3,982 research outputs found

    Image based visual servoing using algebraic curves applied to shape alignment

    Get PDF
    Visual servoing schemes generally employ various image features (points, lines, moments etc.) in their control formulation. This paper presents a novel method for using boundary information in visual servoing. Object boundaries are modeled by algebraic equations and decomposed as a unique sum of product of lines. We propose that these lines can be used to extract useful features for visual servoing purposes. In this paper, intersection of these lines are used as point features in visual servoing. Simulations are performed with a 6 DOF Puma 560 robot using Matlab Robotics Toolbox for the alignment of a free-form object. Also, experiments are realized with a 2 DOF SCARA direct drive robot. Both simulation and experimental results are quite promising and show potential of our new method

    A Minimalist Approach to Type-Agnostic Detection of Quadrics in Point Clouds

    Get PDF
    This paper proposes a segmentation-free, automatic and efficient procedure to detect general geometric quadric forms in point clouds, where clutter and occlusions are inevitable. Our everyday world is dominated by man-made objects which are designed using 3D primitives (such as planes, cones, spheres, cylinders, etc.). These objects are also omnipresent in industrial environments. This gives rise to the possibility of abstracting 3D scenes through primitives, thereby positions these geometric forms as an integral part of perception and high level 3D scene understanding. As opposed to state-of-the-art, where a tailored algorithm treats each primitive type separately, we propose to encapsulate all types in a single robust detection procedure. At the center of our approach lies a closed form 3D quadric fit, operating in both primal & dual spaces and requiring as low as 4 oriented-points. Around this fit, we design a novel, local null-space voting strategy to reduce the 4-point case to 3. Voting is coupled with the famous RANSAC and makes our algorithm orders of magnitude faster than its conventional counterparts. This is the first method capable of performing a generic cross-type multi-object primitive detection in difficult scenes. Results on synthetic and real datasets support the validity of our method.Comment: Accepted for publication at CVPR 201

    TVL<sub>1</sub> Planarity Regularization for 3D Shape Approximation

    Get PDF
    The modern emergence of automation in many industries has given impetus to extensive research into mobile robotics. Novel perception technologies now enable cars to drive autonomously, tractors to till a field automatically and underwater robots to construct pipelines. An essential requirement to facilitate both perception and autonomous navigation is the analysis of the 3D environment using sensors like laser scanners or stereo cameras. 3D sensors generate a very large number of 3D data points when sampling object shapes within an environment, but crucially do not provide any intrinsic information about the environment which the robots operate within. This work focuses on the fundamental task of 3D shape reconstruction and modelling from 3D point clouds. The novelty lies in the representation of surfaces by algebraic functions having limited support, which enables the extraction of smooth consistent implicit shapes from noisy samples with a heterogeneous density. The minimization of total variation of second differential degree makes it possible to enforce planar surfaces which often occur in man-made environments. Applying the new technique means that less accurate, low-cost 3D sensors can be employed without sacrificing the 3D shape reconstruction accuracy

    A fuzzy clustering algorithm to detect planar and quadric shapes

    Get PDF
    In this paper, we introduce a new fuzzy clustering algorithm to detect an unknown number of planar and quadric shapes in noisy data. The proposed algorithm is computationally and implementationally simple, and it overcomes many of the drawbacks of the existing algorithms that have been proposed for similar tasks. Since the clustering is performed in the original image space, and since no features need to be computed, this approach is particularly suited for sparse data. The algorithm may also be used in pattern recognition applications

    A statistical model to describe invariants extracted from a 3-D quadric surface patch and its applications in region-based recognition

    Get PDF
    A statistical model, describing noise-disturbed invariants extracted from a surface patch of a range image, has been developed and applied to region based pose estimation and classification of 3D quadrics. The Mahalanobis distance, which yields the same results as a Baysian classifier, is used for the classification of the surface patches. The results, compared with the Euclidean distance, appear to be much more reliabl

    Surface representations for 3D face recognition

    Get PDF

    PIMs and invariant parts for shape recognition

    Get PDF
    Journal ArticleWe present completely new very powerful solutions t o two fundamental problems central to computer vision. 1. Given data sets representing C objects to be stored in a database, and given a new data set for an object, determine the object in the database that is most like the object measured. We solve this problem through use of PIMs ("Polynomial Interpolated Measures"), which, is a new representation integrating implicit polynomial curves and surfaces, explicit polynomials, and discrete data sets which may be sparse. The method provides high accuracy at low computational cost. 2. Given noisy 20 data along a curve (or 30 data along a surface), decompose the data into patches such that new data taken along affine transformation-s or Eucladean transformations of the curve (or surface) can be decomposed into corresponding patches. Then recognition of complex or partially occluded objects can be done in terms of invariantly determined patches. We briefly outline a low computational cost image-database indexing-system based on this representation for objects having complex shape-geometry
    • 

    corecore