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Abstract 
We present completely new very powerful solutions 

to two fundamental problems central to computer vi­
sion. 1. Given data sets representing C objects to 
be stored in a database,!, and given a new data set for 
an object, determine the object in the database that is 
most like the object measured. We solve this problem 
through use of PIMs ("Polynomial Interpolated Mea­
sures"), which is a new representation integrating im­
plicit polynomial curves and surfaces, explicit polyno­
mials, and discrete data set.~ which may be sparse. The 
method provides high accuracy at low computational 
cost. 2. Given noisy 2D data along a curve (or 3D 
data along a surface), decompose the data into patches 
such that new data taken along affine tran.~formations 
or Euclidean transformations of the curve (or surface) 
can be decomposed into correponding patches. Then 
recognition of complex or partially occluded objects can 
be done in terms of invariantly determined patches. 
We briefly outline a low computational cost image­
database indexing-system based on this representation 
for objects having complex shape-geometry. 

1 Introduction 
Denote dth degree explicit polynomials in (x, y) and 

(x, y, z) by 

and 

f(x, y) = L aijXiyJ 

i,j?O;i+j~d 

f(x,y,z) = 
i,j,k?O;i+j+k~d 

respectively. By 2D implicit polynomial (IP) curves 
and 3D IP surfaces we mean the sets of (x, y) and 
(x, y, z) points, respectively, where the explicit poly-

\ nomials are equal to O. IP 2D curves (and 3D surfaces) 
have many desirable features for use in computer vi­
sion [1, 2, 3], but they have also had some weak­
nesses. Among these weaknesses have been: compu­
tation times on the order of a second to a few minutes 

827 

for fitting a 2D curve ( or 3D surface) to a few hun­
dred data points; insufficient repeatability, under cer­
tain circumstances, in fitted IP coefficients for shapes 
that have undergone Euclidean or affine transforma­
tions and for which the data is somewhat variable; 
sometimes weird representations when an IP that can­
not represent a data set accurately is fit to the data; 
an inability to represent and compare geometrically­
complex shapes. Of course, the'last problem is the 
Holy Grail of computer vision - the search for parts 
which can be computed invariantly and at low com­
putational cost. 

In this paper we present solutions to the preced­
ing problems. Specifically, we present a completely 
new concept of IP representations based on the ap­
proximation of the diitance transform for a data set 
by an explicit polynomial, and the resulting linear 
shape representation and recognition theory that flows 
from this. This new IP technology is ideally suited 
to representing and recognizing complicated 2D (and 
3D) shapes subject to partial occlusions and missing 
data. The material presented is the following. 1) How 
to fit polynomials of modest degree, e.g., 4th degree, 
quickly (milliseconds or orders of magnitude less) and 
fit polynbmials such that zero sets and coefficients are 
roughly the same under perturbations in data, e.g., 
noise, slight differences in patch end points, etc. The 
method also fits IP curves of degrees up to 18th easily, 
though at greater computational cost. 2) How to com­
pare shapes or data sets represented by implicit poly­
nomials accurately and at !low computational cost. 3) 
How to choose patches invariantly. That is, we want to 
store a set of patches with each object in a database, 
and each of several patches that are computed for an 
object to be recognized should be roughly the same 
as a patch stored with the object in the database. 
With these, we lay down a foundation that enables 
a technology based on implicit polynomial curves and 
surfaces for various object representation/recognition 
applications. 



.Application of Invariant Patches for Index­
ing into Pictorial Databases To be able to access 
the vast amount of pictorial information now avail­
able, many content based query and indexing systems 
have been introduced [4, 5). Most ofthe current picto­
rial database indexing schemes are appearance-rather 
than geometry-based. Geometry-based indexing al­
lows rapid queries to be performed on large picto­
rial databases containing images with complex, rich 
shape-structure [6). In Sec. 3.2 we briefly sketch 
an image database indexing system based on the new 
IP technology described in this paper. The approach 
should permit geometric-based indexing into large im­
age databases of the order of 105 or 106 images in real 
time. 

2 Polynomial Interpolated Measures 
2.1 3L Polynomial Fitting 

We assume a set fa = {Zk : 1 :S k :S N} of mea­
surement points can be well represented by an implicit 
polynomial of degree d'. Note, Zk denotes (Xk' Yk). 
Consider representation by a polynomial of degree d, 
with d :S d'. Our representation is as follows. For 
each point Z on a data curve fa generate two other 
points each at a distance c from z and in a direction 
perpendicular to the curve, each point on a different 
side of the curve. We denote these two sets of artifi­
cially generated points by f c and f -c' Note f c is a set 
of points on one side of the curve, and f -c is a set of 
points on the other side of the curve. Denote the union 
f -c U fa U fc by f. Let g(x, y) denote the Distance 
Transform of fa. g(x, y) takes value 0 on fa and -c 
and +c on the artificially generated points f -c and fe, 
respectively. We now determine a polynomial f(x, y) 
of degree d such that its zero set approximates fa. We 
do this by chQosing !(x, y) to be a least ,squares ~­
proximation to g(x, y) on f. Specifically, f(x, y) is the 
d'th degree polynomial for which 

is mmlmum. We call j(x, y), the polynomial approx­
imation to the Distance Transform in the vicinity of 
T a, the 3L (three level sets) polynomial fit [7). Fig. 1 
shows overlay~ of the original data and the IP curves 
of various degrees fit to three shapes using the 3L al­
gorithm. 

The limited repeatability in the coefficients of fitted 
polynomials using previous methods occurs because a 
polynomial is a function of all x, y: -00 < x, y < 00. 

Hence, estimating coefficients along a finite curve fa 
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Figure 1: 3L fitting with degrees 4, 8 and 12. 

and expecting the resulting coefficient values to be re­
peatable in the presence of modest changes in the noise 
and the ends of the data set interval is unrealistic. In 
addition, there is nothing in previous fitting proce­
dures to prevent singularities in j(x, y) from occuring 
in the vicinity of the data curve fa. These singular­
ities are a major cause of instability and repeatabil­
ity in the fitted polynomial parameters and zero sets. 
Our 3L approach tends to prevent the occurrence of 
singulari ties in j (x, y) in the vicinity of fa since ,it 
discourages the occurrence of a local minimum, rriax­
imum, or saddle near fa, and the 3L fitting uses data 
over a ribbon rather than a curve because of the arti­
ficially generated points. (Singularities occur at these 
extrema.) An effect of 3L fitting is that of applying a 
constraint in the fitting, namely, encouraging the gra­
dient of f(x, y) in the vicinity of the data points to be 
perpendicular to fa and of magnitude 1. 

2.2 PIMs (Polynomial Interpolated Mea­
sures) 

The problem here is: given measured object bound­
ary data fa, check to see which stored data set 
fl,a, fz,a, ... , fL,a it is closest to. fl,a, 1 :S l :S L, con­
tains Nl points, which may be noisy measurements 
of a curve, and fa may be a new noisy measure­
ment. Hence, for some r, ff a may represent the same 
shape but not necessarily 'have any points in com­
mon. How can we do computationally fast robust 
comparison? One approach is to compute the aver­
age squared Euclidean distance from fa to each of 
the data sets fl,a. The Euclidean distance can be 
computed by storing the Distance Transform gl (x, y) 
for each object in the database, or, more effeciently, 
its polynomial approximation jl(X, y), and comput-

ing N- 1 
I::{(x,y):(x,Y)Ero} f? (x, y). In this section, we 

develop a powerful generalization - PIM (Polynomial 
Interpolated Measure) - which compares the distance 



between data sets in terms of the distance between 
their fitted polynomial coefficients weighted in a cer­
tain way. It provides a new concept for comparing 
data curves and leads to many useful results (e.g. or­
thogonal decomposition [8] ). 

Consider data sets Zl and Z2 containing N1 
and N2 points,. respectively. The fitted IP 
(implicit polynomial) curve models for these are 
h(x,y) L.o~i,.i;i+j~4a1i.ixi1!i and h(x,y) == 
L.O<i,.i;i+j~4 a2ijxiyi (for simplicity we use 4th degree 
IPs nere). Define the dissimilarity (distance) between 
Zl and Z2 as 

Here Z == Zl U Z2 and N 1,2 == N1 + N 2. 

F 
(2) 

Denote a == (aoo alO a01 a20 ... a04)i5' X == 
(1 x y x 2 ... y4)i5 and the elements of Z as {(Xk' Yk) : 
1 :s: k :s: N 1,z}. 

(3) 
Here M is a nonnegative definite symmetric matrix. 
dist(Zl, Z2) can be 0 for Zl of. Z2, i.e., different sam­
plings of the same continuous curve. We can define 
such sets to be an equivalence class so that the require­
ments of dist(Zl' Z2) being a metric are not violated. 
We call it Polynomial Interpolated Measure or PIMfor 
short. Hence, eqn. 3 gives us the approximate mean 
squared distance between two curves at a local data 
set in terms of a Mahalanobis distance between the IP 
curve coefficients. 

PIM can be generalized to other operations in the 
coefficient space. Assume a, b E R15 are two 4th de­
gree IP coefficient vectors. We define an inner prod­
uct a· b as (a, b)PIM ==at Mb. Hence the length 

1 1 II a IIPIM= (a,a)PIM == (at MapIM)2. Thus eqn. 3 
can be written as 

We say two polynomials are orthogonal with respect 
to a given data set Z if (a, b)PIM :::: at Mzb::;; O. 

For equations. 2 to 3 it is useful to think of these 
sums,e.g., N~'2 L(x,Y)EZlh(x, y)- h(x, y)J2, as the in­
tegration of [h(x, y) - h(x, y)j2 with respect to a dis­
crete measure taKing value -tI- at each point (x, y) in 

1,2 
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Figure 2: Demonstration of the use of PIM. 
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Z. These measures for Zl and Z2 are then shape mea­
sures, and the sums are functionals on explicit poly­
nomial space defined by these shape measures. Fig. 
2 demonstrates the use of PIM distance measure for 
fou~ cases. 

Case 1 Fig. 2{a) shows two data sets: one con­
sisting of the "0" symbols only and one that is the 
union of "0" and "x" symbols. Two IPs of degrees 3 
and 4 are fitted to these sets, respectively. Clearly, 
the two IPs agree very well on the data set composed 
only of "o"s, whereas over the larger data set the IPs 
are very different. Computing the PIM distance using 
the smaller data set gives a value of 3.8227 and us­
ing the larger dat'a set gives a value of 2947.3. Thus, 
PIM permits comparison of two polynomial zero sets 
in terms of their coefficients even when the degrees of 
the polynomials are different. 

Case 2 Fig. 2(b) shows three sets of data: Set #1 
is the original dat.a set, Set =#2 is a noisy version of the 
same data and Set #3 has more noise than Set #2. 
Fig. 2(c) are the three IPs fit.t.ed to the corresponding 
data sets; The PIM distance between Set #1 and Set 
#2 is 0.8353 and the distance between Set #1 and Set 
#3 is 4.7550. 

Case 3 Fig. 2( d) shows the same data sets as in 



2(a), but now 4'th degree IPs are fitted to both. Again 
the two IP curves agree quite well on the smaller data 
set, but not on the bigger data set. The coefficient vec­
tors for the two IPs are remarkably different. The PIM 
distance is 3.5099 using the smaller data set where the 
IP curves agree well, and 3995.2 using the larger data 
set. PIM provides a way to measure local similarity 
around data sets when global curve behaviors are sig­
nificantly different. 

Case 4 The datasets shown in 2 (e) are equivalent 
up to a rotation of 5 degrees which might be the case 
if the patch il1 the database and the patch to be rec­
ognized cannot be aligned exactly. The PIM distance 
for these- two sets is 467.48 which suggests that the 
sets are not completely dissimilar. 

We are presently extending PIM me~ure to recog­
nition based on invariants and pose estimation. 

3 Invariant Patches and Parts 
3L Fitting allows an IP representation to be ar­

bitrary close to the shape given that the degree of IP 
used be high enough. In many computer vision and/or 
content-based indexing applications, data may not be 
available along the entire shape because of occlusion or 
missing data. Hence, it is important to be able to ex­
tract invariant patches with given degree-complexity 
from the object shape measurements. These are useful 
object features for shape recognition or indexing. 
3.1 Maximum Invariant Patches and 

Parts 
There is not general agreement on the concept of 

patches and parts, but there are a number of different 
approaches to the problem. Among the bases for do­
ing this are: (a) general shape features [9]; (b) geomet­
ric primitives; (c) features pertinent to the restricted 
set, of objects under consideration in a particular ap-

,plication; (d) area or volume scale; (e) complexity. 
,Our view of patches and parts is that they are sim­
piy chunks of 2D curves or 3D surfaces that can be 
found reliably in any data in which they are visible 
and irrespective of sensor viewing direction. 

Our approach is the following: Choose a degree d 
for a polynomial. Choose any point 5 on an object 
shape curve. Now determine the curve patch start­
ing at s and having maximum length l(d, 5) such that 
the patch can be "well fit" by a dth degree implicit 
polynomial. Now consider a Euclidean or affine trans­
formation of the original curve. Take point s' on it cor­
responding to point s on the original curve. Choose a 
maximum length patch on this curve· starting at point 
5', where by maximum length we again mean that the 
patch is of greatest length and still well fit by a dth 
degree IP. This patch will be the Euclidean or affine 
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Figure 3: (a) Mean error as a function of patch length; 
118 is a first estimate of 1(5, d). (b) The value of in­
variant #1, displayed at coarse scale, as a function of 
patch length. Notice instability in vicinity of length 

1118. Locally stable regions are at slightly greater or 
smaller locations. (c) The value of invariant #1 dis­
played at finer scale in vicinity of length 118. 1(5, d) is 
chosen to be 126. 
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Figure 4: Algebrai~ invariants of maximum length in­
variant patches for a hand shape (circles) and its Eu­
clidean transform ~ crosses). Algebraic invariants of 
96% of the patches of the transformed shape are al­
most identical in value to those of the original patches. 



transformation, respectively, of the patch on the orig­
inal curve. Hence, this is a way of choosing patches 
that are invariant to Euclidean or affine transforma­
tions. Note, the maximum length invariant patch can 
be found with a reasonable amount of computation 
because our fitting is linear least squares, so that the 
fitting can actually be done recursively with a small 
amount of computation. If this is done starting,at ev­
ery point on a shape curve, the resulting set of maxi­
mum length invariant patches is our set of "parts" for 
use in recognition or indexing or other purposes. Of 
course, these "parts" do not have any physical meanc 

ing. 
To find a maximum length patch, starting at point 

s, we use 3L fitting and look at the mean square er­
ror as a function of increasing patch arc length. This 
error measure will be roughly constant as long as a 
dth degree polynomial fits the data well. When a dth 
degree polynomial no longer is satisfactory, the error 
starts to increase rapidly, and that is where we stop. 
A typical curve of error measure as a function of patch 
arc length is shown in Fig. 3a. Finally, if the end goal 
is indexing based on algebraic invariants, we need to 
make sure that the invariants to be used take values 
that are independent of small changes in the invariant 
patch length. (An algebraic invariant is a function of 
the IP coefficients that is determined only by shape 
and is independent of position. See [2] for some exam­
ples.) To ensure this happens, in the vicinity of the 
aforementioned estimate of maximum invariant patch 
length, we perturb the patch length slightly until we 
find a length for which the values of the invariants are 
insensitive to small changes in patch length. This is 
a final maximum length invariant patch that we use. 
Fig. 4 displays the maximum length invariant patch 
determination procedure for a single invariant in the 
Euclidean invariant space. They are very consistent 
with respect to Euclidean transformations and can be 
used to distinguish different object shapes. 
3.2 Indexing based on Maximum Length 

Invariant Patches /Parts 
The distributions of vectors of algebraic invariants 

for maximum length invariant patches have the fol­
lowing important properties that lead to our choice of 
the indexing procedure: 

1. The invariants of the patches extracted from an 
object do not form a compact cloud in the invari­
ant space. This is a consequence of the fact that 
a complex object (one that cannot be represented 
well by 1:1 Bingle 4th degree IP) contains patches 
that are significantly different from each other in 
shape and thus in the values of their invariants. 
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Thus it is not possible to use classical recognition 
techniques that assume normal distributions. 

2. The values of a vector of invariants from different 
objects can be similar since it is possible for these 
different objects to contain patches that are sim­
ilar. Therefore, using Vector Quantization to get 
a set of representative invariant vectors for each 
object would require a large number of represen­
tative vectors to achieve acceptable performance. 

Consequently one reasonable way to do indexing is 
to use a Nearest Neighbor Classifier where an invariant 
vector obtained from a single patch of the object to 
be classified is compared against all invariant vectors 
in the database. The object then can be assigned to 
that class which has an invariant vector that is closest 
in the sense of some distance to the observed vector. 
However, this requires that all patches from all objects 
be stored in the database and the comparison of the 
measured vector with all stored vectors which would 
result in an extremely slow classification procedure. 

It is important to remember that at this stage we 
don't aim at classifying the given object, but only 
cutting down the possible candidates to a manage­
able number. These candidates would later be consid­
ered more carefully. The solution lies in using a rela­
tively fast and coarse classification method, repeating 
the procedure for multiple patches from an object to 
achieve better accuracy. 

Database preparation: 
All the invariant vectors obtained from the stan­

dard pos~ of all the objects are pooled together. Given 
N, starting with the whole space of vectors of inv? 
ants as one region the space is iteratively split into 
smaller regions until no region contains more than N 
invariant vectors. Fig. 5 IlL shows the resulting re­
gions for an invariant space containing invariant vec­
tors from four objects. The decision boundaries used 
in breaking up the regions are stored in a binary tree 
structure,see Fig. 5b. 

Indexing: 
Now, given an invariant vector we use the tree 

structure stored in the database to determine to which 
region it belongs. The maximum depth of the deci­
sion tree structure will be f1og2(M~K)1 where M is 
the number of objects in the database, J( is the max­
imum number of patches extracted from any object 
and N is the maximum number of vectors of invari­
ants allowed in a single region. In our experiments we 
used f( = 200 and N = 8, Hi and 32. Three invari­
ants are used. For a database with one million objects 
the maximum depth of the binary decision tree is 17. 



R(l.l) Q(1Y ",(1.1) 

R(2,1} R(Z,Z) 

Y 
10(2.1) 

0(2.1) ,,0(2Y ~(2,2) 

R(n,1) A(n.2"n) 

(a) (b) 

Figure 5: (a) Some of the regions for a database con­
taining 4 shapes. (b) The regions can be described us­
ing a tree structure to break up the space into parts. 
R(n, m) is the m'th region of level n. Q(n, m) and 
!Q(n, m) represent the two sides ofthe boundary split­
ting region R(n, m) into R(n + 1, x) and R(n + 1, V). 

Thus the search can easily be done in real time even 
for very large databases. 

Once we have determined that the observed invari­
ant vector belongs to region r, we want to know the 
probability that it came from object c. This is repre­
sented by the following conditional probability 

P(c I r) = :;(r I c)P(c) = :;(r I c) (5) '. 
2:c=l P(r I c)P(c) 2:C=l P(r I c) 

where P(c) and P(r) stand for P(object = c) and 
P(region = r) respectively. The last step follows 
from the assumption that all objects have equal apri­
ori probabilities of occuring. 

P(r I c) values are computed and stored off-line. 
We could use eqn. 5 for a single patch to do index­

ing; however, because of the coarseness of the clas­
sification procedure and other reasons, it is neces­
sary to use multiple patches. We can use P patches 
that are extracted from the object to be classified. 
T(c) = J; 2:;=1 P(c I rd represents an average condi­
tional probability and becomes more reliable as P is 
increased. In our experiment, we used P = 10. (The 
optimum test statistic would have been [nr=l P(ri I 

c)lj 2:~1 n;=l P (ri I c).) The running time of the 
indexing procedure is determined by the extraction 
of the patches, the time for actual indexing is negli­
gible. Thus the time required for indexing is linear 
with the number of patches used. Finally, we choose 
those objects which have the highest T(c) values as 
the outcome of this stage of indexing. Results of a 
preliminary test on 12 objects are shown in table 1. 
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N= 32 N = 16 N=8 
. Top pick % 83.1 % 93.6 % 97.1 

In Top 2 Picks % 87.7 % 95.3 % 97.3 
In Top 3 Picks % 90.8 % 97.0 % 98.8 

Table 1: Success rates of indexing. Percentages based 
on 12 objects,1000 samples each. 10 patches were used 
for indexing. 
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