3,673 research outputs found

    Sensor fusion in smart camera networks for ambient intelligence

    Get PDF
    This short report introduces the topics of PhD research that was conducted on 2008-2013 and was defended on July 2013. The PhD thesis covers sensor fusion theory, gathers it into a framework with design rules for fusion-friendly design of vision networks, and elaborates on the rules through fusion experiments performed with four distinct applications of Ambient Intelligence

    Artificial Intelligence in the Creative Industries: A Review

    Full text link
    This paper reviews the current state of the art in Artificial Intelligence (AI) technologies and applications in the context of the creative industries. A brief background of AI, and specifically Machine Learning (ML) algorithms, is provided including Convolutional Neural Network (CNNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs) and Deep Reinforcement Learning (DRL). We categorise creative applications into five groups related to how AI technologies are used: i) content creation, ii) information analysis, iii) content enhancement and post production workflows, iv) information extraction and enhancement, and v) data compression. We critically examine the successes and limitations of this rapidly advancing technology in each of these areas. We further differentiate between the use of AI as a creative tool and its potential as a creator in its own right. We foresee that, in the near future, machine learning-based AI will be adopted widely as a tool or collaborative assistant for creativity. In contrast, we observe that the successes of machine learning in domains with fewer constraints, where AI is the `creator', remain modest. The potential of AI (or its developers) to win awards for its original creations in competition with human creatives is also limited, based on contemporary technologies. We therefore conclude that, in the context of creative industries, maximum benefit from AI will be derived where its focus is human centric -- where it is designed to augment, rather than replace, human creativity

    Transformation of Hamka’s Thought About Ethitical Values Through History Learning as a Reinforcement of Character Education

    Get PDF
    This research is motivated by various phenomena of moral crisis such as the number of murders, ethnic war, rape, corruption, collusion, nepotism, etc. This phenomenon has swept the nations of the world, so this problem has become a global problem. Hamka was known to be very concerned about moral issues. Hamka always said that only with morality built on the belief and trust in God Almighty (a strong religion) then humans can be saved from destruction and problems of the nation. The purpose of this study is to explore, examine and analyze Hamka's ethical thinking in order to strengthen character education. The search method used is the library method. Data collection is done by observing and studying literature through Hamka's books. The results of the study are six results of Hamka's ethical thinking that contain moral values that can be turned into historical learning as an effort to strengthen character education, namely: (1) social ethics and cultural, (4) ethics of law enforcement, (5) scientific ethics, (6) environmental ethic

    A Framework for the Semantics-aware Modelling of Objects

    Get PDF
    The evolution of 3D visual content calls for innovative methods for modelling shapes based on their intended usage, function and role in a complex scenario. Even if different attempts have been done in this direction, shape modelling still mainly focuses on geometry. However, 3D models have a structure, given by the arrangement of salient parts, and shape and structure are deeply related to semantics and functionality. Changing geometry without semantic clues may invalidate such functionalities or the meaning of objects or their parts. We approach the problem by considering semantics as the formalised knowledge related to a category of objects; the geometry can vary provided that the semantics is preserved. We represent the semantics and the variable geometry of a class of shapes through the parametric template: an annotated 3D model whose geometry can be deformed provided that some semantic constraints remain satisfied. In this work, we design and develop a framework for the semantics-aware modelling of shapes, offering the user a single application environment where the whole workflow of defining the parametric template and applying semantics-aware deformations can take place. In particular, the system provides tools for the selection and annotation of geometry based on a formalised contextual knowledge; shape analysis methods to derive new knowledge implicitly encoded in the geometry, and possibly enrich the given semantics; a set of constraints that the user can apply to salient parts and a deformation operation that takes into account the semantic constraints and provides an optimal solution. The framework is modular so that new tools can be continuously added. While producing some innovative results in specific areas, the goal of this work is the development of a comprehensive framework combining state of the art techniques and new algorithms, thus enabling the user to conceptualise her/his knowledge and model geometric shapes. The original contributions regard the formalisation of the concept of annotation, with attached properties, and of the relations between significant parts of objects; a new technique for guaranteeing the persistence of annotations after significant changes in shape's resolution; the exploitation of shape descriptors for the extraction of quantitative information and the assessment of shape variability within a class; and the extension of the popular cage-based deformation techniques to include constraints on the allowed displacement of vertices. In this thesis, we report the design and development of the framework as well as results in two application scenarios, namely product design and archaeological reconstruction

    Spatial and temporal background modelling of non-stationary visual scenes

    Get PDF
    PhDThe prevalence of electronic imaging systems in everyday life has become increasingly apparent in recent years. Applications are to be found in medical scanning, automated manufacture, and perhaps most significantly, surveillance. Metropolitan areas, shopping malls, and road traffic management all employ and benefit from an unprecedented quantity of video cameras for monitoring purposes. But the high cost and limited effectiveness of employing humans as the final link in the monitoring chain has driven scientists to seek solutions based on machine vision techniques. Whilst the field of machine vision has enjoyed consistent rapid development in the last 20 years, some of the most fundamental issues still remain to be solved in a satisfactory manner. Central to a great many vision applications is the concept of segmentation, and in particular, most practical systems perform background subtraction as one of the first stages of video processing. This involves separation of ‘interesting foreground’ from the less informative but persistent background. But the definition of what is ‘interesting’ is somewhat subjective, and liable to be application specific. Furthermore, the background may be interpreted as including the visual appearance of normal activity of any agents present in the scene, human or otherwise. Thus a background model might be called upon to absorb lighting changes, moving trees and foliage, or normal traffic flow and pedestrian activity, in order to effect what might be termed in ‘biologically-inspired’ vision as pre-attentive selection. This challenge is one of the Holy Grails of the computer vision field, and consequently the subject has received considerable attention. This thesis sets out to address some of the limitations of contemporary methods of background segmentation by investigating methods of inducing local mutual support amongst pixels in three starkly contrasting paradigms: (1) locality in the spatial domain, (2) locality in the shortterm time domain, and (3) locality in the domain of cyclic repetition frequency. Conventional per pixel models, such as those based on Gaussian Mixture Models, offer no spatial support between adjacent pixels at all. At the other extreme, eigenspace models impose a structure in which every image pixel bears the same relation to every other pixel. But Markov Random Fields permit definition of arbitrary local cliques by construction of a suitable graph, and 3 are used here to facilitate a novel structure capable of exploiting probabilistic local cooccurrence of adjacent Local Binary Patterns. The result is a method exhibiting strong sensitivity to multiple learned local pattern hypotheses, whilst relying solely on monochrome image data. Many background models enforce temporal consistency constraints on a pixel in attempt to confirm background membership before being accepted as part of the model, and typically some control over this process is exercised by a learning rate parameter. But in busy scenes, a true background pixel may be visible for a relatively small fraction of the time and in a temporally fragmented fashion, thus hindering such background acquisition. However, support in terms of temporal locality may still be achieved by using Combinatorial Optimization to derive shortterm background estimates which induce a similar consistency, but are considerably more robust to disturbance. A novel technique is presented here in which the short-term estimates act as ‘pre-filtered’ data from which a far more compact eigen-background may be constructed. Many scenes entail elements exhibiting repetitive periodic behaviour. Some road junctions employing traffic signals are among these, yet little is to be found amongst the literature regarding the explicit modelling of such periodic processes in a scene. Previous work focussing on gait recognition has demonstrated approaches based on recurrence of self-similarity by which local periodicity may be identified. The present work harnesses and extends this method in order to characterize scenes displaying multiple distinct periodicities by building a spatio-temporal model. The model may then be used to highlight abnormality in scene activity. Furthermore, a Phase Locked Loop technique with a novel phase detector is detailed, enabling such a model to maintain correct synchronization with scene activity in spite of noise and drift of periodicity. This thesis contends that these three approaches are all manifestations of the same broad underlying concept: local support in each of the space, time and frequency domains, and furthermore, that the support can be harnessed practically, as will be demonstrated experimentally

    An Outlook into the Future of Egocentric Vision

    Full text link
    What will the future be? We wonder! In this survey, we explore the gap between current research in egocentric vision and the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future and previously defined research tasks. For each task, we survey its seminal works, current state-of-the-art methodologies and available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric vision.Comment: We invite comments, suggestions and corrections here: https://openreview.net/forum?id=V3974SUk1

    Ancient and historical systems

    Get PDF
    corecore