28 research outputs found

    Additive-Decomposition-Based Output Feedback Tracking Control for Systems with Measurable Nonlinearities and Unknown Disturbances

    Full text link
    In this paper, a new control scheme, called as additive-decomposition-based tracking control, is proposed to solve the output feedback tracking problem for a class of systems with measurable nonlinearities and unknown disturbances. By the additive decomposition, the output feedback tracking task for the considered nonlinear system is decomposed into three independent subtasks: a pure tracking subtask for a linear time invariant (LTI) system, a pure rejection subtask for another LTI system and a stabilization subtask for a nonlinear system. By benefiting from the decomposition, the proposed additive-decomposition-based tracking control scheme i) can give a potential way to avoid conflict among tracking performance, rejection performance and robustness, and ii) can mix both design in time domain and frequency domain for one controller design. To demonstrate the effectiveness, the output feedback tracking problem for a single-link robot arm subject to a sinusoidal or a general disturbance is solved respectively, where the transfer function method for tracking and rejection and backstepping method for stabilization are applied together to the design.Comment: 23 pages, 6 figure

    The Internal Model Principle for Systems with Unbounded Control and Observation

    Full text link
    In this paper the theory of robust output regulation of distributed parameter systems with infinite-dimensional exosystems is extended for plants with unbounded control and observation. As the main result, we present the internal model principle for linear infinite-dimensional systems with unbounded input and output operators. We do this for two different definitions of an internal model found in the literature, namely, the p-copy internal model and the G\mathcal{G}-conditions. We also introduce a new way of defining an internal model for infinite-dimensional systems. The theoretic results are illustrated with an example where we consider robust output tracking for a one-dimensional heat equation with boundary control and pointwise measurements.Comment: 38 pages, 2 figures, in revie

    Output Regulation for Linear Hybrid Systems with Periodic Jump Times

    Get PDF
    The goal of this dissertation is to present a framework and regulator design for output regulation of linear hybrid systems with periodic jump times. The term output regulation is normally used in regards to the problem of regulating an error variable of a system in the presence of an exogenous system (exosystem). This problem comes up in the context of tracking a trajectory or rejecting a disturbance that can be modeled as the output of a dynamical system (the exosystem). We begin by defining output regulation for this framework and developing a set of hybrid regulation equations and a hybrid internal model property. Following this we provide guidelines for the design of the regulator. The regulator should include an internal model capable of reproducing the output of the exosystem, as well as a stabilizer unit that is designed to make the closed loop system stable. The stabilizer unit used in this dissertation is a high gain stabilizer that utilizes a high gain observer to track unmeasured plant variables. The high gain methods are based on their continuous time counterparts. The internal model is designed with an eye towards general applicability and thus takes advantage of a property called ``visibility,'' so as to reproduce the steady-state trajectory of the exosystem, as opposed to the entire state, which is all that turns out to be necessary in order to achieve output regulation. This framework of output regulation can be useful in attempting to asymptotically track trajectories that cannot be produced by continuous-time dynamical system, such as a spline trajectory, for which an example is provided. Furthermore, the use of an internal model allows one to achieve robust output regulation. In this context, robust output regulation means maintaining output regulation despite uncertain parameters in the plant

    Robust hybrid estimation and rejection of multi-frequency signals

    No full text
    We consider the problem of output regulation for LTI systems in the presence of unknown exosystems. The knowledge about the multi-frequency signals exosystem consists in the maximum number of frequencies and their maximal value. The control scheme relies on two main components: an estimation algorithm, to reconstruct the signal generated by the exosystem, and a controller, to enforce the output regulation property to the closed-loop system. To tackle the first task, we propose a hybrid observer for the estimation of the (possibly piece-wise continuous) number and values of the frequencies contained in the exogenous signal. The hybrid observer is particularly appealing for numerical implementations, and it is combined with a self-tuning algorithm of the free parameters (gains), thus improving its performance even in case of noisy measurements. Semi-global exponential convergence of the estimation error is provided. As far as the second task is concerned, a robust hybrid regulator is designed for practical rejection of the multi-frequency disturbance signal acting on the plant. The result is achieved by exploiting the frequencies estimated by the hybrid observer. The effectiveness of the proposed control scheme is shown by means of numerical simulations

    Adaptive Control

    Get PDF
    Adaptive control has been a remarkable field for industrial and academic research since 1950s. Since more and more adaptive algorithms are applied in various control applications, it is becoming very important for practical implementation. As it can be confirmed from the increasing number of conferences and journals on adaptive control topics, it is certain that the adaptive control is a significant guidance for technology development.The authors the chapters in this book are professionals in their areas and their recent research results are presented in this book which will also provide new ideas for improved performance of various control application problems

    Disturbance Model Identification and Model Free Synthesis of Controllers for Multivariable Systems

    Get PDF
    In this work, two different problems are addressed. In the first part, the problem of synthesizing a set of stabilizing controllers for unknown multivariable systems using direct data is analyzed. This is a model free approach to control design and uses only the frequency domain data of the system. It is a perfect complement to modern and post modern methods that begin the control design with a system model. A three step method, involving sequential design, search for stability boundaries and stability check is proposed. It is shown through examples that a complete set of stabilizing controllers of the chosen form can be obtained for the class of linear stable multivariable systems. The complexity of the proposed method is invariant with respect to the order of the system and increases with the increase in the number of input channels of the given multivariable system. The second part of the work deals with the problem of identification of model uncertainties and the effect of unwanted exogenous inputs acting on a discrete time multivariable system using its output information. A disturbance model is introduced which accounts for the system model uncertainties and the effect of unwanted exogenous inputs acting on the system. The frequency content of the exogenous signals is assumed to be known. A linear dynamical model of the disturbance is assumed with an input that has the same frequency content as that of the exogenous input signal. The extended model of the system is then subjected to Kalman filtering and the disturbance states estimates are used to obtain a least squares estimate of the disturbance model parameters. The proposed approach is applied to a linear multivariable system perturbed by an exogenous signal of known frequency content and the results obtained depict the efficacy of the proposed approach

    Adaptive Output Regulation For Multivariable Nonlinear Systems Via Hybrid Identification Techniques

    Get PDF
    Output regulation refers to the class of control problems in which some outputs of the controlled system must be steered to some desired references, while maintaining closed-loop stability and in spite of the presence of unmeasured disturbances and model uncertainties. While for linear systems the problem has been elegantly solved in the 70s, output regulation for nonlinear systems is still a challenging research field, and 30 years of active research left open many fundamental problems. In particular, all the regulators proposed so far are limited to very specific classes of nonlinear systems and, even in those cases, they fail in extending in their full generality the celebrated properties of the linear regulator. The aim of this thesis is to make a decisive step towards the systematic extension of the output regulation theory to embrace more general multivariable problems. To this end, we touch here three fundamental pillars of regulation theory: the structure of regulators, the robustness issue, and the adaptation of the control system. Regarding the structural aspects, we pursue here a design paradigm that is complementary to canonical nonlinear regulators and that trades a conceptually more suitable structure with a strong internal intertwining between the different parts of the regulator. For what concerns robustness, we introduce a new framework to characterize robustness of regulators relative to steady-state properties more general than the usual requirement asking a zero asymptotic error. We characterize in this unifying terms a large part of the existing approaches, and we end conjecturing that general nonlinear regulation admits no robust solution. Regarding the evolution of regulators, we propose an adaptive regulation framework in which adaptation is used online to tune the internal models embedded in the control system. Adaptation is cast as a general system identification problem, allowing for different well-known algorithms to be used
    corecore