 

are encouraged in the future work. 
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