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Noise Modelling for Denoising and 3D Face

Recognition Algorithms Performance

Evaluation

Mehryar Emambakhsh, Jiangning Gao, and Adrian Evans,

Abstract

This paper proposes an algorithm is proposed to quantitatively evaluate the performance of 3D

holistic face recognition algorithms when various denoising methods are used. First, a method is

proposed to model the noise on the 3D face datasets. The model not only identifies those regions on the

face which are sensitive to the noise but can also be used to simulate noise for any given 3D face. Then,

by incorporating the noise model in a novel 3D face recognition pipeline, seven different classification

and matching methods and six denoising techniques are used to quantify the face recognition algorithms

performance for different powers of the noise. The outcome: (1) shows the most reliable parameters for

the denoising methods to be used in a 3D face recognition pipeline; (2) shows which parts of the face

are more vulnerable to noise and require further post-processing after data acquisition; (3) compares

the performance of three different categories of recognition algorithms: training-free matching-based,

subspace projection-based and training-based (without projection) classifiers. The results show the high

performance of the bootstrap aggregating tree classifiers and median filtering for very high intensity

noise. Also, when different noisy/denoised samples are used as probes or in the gallery, the matching

algorithms significantly outperform the training-based (including the subspace projection) methods.
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I. INTRODUCTION

Noise is an unavoidable component of all electronic devices and is present in the three-

dimensional imaging systems which have been widely used for the 3D face recognition ap-

proaches in the last decade. Noise can have a significant influence on the performance of

3D face recognition algorithms. It can adversely affect the face detection and segmentation,

landmarking, feature extraction and ultimately, classification. As noise is a completely random

process, it changes the facial surface in a different way that it changes the corresponding gallery

samples. This can result in a significant deterioration of the within-class similarity and may

move a sample’s feature vector into the feature space of other subjects.

To address these issues, denoising is usually applied as one of the initial steps of a 3D

face recognition algorithm. However, to date, the influence of denoising on the face recognition

performance has not been objectively studied. Questions such as which parts of the face are more

sensitive to the noise, which denoising algorithm is the best choice for robust face recognition,

how to find the optimal parameters for the denoising method and which classification algorithm

performs better over a noisy dataset have not been properly analysed.

In this paper, the effects of varying the noise power on the 3D holistic face recognition

algorithms are evaluated. First, instead of manually applying Gaussian noise to the face surface,

as used in [1], [2], an algorithm is proposed to learn the noise distribution from the 3D faces and

simulate it on any given face. The method consists of finding the Eigenshape of the difference

maps computed over the aligned faces of each subject. Then, a probability map is defined and

used to model the noise. The method provides the capability to gauge the effect of denoising

on the performance of face recognition algorithms.

The main contributions of this work are as follows: (1) it reports a detailed quantitative

evaluations of the performance of denoising methods, applied over the widely used holistic face

recognition; (2) a very fast and accurate algorithm to learn and simulate the noise from 3D faces

is proposed; (3) the new technique is used to identify those parts of the face which are more

vulnerable to 3D reconstruction noise and (4) using the proposed approach, the most robust

classification and denoising methods from 3D face recognition applications are identified.

This paper presents a continuation of our initial work which was dedicated to finding the

best parameters for denoising algorithms, when used in a 3D face recognition approach [3] and,
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to the best of our knowledge, is one of the most comprehensive quantitative analysis of the

performance of denoising algorithms in face recognition approaches.

The paper is organised as follows. First, a brief explanation on the previous denoising ap-

proaches is provided in section II. Then, the noise learning and simulation procedures are

explained in section III. A selection of the most widely used denoising and face recognition

methods are described in sections IV and V, respectively. Section VI contains experimental

results and conclusions are given in section VIII.

II. RECENT LITERATURE REVIEW

The widespread adoption of 3D laser scanners as the imaging modality for many 3D face

datasets has led to a relatively standard approach to denoising. Generally, four denoising steps

are included: spike noise removal, surface smoothing, hole filling and missing data replacement.

The holes and missing data differ in the sense that the depth values for the holes are available, and

are usually significantly lower than for the neighbouring pixels, while the locations of missing

data do not have any depth values. Spikes are a common type of noise produced by 3D laser

scanners. As they usually cause impulsive variations in the face surface, median filters, the most

popular approach for impulsive noise removal, are typically employed to remove them from the

face’s depth map [4], [5], [6], [7].

Spikes can also be interpreted as outliers in the data and, based on this assumption, statistical

regional information can be used to determine the noise locations [8]. In [9], the distances

between the central point and its 8 nearest neighbours are calculated. To detect the outliers, the

standard deviation of the distances is then thresholded. A similar approach is used in [10], except

that a neighbourhood is defined using an 11× 11 mask and the angle between the optical axis

and surface normal of the observed points is also used to identify the outliers. The major issue

with these algorithms is their sensitivity to the mask size and thresholds used. These parameters

are usually set using trial and error on a given dataset but, if the imaging modality changes,

retuning is required if over- or under-smoothing is to be avoided.

Surface smoothing is required as the raw depth image usually contains artefacts caused by

high-frequency components. These unwanted variations are not as salient as spike noise and are

distributed over the surface. The most common approach to alleviate this type of noise is to

low-pass filter the facial surface. For instance, Gaussian [1], [2], [4], [5], [8], [11], [12], [6],
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[7], [13] and mean filters [14] are used to smooth and also remove the spikes from the depth

surface. The median filter also has a smoothing effect and in [15] a 2.31×2.31 mm2 median filter

is applied to reduce the high-frequency noise effects. However, unlike Gaussian filters, median

filtering can affect the position of image edges, which is not desirable. A different approach is

to use an adaptive filtering to denoise the face surface, for example the Weiner filter [16].

The main purpose of hole filling algorithms is to detect the holes and valleys on the face

surface, which are produced by inaccurate or low quality imaging, and replace them with

legitimate values. Morphological filling is one of the most popular algorithms for this task

[17], [18]. Applying the filling algorithm directly to the depth map can unintentionally fill some

natural holes on the face, such as the eye corners and in order to avoid this issue, the difference

between the original and filled surfaces is calculated and those pixels with a difference above a

threshold are considered to be holes and are replaced using cubic interpolation [15].

Missing data is a common issue associated with the 3D imaging systems. It can occur due to

self-occlusion (which appears after pose correction), large depth variations (for instance, due to

open mouths or the nostrils) or imaging device inaccuracy. These points are usually predefined as

invalid points, making it easy for the users of the datasets to detect them. Also, in some denoising

methods the noisy points are intentionally labelled as missing data and subsequently replaced

[15], [9]. For all these cases, the most extensively used approach is to replace the missing data

using interpolation. The main interpolation methods used are: cubic [9], [12], bicubic [8], [19],

linear [10], [16], [14], [20] and K-nearest neighbour interpolation (KNN) [21].

III. NOISE MODELLING USING A PROBABILITY MAP

The noisy samples in the face datasets can be used to find a model for the noise which can then

be used to simulate noise over other, less noisy samples. First, it is assumed that the ith subject

(i = {1, . . . , N}) in the dataset has Ji non-occluded samples with neutral facial expression.

These samples are resampled using the Delaunay triangulation to interpolate the missing data

and remove the noise in the coordinate maps. This operation results in a set {Fi,1,Fi,2, . . . ,Fi,Ji}

where each Fi,j = [Xi,j,Yi,j,Zi,j] is a M × 3 matrix whose columns correspond with the x, y

and z axes points. Then, using a 2.5×2.5 mm2 mask, a median filter is applied twice to remove

the spike noise and smooth the surface. Following [9], the faces are then aligned using singular

value decomposition over the 3× 3 covariance matrix Σi,j for the jth sample of the ith subject
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by,

V−1i,j Σi,jVi,j = Ei,j, (1)

where Vi,j and Ei,j are the 3× 3 eigenvector and eigenvalue matrices, respectively. Vi,j is used

as a rotation matrix and multiplied by the noisy input point clouds after their averages, mi,j (a

1× 3 vector), are removed. The result is the aligned set of point clouds, F′i,j , given by

F′i,j = (Fi,j − Iomi,j)Vi,j, (2)

where Io is a M × 1 column vector, whose elements are one. After this operation, all the Ji

noisy samples of the ith subject are aligned. As F′i,j will be the depth map independent from

the resolution information, its first and second columns, which contain the x and y axes data,

are discarded. This makes F′i,j an M × 1 vector.

The aligned faces are all resized to a fixed height and width and the pair-wise pixel-by-pixel

differences between the aligned faces of each subject are computed and accumulated resulting

in difference maps for each subject (◦ is the Hadamard’s component-wise product),

Di =

√ ∑
m,n,m 6=n

(F′i,m − F′i,n) ◦ (F′i,m − F′i,n). (3)

where Di is the difference map for the ith subject. This procedure is repeated for all the subjects

in the dataset, giving the difference matrix D = [D1,D2, . . . ,DN ]. In order to find a map

containing the maximal shape variation between the difference maps, the PCA algorithm is

applied to D and the first eigenvector, corresponding to the highest eigenvalue is obtained. By

performing this PCA procedure the N -dimensional space is projected into one dimension, in

which the maximum variance of the data distribution is preserved, by V−1D ΣDVD = ED

D̄ = (D− IomD)U
(4)

where ΣD is an N × N matrix covariance matrix and mD is a 1 × N vector containing the

average of the rows of D and U is a column vector including the eigenvector corresponding to

the highest eigenvalue, which is obtained from VD. D̄ is the “eigen-”difference shape, which
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includes the highest variances of {D1,D2, . . . ,DN}. D̄(x, y) shows the significance of the noise

strength at point (x, y). If the area around (x, y) is flat, then the noise power will be very low

over the area. Alternatively, peaks or valleys in D̄ correspond to a higher probability of having

spikes or holes in that particular region of the face. Since all the images used to create D̄ have a

neutral expression, are non-occluded and aligned, the only difference between them is the noise.

Consequently, the values of D̄ at different points provide a good measure to identify which parts

of the face are noisier after the 3D data capture.

A major, additional value of D̄ is that it can be used to create a probability map which can be

used to artificially simulate noise over any set of 3D face data. This will enable the noise power

to be stochastically varied thus underpinning the quantitative evaluation of both the denoising

performance and the robustness of face recognition algorithms. The noise occurrence probability

map, P, for each pixel (x, y), is simply found by normalising D̄ to the range 0 to 1, using the

min-max normalisation,

P =
D̄−minx,y(D̄)

maxx,y(D̄)−minx,y(D̄)
(5)

Any face data in the dataset can now be degraded by adding a randomised simulated noise map

δF to its depth image by,
Fn
i,j = Fi,j + δFi,j

δFi,j(x, y) =

aD̄(x, y), if P(x, y) ≥ ri,j(x, y)

0, if P(x, y) < ri,j(x, y)

(6)

where ri,j is a matrix the same size as P, whose elements are randomly assigned, for the jth

sample of the ith subject, using a uniform distribution in the range [0, 1]. Fn
i,j is the noisy face

image and a is a scalar used to vary the noise power. When P(x, y) is high (e.g. at fragile,

noisy parts of the face), its value will be more likely to be higher than the uniformly selected

random number ri,j(x, y) and the noise at that point is amplified. On the other hand, lower

values of P(x, y) (which correspond to less noisy facial parts after 3D reconstruction), reduce

the probability that P(x, y) ≥ ri,j(x, y) and hence of additional noise being added to the data at

that point. The whole procedure for finding the eigen-difference shape D̄ is depicted in Fig. 1.
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Fig. 1: The procedure of finding the eigen-difference shape D̄: After resampling and alignment,

the mean vectors and pose rotation matrices are computed per sample, which are then applied

over the input noisy point clouds to compute accumulative difference map Di. D̄ is eventually

calculated over Di.
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IV. DENOISING ALGORITHMS

Six denoising algorithms are evaluated using the dataset: Gaussian, mean and median filtering,

multi-scale wavelet denoising, adaptive Wiener filtering and non-linear diffusion. The denoising

algorithms are selected because they have been widely used in previous 3D face recognition

algorithms and also to cover the diversity in the methodologies for reducing the effects of noise.

Median filtering is capable of successfully removing non-linear noise, such as spike and impulsive

noise, while linear filters, such as mean, Gaussian and wavelets can better filter high frequency

noise. While both these linear filters can smear the edges in the images, non-linear diffusion

has a significantly better edge preserving capability. All these methods are deterministic and

filter without utilising statistical information. However, as an adaptive stochastic filter, Weiner

denoising estimates the signal and noise distributions over a given mask size. The noise is

then removed by sampling from the estimated distributions. The denoising methods and their

parameters are briefly explained below. For all filters, the masks sizes are given in pixels as the

faces are resampled using a uniform grid with a 0.5 mm/pixel horizontal and vertical resolution.

1) Gaussian, mean and median filtering: The large variations in the depth map are concen-

trated in its high-frequency components. Low-pass filtering is the most common way to remove

these components, for example by convolving Gaussian filters (GM
σ ) with the image, where σ is

the standard deviation and M is the square root of the mask size. Similarly, the mean filter can

also be used to reduce the high-frequency noise and smooth the face surface. For both filters, the

size of the mask is varied and the recognition results recorded. The median filter has also been

extensively used for preprocessing 3D faces and a similar approach is employed to evaluate its

denoising performance.

2) wavelet filtering: Wavelet decomposition is one of the standard methods used for the 1D

and 2D signals denoising. L levels of the multi-resolution wavelet decomposition are utilised in

our work. Using the results obtained in [3], various wavelets are applied, including Daubechies,

Coiflets, Symlets, discrete Meyer, Biorthogonal and Reverse Biorthogonal, with the results

showing the superiority of the discrete Meyer wavelet. The default thresholds (soft or hard

thresholds) are calculated using the seminal algorithm proposed by Donoho and Johnstone ([22]),

and the decomposition is performed in L levels.

3) Weiner filtering: Weiner filtering is a type of adaptive denoising algorithm, which uses the

statistical information of the input image [23]. An Mw×Mw neighbourhood is used to estimate

March 23, 2015 DRAFT



IET COMPUTER VISION, MARCH 2015 9

the noise’s statistical parameters, such as variance and mean. By varying Mw, the aggressiveness

of the denoising is changed and a wider image area is analysed.

4) Non-linear diffusion: Non-linear diffusion is a method introduced by Perona and Malik for

image simplification, denoising, segmentation and feature extraction [24]. Its concept is based on

the heat transmission between adjacent materials. The partial differential equation of diffusion

is iteratively solved over the image domain. If the parameters are appropriately tuned, the result

is a denoised version of the input image. The most interesting feature of the non-linear diffusion

is its edge preservation, while smoothing the adjacent regions. This means that, for example,

high-frequency noise can be removed from the forehead while the edges close to the eyes are

maintained. Following [25], the diffusion equation used here is,

∂Z

∂t
= ∇.(gm(|∇Z|2)∇Z), (7)

in which Z is the depth image of the face, ∇.() and ∇ are the divergence and gradient operators,

respectively, and gm(.) is a decreasing function [25] given by,

gm(s) =

1− exp(−(λm
s

)m), if s > 0

0, otherwise
(8)

where λm is the image contrast control parameter in the mth iteration of the diffusion equation.

As λm increases, the resultant diffused image is more significantly blurred.

V. FACE RECOGNITION METHODS EVALUATION PIPELINE

The evaluation employs holistic 3D face recognition algorithms, which have been widely used

for both 2D and 3D face recognition. In the first step, all faces are cropped and aligned. As

the noise in the X and Y coordinate maps is much less marked than that in the Z depth map

[9], [15], [26], here the denoising is only applied to the depth image. To perform this task, after

acquiring the 3D raw data, resampling is applied to replace the noise and missing data in the X

and Y coordinate maps. The nose tip is relocalised on the resampled data and, after temporarily

replacing the depth value of the invalid points with the median of the valid points’ depth, the

denoising algorithm is applied. Then, a sphere, centred on the nose tip, with radius 80 mm is

then intersected and the facial region is cropped.
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The depth maps are resized to the same size as the eigen-difference shape D̄ and the noise

power is tuned using a in (6). Simulated noise is added to the depth maps and then the denoising

algorithms described in the previous section are applied. The parameters of the denoising algo-

rithms are set to those that gave the best 3D face recognition performance in [3], in which first,

the faces are resampled on a uniform grid, then different denoising algorithms are applied. The

faces are then cropped, aligned and normalised. The resulting faces are concatenated to form the

feature space. By changing the parameters of the denoising algorithms, various feature spaces

with different class Separabilities are obtained. The outcome is sets of extensive experimentations

showing that performing a more aggressive denoising algorithm (having larger masks, wider

low-pass frequency responses and smoothing effects) does not necessarily decrease the face

recognition performance [3]. In addition to this, it is found that optimal parameters can be found

for some of the denoising algorithms, which maximise the recognition rates. This procedure is

illustrated in Fig. 2-a.

After applying the optimal denoising methods, the depth values are normalised using the

min/max normalisation of (5) and the resulting map is again resized. For all the resizing steps,

the face is pre-filtered to avoid the high frequency aliasing and cubic interpolation is used for

resampling. Finally, the resulting samples are divided into gallery and probe samples and the

resulting feature vectors used by the classification or matching algorithms. The stages of the

recognition pipeline are illustrated in Fig. 2-b, for two example faces.

The face recognition pipeline of Fig. 2 enables the robustness evaluation of different face

recognition algorithms against varying noise powers. This approach also quantitatively identifies

the best performing denoising algorithms, in terms of recognition performance.

To evaluate the denoising algorithms seven widely used classification algorithms in the field of

holistic face recognition are used: multi-class Support Vector Machines (m-SVM), PCA, Kernel

Fisher’s Analysis (KFA), Probabilistic Neural Network (PNN), KNN-classification, bootstrap

aggregation decision trees (TreeBagger) and Linear Discriminant Analysis (LDA). For the m-

SVM classifier a linear kernel is used and the one-vs.-all scenario is utilised to transform it

to a multiple-class classifier. For the subspace projection approaches [PCA (Eigenfaces [27]),

LDA (Fisherfaces [28]) and KFA (a kernel-based extension of Fisherfaces)] the feature space

is projected onto a 100-dimensional space. The polynomial kernel is employed for the KFA

algorithm and the city-block (L1 norm), Euclidean (L2 norm) and cosine distances are used for
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Fig. 2: (a) The face recognition pipeline used to find the optimal parameters for the denoising

algorithms from [3]. (b) The 3D face recognition pipeline, including the noise simulation

procedure (a = 0.5 for the simulated noisy images). After resizing, noise is simulated over

the input depth maps using a in (6). Then the denoising algorithm is applied and the feature

vectors are created after normalisation and resizing.

the KNN classifier (K = 2). Finally, 119 trees are aggregated to create the TreeBagger classifier

[29]. These approaches cover a wide range of classification methods and have been extensively

used in for holistic 3D face recognition. PCA performs unsupervised, low dimensional projection

while LDA, KFA, PNN and SVM classify samples by linear or non-linear mapping to either

lower (LDA, KFA and PNN) or higher (SVM) dimensions using a supervised approach. A multi-

classifier classification is performed by TreeBagger, whose bootstrap aggregation feature makes
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it superior to the AdaBoost algorithm, which is sensitive to the absence of sufficient training

samples per subject.

All of the above approaches are examples of discriminative classification algorithms, which

estimate the posterior class probability, as opposed to the generative models which estimate

the joint class and observations probabilities. As shown by Ng et al., discriminative models

have better performances than the generative models when there are not enough samples per

classes, such as realistic biometric applications [30]. Generative models, which estimate the

joint probability distributions of the observations and classes, are significantly more robust when

a very large dataset is available, making them very useful for text processing and big data

algorithms [31], [30]. This is the reason why they have not been evaluated in our work.

VI. EXPERIMENTAL RESULTS

A. Dataset configuration

The FRGC dataset is used in our work to evaluate the proposed algorithm. It is one of the

largest publicly available 3D face datasets, in terms of the number of subjects. Overall, FRGC

contains 557 subjects, whose samples are obtained in three different time periods: Spring 2003,

Fall 2003 and Spring 2004, captured using the Minolta Vivid 900/910 laser sensor, which is also

utilised by other widely-used face datasets [32], [33]. Unlike more recent datasets such as the

Bosphorus [33] and the UMB-DB [32], samples of the FRGC dataset are not postprocessed and

hence its data contains all the different types of noises in 3D faces: spike, high frequency noise,

holes and missing data.

The data in the Spring 2003 folder is significantly noisier than that for the other seasons,

probably due to older capture devices being used. The noise intensity in the samples in this

folder makes it more appropriate to evaluate the denoising algorithms robustness and therefore

the folder is utilised in all the following experiments in this paper. In particular, this folder is

used to find the probability map of the noise, hence identifying those parts of the face that are

more vulnerable to noise after the 3D reconstruction. The denoising algorithms performance is

also quantitatively evaluated using this folder. Those classes with at least four samples in the

folder are used, giving a dataset of 119 subjects (classes) and 661 samples. Two samples per

class are selected as the training (gallery) and the remaining samples as probe images.
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B. Noise model computation

Those subjects from the FRGC 2003 folder with at least seven samples are used to calculate

difference maps Di. This results in a subset consisting of 28 subjects with 209 samples in total.

Example shape difference maps Di for four subjects are shown in Fig. 3-a to -d, in which

the regions that are more different from the neighbouring pixels have higher grey scale values.

These differences are caused by the noise, since the captures used have neutral expressions and

no occlusions. It is interesting to see that regions located on the eyebrows, eyes, surrounding

nasal region and mouth have the highest vulnerability to the noise, as the within-class similarity

is at its lowest on these parts. The high frequency of the depth variations over these regions

has caused higher errors in the 3D reconstruction while the flatter parts of the face, such as the

forehead, cheeks and chin, are less noisy.

(a) (b) (c) (d)

Fig. 3: Shape difference maps for four different subjects: (D1,D2,D3,D4).

The eigen-difference shape (D̄) computed over all the difference maps is plotted in Fig. 4-a.

D̄ contains the maximal shape variations among the difference maps Di and shows that the

nostrils, nose tip and sides are very sensitive to the reconstruction noise of the 3D scanner.

These are the regions where the influence of the denoising methods will be more obvious. In

particular for the nose tip, which is used for face segmentation, inaccurate denoising can lead

to incorrect facial region cropping.

When computing the eigen-difference shape D̄, if the number of samples per subject is too

small, the resulting difference maps (Di) will not be accurate enough. Alternatively if it is too
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(a) (b)

Fig. 4: (a) The eigen-difference shape result (D̄), and (b) the probability map (P).

high, as there are not many samples per subject for most of the subjects of the dataset, there

will be an insufficient number of subjects to be able to accurately find D̄. Figure 5 shows D̄

computed using different numbers of samples per subjects. When the number is small, D is

unable to signify the within class dissimilarities caused by the noise and it is also more sensitive

to small alignment errors. This increases the variance of the feature space scatter and increases

the range of PCA lower dimensional projection. The resulting D̄ will be a relatively more uniform

image, incapable of representing spike noise, see Fig. 5-a. Increasing the training samples can

produce richer difference maps Di, in the sense that more information about the regional noise

is provided. This can be seen in Fig. 5-c around the nostrils, eyes, eyebrows and nasal tip. These

considerations underpin the selection of seven samples per subject in the experiments to compute

D̄.

Normalising D̄ using (5) results in the probability map (P) shown in Fig. 4-b. Those regions

of P which have higher values are more likely to be affected by noise. Using P in (6) to simulate

noise on the aligned depth map produces the simulated. Figure 6-a shows an example of the

aligned depth map and Fig. 6-b to -e show the noisy images as the noise power is increased by

varying a in (6). As the noise power is intensified, the spike, holes and high frequency noise

will become more salient in the depth maps.

March 23, 2015 DRAFT



IET COMPUTER VISION, MARCH 2015 15

(a) (b) (c)

Fig. 5: The eigen difference shape D̄ when the number of samples per subjects is: (a) 3 (166

subjects), (b) 4 (119 subjects) and (c) 5 (86 subjects). As the number is increased, the noisy

areas become more salient, resulting in a more accurate noise modelling.

(a) (b) (c) (d) (e)

Fig. 6: (a) An example of the input depth map Fi,j and the resulting Fn
i,j using (b) a = 0.0005;

(c) a = 0.001; (d) a = 0.005 and (e) a = 0.01 in (6).

C. Performance of denoising methods

The use of noise modelling to simulate the noise over different depth maps enables a quan-

titative evaluation of the success of different denoising and classification/matching algorithms

to be performed. To this end, the seven widely-used denoising methods from section V are

used as part of a face recognition algorithm to recognise faces. The recognition algorithms

from section V are the m-SVM, PCA, KFA, PNN, TreeBagger, LDA and KNN classifier, with

three different distance criteria: cosine (Cos), Euclidean (Euc) and city-block (Ctb). Matlab’s

Statistics and Neural Networks Toolboxes are used to implement the m-SVM, TreeBagger and

PNN classifiers, while the PhD (Pretty helpful Development functions for face recognition)
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toolbox [34] is utilised to perform the subspace projection (PCA, LDA and KFA) and KNN

classification. For the implementation of the nonlinear diffusion filter, the ”Nonlinear Diffusion

Toolbox” provided by F. D’Almeida is employed [35].

Denoising methods Parameters

Gaussian filtering M = 37 mask and σ = 6

Median filtering 33× 33 mask

Mean filtering 19× 19 mask

Non-linear diffusion Exp4

Weiner filtering Mw = 19

Wavelet filtering Five levels (L = 5) of the discrete Meyer wavelet decomposition

TABLE I: The configuration for the denoising algorithms (Exp4 is explained in [3]).

The results of applying the discrete Meyer wavelet, mean, Gaussian, median and Weiner

filtering, and non-linear diffusion over four different noise powers are plotted in Table II. Four

different noise powers are utilised: a = 0, 0.5, 1, 1.5. a = 0 corresponds to the case in which

no noise is simulated on the input depth image. The parameters of the denoising algorithms are

selected from the best results reported in [3] and are described in Table. I. For each classification

algorithm, the rank-one recognition rate is calculated. For almost all cases, increasing the noise

powers reduces the recognition performance, as expected.

When the noise power is low (a ≈ 0), the KFA face recognition approach has the best

performance for all denoising approaches (shown in red in Table II). However, as the noise

power increases, median filtering followed by the TreeBagger, m-SVM, KFA, PNN and KNN-

Ctb classifiers produce the highest recognition ranks. For instance, for the m-SVM classifier

(shown in cyan in Table II), median filtering produces significantly higher rank-one recognition

rates compared to the other denoising techniques. A similar trend exists for the other classifiers,

shown in magenta in Table II for the median filtering denoising.

In contrast, for the subspace projection-based classification methods, which are PCA, KFA,

PNN and LDA, Weiner filtering generates the highest recognition ranks, when the noise power

is high for example a = 1.5; this is displayed in green in the table. When the noise power is

high, the KNN-Ctb and TreeBagger result in the highest rank-one rates. This is denoted in blue
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Algorithm Noise
power

m-
SVM PCA KFA PNN KNN-

Ctb
Tree-
Bagger LDA KNN-

Euc
KNN-
Cos

Discrete
Meyer

a = 0
a = 0.5
a = 1
a = 1.5

93.83
63.40
61.91
62.13

94.68
62.98
61.28
61.49

97.66
61.70
61.49
61.91

93.62
62.77
61.70
61.49

94.47
85.11
70.85
68.30

93.83
80.00
71.91
68.94

95.53
62.55
60.85
61.06

90.43
62.77
61.70
61.70

84.47
62.98
61.91
61.49

Mean
filtering

a = 0
a = 0.5
a = 1
a = 1.5

96.38
74.47
66.38
63.62

95.32
75.32
67.23
64.89

99.36
80.00
71.28
68.51

94.04
71.91
63.62
63.83

93.83
89.57
82.77
73.62

93.62
80.09
77.87
78.09

97.23
73.83
65.53
64.68

91.70
70.64
66.60
62.77

84.68
65.32
57.45
52.55

Gaussian
filtering

a = 0
a = 0.5
a = 1
a = 1.5

95.32
73.62
67.87
64.04

95.11
78.51
67.45
65.74

98.94
83.62
75.32
72.98

92.55
72.34
65.96
63.19

92.98
87.23
80.64
73.62

94.47
84.89
76.81
73.40

97.66
83.40
70.21
69.15

90.00
72.55
65.74
62.13

81.70
69.57
62.13
59.57

Non-linear
diffusion

a = 0
a = 0.5
a = 1
a = 1.5

94.26
63.62
61.49
61.06

94.26
63.83
61.28
60.85

97.02
63.62
61.70
61.28

92.34
61.91
61.49
61.49

93.83
86.60
68.94
65.32

94.47
82.98
78.72
75.32

92.34
61.28
60.85
61.06

89.79
63.19
61.28
60.85

81.91
63.40
61.06
61.28

Weiner
filtering

a = 0
a = 0.5
a = 1
a = 1.5

95.32
70.43
64.26
63.62

94.89
75.96
70.43
68.72

98.51
83.40
77.87
77.45

92.34
72.13
69.15
68.09

93.19
86.60
77.66
74.26

91.28
83.62
74.04
72.77

96.81
78.51
71.28
68.94

90.00
70.85
65.74
65.96

81.70
63.40
57.45
56.60

Median
filtering

a = 0
a = 0.5
a = 1
a = 1.5

95.74
89.15
80.64
75.11

94.47
75.11
67.23
62.77

98.30
85.32
75.96
72.55

92.98
74.68
69.15
65.96

93.40
92.77
84.89
81.28

93.83
90.64
90.00
89.36

96.38
79.79
72.77
69.15

90.85
60.00
52.77
48.30

83.40
46.81
40.85
35.96

TABLE II: Rank-one recognition rates (in %) for different noise powers and denoising algorithms.
The high KFA performance for low noise levels is shown in red, while the robustness of the
KNN-Ctb and TreeBagger against noise in high noise powers is marked in blue. The high
potential of the median filtering to denoise faces is signified in magenta and cyan, while the
higher performance of the Weiner filtering when used prior to subspace projection methods is
shown in green.

for the highly intensive noise power (a = 1.5), for the KNN-Ctb and TreeBagger in Table II.

To summarise the results, although the performance varies for each classification algorithm,

the median and Weiner filters generally result in the highest recognition ranks. Despite their

smoothing effects, non-linear diffusion, discrete Meyer wavelet and mean filtering produce the

lowest average recognition ranks, which verifies their inability to completely remove the impul-

sive spike noise. The lowest classification results are achieved when the cosine and Euclidean

distances are applied with the KNN classifier.

Table II also shows that the performance of the subspace projection methods (PCA, KFA and

LDA) significantly deteriorates as the noise level increases. For example, the recognition ranks

for the KFA classification method drop by ≈ 27% as noise level is increased from a = 0 to 1.5.

This is because of the sensitivity of these methods to the outliers in the data that occurs more
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frequently at high noise powers.

To better compare the performances of the classification methods, a is increased from 0 to

2.75 and the rank-one recognition rates are computed when median filtering is applied as the

denoiser. The results, plotted in Fig. 7, verify the results in Table II, showing the KFA and LDA

classifiers produce the highest recognition ranks when the noise power is low. However, their

performance is slightly decreased for higher noise powers.
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Fig. 7: Rank-one recognition rates achieved by the classifiers from Table II after median filtering

denoising for different noise powers a = 0 to 2.75.

The TreeBagger classifier is the most robust recognition algorithm, producing the best per-

formance for a > 0.5. Its output recognition rate remains very close to 90%, even at high level

of noise. Among the different matching criteria the city-block distance significantly outperforms

the Euclidean and cosine distances. This might be due to the higher performance of the L1-

norm, when applied on a sparse feature space [15], [36], [37]. Also, the least absolute deviation

matching performed by L1-norm is more robust against outliers and noise in the data than

the least Euclidean deviation computation (L2-norm) [38]. The L1-norm has a built-in feature

selection capability [39] and can significantly better represent sparsity than other Lp-norms p > 1
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[21], [36], [40], [41].

D. Noise/denoised gallery vs. noise/denoised probe

Noise is a stochastic process and randomly changes the depth map. Its distribution might also

change for different image acquisition devices and classification algorithms should be robust

against these variations. As the final experiment, the effects of using noisy and denoised samples

for the gallery and probe are evaluated. The purpose of this experiment is to quantify the

performance of the face recognition algorithms when the training or test samples are either

denoised or degraded by noise.

The result of applying this procedure over the Spring 2003 samples is illustrated in Table III

for a = 0.25 and using median filtering to denoise the captures. The four classification methods

which produced the highest recognition rates in the previous section are used: TreeBagger, KNN-

Ctb, m-SVM and KFA. When a noisy gallery is used, the noisy probe images are recognised

with rank-one recognition rates ≈ 93%, with the KNN-Ctb matching algorithm outperforming

the training-based methods. Also, as expected, the recognition rates when both the gallery and

probe samples are denoised is high, with the subspace projector KFA classifier producing a

98.30% rank-one recognition rate.

This experiment also shows how the classification methods can fail when the samples in the

probe (or gallery) have different noise distribution. The classification performance significantly

decreases when a noisy gallery is used for denoised probes. A similar situation exists for the case

of a denoised gallery and noisy probes. Failure to detect the correct between-class boundaries or

subspace projection axes are the main causes of this deterioration. Also, when the probe is noisy

and gallery is denoised, the learned classes do not fit to the unseen noise in the data and under-

fitting occurs. As a result, the samples are wrongly classified and recognition ranks decrease. The

KNN-Ctb distance classification still has a significantly higher recognition performance than the

other leaning-based approaches, producing a 81.91% rank-one recognition rate for the denoised

gallery when used for the noisy probe samples.

In many practical cases, the probe faces are obtained using different imaging modalities from

the gallery samples or sometimes laser scanners with different noise distributions are used.

In such cases, the results in Table III, show that the direct matching algorithm KNN has a

significantly higher performance than the training-based methods (TreeBagger, SVM and KFA).
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Gallery
Probe

Noisy Denoised

Noisy

TreeBagger: 91.91%

KNN-Ctb: 94.04%

m-SVM: 91.70%

KFA: 93.19%

TreeBagger: 12.55%

KNN-Ctb: 45.53%

m-SVM: 1.70%

KFA: 10.00%

Denoised

TreeBagger: 15.32%

KNN-Ctb: 81.91%

m-SVM: 2.34%

KFA: 11.06%

TreeBagger: 93.83%

KNN-Ctb: 93.40%

m-SVM: 95.74%

KFA: 98.30%

TABLE III: Noisy/denoised gallery vs. Noisy/denoised probe rank-one recognition results, when

a = 0.25 and median filtering is used for denoising. KNN, which is a matching algorithm,

outperforms other classifiers when applied over noisy probe samples to match with denoised

gallery images.

VII. SUMMARISATION OF THE EXPERIMENTAL RESULTS

A. Linear denoising

Mean, Gaussian and discrete Meyer wavelets perform linear filtering over the noisy faces

and are capable of removing high frequency noise from the images. As the noise power is

increased the performance of the Gaussian denoising algorithm significantly outperforms the

other two approaches for, all the classification algorithms. This is thought to be mostly because

of the weighting of the central pixel of the Gaussian filtering mask, which can more accurately

preserve edges. The mean filtering algorithm, on the other hand, smears the edges and reduces

the between-classes dissimilarities.
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B. Non-linear denoising

Spike noise, which is a type of impulsive noise, is randomly added to the image. Since

this type of noise is spread over all of the frequency components, linear filtering algorithms

can only create blobs over the noisy regions. In contrast, non-linear filtering algorithms can

replace the noisy regions using a non-linear approximation of the neighbouring pixels. Median

filtering and non-linear diffusion can effectively perform this task. Median filtering produces

more separable classes than non-linear diffusion and it is evidenced by the median filtering

≈ 3% higher recognition rates.

C. Statistical denoising

The Weiner filter is a stochastic adaptive filter, which estimates the distribution of the noise,

instead of evaluating its frequency response. Therefore, given a suitable mask size, it can find

the density of the signal and noise distributions and remove the noise by sampling from the

estimated distribution. The result of Weiner filtering denoising outperforms the linear filters and

in particular in high power of noise, significantly more robust against outliers.

D. Subspace projection-based algorithms

Amongst the different subspace projection-based algorithms evaluated in this work (PCA,

LDA, KFA, PNN and m-SVM), KFA has the highest (average) recognition rate when applied to

all the denoising algorithms for all noise powers. This shows that the classes are more separable

when are non-linearly projected to lower dimensions than linear projections.

E. Direct matching algorithms

The KNN classification using the city-block distance outperforms the other two distance

criteria. This is because of its superiority in modelling sparsity, its built-in feature selection

capability and its robustness against noise and outliers in the data. The city-block distance

produces, on average, ≈ 12% and ≈ 18% higher recognition rates than the Euclidean and cosine

distances, respectively.
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F. Multi-classifier algorithms

The TreeBagger algorithm shows the highest robustness against noise. This is because of its

capability to sample new training data from the given observations and then combine several tree

classifiers. This feature of the TreeBagger algorithm makes it superior to a similar tree-based

classifier combination using the AdaBoost algorithm, which is sensitive to the absence of enough

training samples per subjects.

VIII. CONCLUSION

This paper explores the robustness of denoising and 3D holistic face recognition algorithms for

different noise powers. To be able to quantitatively evaluate the robustness of different classifica-

tion and denoising methods, the novel approach of learning the noise distribution over the facial

surface and then simulating it over other samples is proposed. The 3D face recognition evaluation

pipeline is used to evaluate the denoising techniques of non-linear diffusion, median, mean,

Gaussian, Weiner and wavelet filtering, applied before seven different classification methods,

including SVM, neural networks, Tree-based, KNN matching and subspace projection methods.

Median, Gaussian and Weiner filtering generate the best results, with the median filter produc-

ing the best overall classification performance for high intensity noise. For low intensity noise, the

subspace projection classifiers (KFA and LDA) are the best performing classifiers. However, when

the noise intensity is increased, the performance of subspace projection methods significantly

deteriorates and the experiments show the TreeBagger and KNN with the city-block distance

to have the best robustness. The use of denoising/noisy samples for the gallery/probe is also

evaluated and the results show that the matching algorithms, for example KNN-Ctb, significantly

outperforms the training-based methods, as they do not rely on classification boundary allocation,

feature space mapping or subspace projection.

A. Future work

The proposed method to estimate the noise distribution and applying over faces is completely

database independent. One interesting area of future work is to evaluate the performance of the

denoising techniques over other types of imaging modalities, such as photometric stereo images

[42]. This can help to find suitable denoising methods for use with face datasets employing
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various imaging modalities. Although this paper has focused on datasets with few training sam-

ples, other possible research would be to explore the noise-robustness of other facial recognition

algorithms, such as the deep learning-based and sparse classifiers, which the latter relies on

higher number of per subject samples. While the results provided in this paper were mostly

based on identification performance, it would be interesting to explore the verification scenarios

performance, when different noisy samples are utilised.
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