1,877 research outputs found

    Aspects of proactive traffic engineering in IP networks

    Get PDF
    To deliver a reliable communication service over the Internet it is essential for the network operator to manage the traffic situation in the network. The traffic situation is controlled by the routing function which determines what path traffic follows from source to destination. Current practices for setting routing parameters in IP networks are designed to be simple to manage. This can lead to congestion in parts of the network while other parts of the network are far from fully utilized. In this thesis we explore issues related to optimization of the routing function to balance load in the network and efficiently deliver a reliable communication service to the users. The optimization takes into account not only the traffic situation under normal operational conditions, but also traffic situations that appear under a wide variety of circumstances deviating from the nominal case. In order to balance load in the network knowledge of the traffic situations is needed. Consequently, in this thesis we investigate methods for efficient derivation of the traffic situation. The derivation is based on estimation of traffic demands from link load measurements. The advantage of using link load measurements is that they are easily obtained and consist of a limited amount of data that need to be processed. We evaluate and demonstrate how estimation based on link counts gives the operator a fast and accurate description of the traffic demands. For the evaluation we have access to a unique data set of complete traffic demands from an operational IP backbone. However, to honor service level agreements at all times the variability of the traffic needs to be accounted for in the load balancing. In addition, optimization techniques are often sensitive to errors and variations in input data. Hence, when an optimized routing setting is subjected to real traffic demands in the network, performance often deviate from what can be anticipated from the optimization. Thus, we identify and model different traffic uncertainties and describe how the routing setting can be optimized, not only for a nominal case, but for a wide range of different traffic situations that might appear in the network. Our results can be applied in MPLS enabled networks as well as in networks using link state routing protocols such as the widely used OSPF and IS-IS protocols. Only minor changes may be needed in current networks to implement our algorithms. The contributions of this thesis is that we: demonstrate that it is possible to estimate the traffic matrix with acceptable precision, and we develop methods and models for common traffic uncertainties to account for these uncertainties in the optimization of the routing configuration. In addition, we identify important properties in the structure of the traffic to successfully balance uncertain and varying traffic demands

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    A robust machine learning method for cell-load approximation in wireless networks

    Full text link
    We propose a learning algorithm for cell-load approximation in wireless networks. The proposed algorithm is robust in the sense that it is designed to cope with the uncertainty arising from a small number of training samples. This scenario is highly relevant in wireless networks where training has to be performed on short time scales because of a fast time-varying communication environment. The first part of this work studies the set of feasible rates and shows that this set is compact. We then prove that the mapping relating a feasible rate vector to the unique fixed point of the non-linear cell-load mapping is monotone and uniformly continuous. Utilizing these properties, we apply an approximation framework that achieves the best worst-case performance. Furthermore, the approximation preserves the monotonicity and continuity properties. Simulations show that the proposed method exhibits better robustness and accuracy for small training sets in comparison with standard approximation techniques for multivariate data.Comment: Shorter version accepted at ICASSP 201

    Data-Driven Dynamic Robust Resource Allocation: Application to Efficient Transportation

    Get PDF
    The transformation to smarter cities brings an array of emerging urbanization challenges. With the development of technologies such as sensor networks, storage devices, and cloud computing, we are able to collect, store, and analyze a large amount of data in real time. Modern cities have brought to life unprecedented opportunities and challenges for allocating limited resources in a data-driven way. Intelligent transportation system is one emerging research area, in which sensing data provides us opportunities for understanding spatial-temporal patterns of demand human and mobility. However, greedy or matching algorithms that only deal with known requests are far from efficient in the long run without considering demand information predicted based on data. In this dissertation, we develop a data-driven robust resource allocation framework to consider spatial-temporally correlated demand and demand uncertainties, motivated by the problem of efficient dispatching of taxi or autonomous vehicles. We first present a receding horizon control (RHC) framework to dispatch taxis towards predicted demand; this framework incorporates both information from historical record data and real-time GPS location and occupancy status data. It also allows us to allocate resource from a globally optimal perspective in a longer time period, besides the local level greedy or matching algorithm for assigning a passenger pick-up location of each vacant vehicle. The objectives include reducing both current and anticipated future total idle driving distance and matching spatial-temporal ratio between demand and supply for service quality. We then present a robust optimization method to consider spatial-temporally correlated demand model uncertainties that can be expressed in closed convex sets. Uncertainty sets of demand vectors are constructed from data based on theories in hypothesis testing, and the sets provide a desired probabilistic guarantee level for the performance of dispatch solutions. To minimize the average resource allocation cost under demand uncertainties, we develop a general data-driven dynamic distributionally robust resource allocation model. An efficient algorithm for building demand uncertainty sets that compatible with various demand prediction methods is developed. We prove equivalent computationally tractable forms of the robust and distributionally robust resource allocation problems using strong duality. The resource allocation problem aims to balance the demand-supply ratio at different nodes of the network with minimum balancing and re-balancing cost, with decision variables on the denominator that has not been covered by previous work. Trace-driven analysis with real taxi operational record data of San Francisco shows that the RHC framework reduces the average total idle distance of taxis by 52%, and evaluations with over 100GB of New York City taxi trip data show that robust and distributionally robust dispatch methods reduce the average total idle distance by 10% more compared with non-robust solutions. Besides increasing the service efficiency by reducing total idle driving distance, the resource allocation methods in this dissertation also reduce the demand-supply ratio mismatch error across the city

    Computer Science and Game Theory: A Brief Survey

    Full text link
    There has been a remarkable increase in work at the interface of computer science and game theory in the past decade. In this article I survey some of the main themes of work in the area, with a focus on the work in computer science. Given the length constraints, I make no attempt at being comprehensive, especially since other surveys are also available, and a comprehensive survey book will appear shortly.Comment: To appear; Palgrave Dictionary of Economic
    • …
    corecore