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Data-Driven Dynamic Robust Resource Allocation: Application to
Efficient Transportation

Abstract
The transformation to smarter cities brings an array of emerging urbanization challenges. With the
development of technologies such as sensor networks, storage devices, and cloud computing, we are able to
collect, store, and analyze a large amount of data in real time. Modern cities have brought to life
unprecedented opportunities and challenges for allocating limited resources in a data-driven way. Intelligent
transportation system is one emerging research area, in which sensing data provides us opportunities for
understanding spatial-temporal patterns of demand human and mobility. However, greedy or matching
algorithms that only deal with known requests are far from efficient in the long run without considering
demand information predicted based on data.

In this dissertation, we develop a data-driven robust resource allocation framework to consider spatial-
temporally correlated demand and demand uncertainties, motivated by the problem of efficient dispatching of
taxi or autonomous vehicles. We first present a receding horizon control (RHC) framework to dispatch taxis
towards predicted demand; this framework incorporates both information from historical record data and
real-time GPS location and occupancy status data. It also allows us to allocate resource from a globally optimal
perspective in a longer time period, besides the local level greedy or matching algorithm for assigning a
passenger pick-up location of each vacant vehicle. The objectives include reducing both current and
anticipated future total idle driving distance and matching spatial-temporal ratio between demand and supply
for service quality. We then present a robust optimization method to consider spatial-temporally correlated
demand model uncertainties that can be expressed in closed convex sets. Uncertainty sets of demand vectors
are constructed from data based on theories in hypothesis testing, and the sets provide a desired probabilistic
guarantee level for the performance of dispatch solutions. To minimize the average resource allocation cost
under demand uncertainties, we develop a general data-driven dynamic distributionally robust resource
allocation model. An efficient algorithm for building demand uncertainty sets that compatible with various
demand prediction methods is developed. We prove equivalent computationally tractable forms of the robust
and distributionally robust resource allocation problems using strong duality. The resource allocation problem
aims to balance the demand-supply ratio at different nodes of the network with minimum balancing and re-
balancing cost, with decision variables on the denominator that has not been covered by previous work.

Trace-driven analysis with real taxi operational record data of San Francisco shows that the RHC framework
reduces the average total idle distance of taxis by 52%, and evaluations with over 100GB of New York City taxi
trip data show that robust and distributionally robust dispatch methods reduce the average total idle distance
by 10% more compared with non-robust solutions. Besides increasing the service efficiency by reducing total
idle driving distance, the resource allocation methods in this dissertation also reduce the demand-supply ratio
mismatch error across the city.
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ABSTRACT

DATA-DRIVEN DYNAMIC ROBUST RESOURCE ALLOCATION: APPLICATION TO

EFFICIENT TRANSPORTATION

Fei Miao

George J. Pappas

The transformation to smarter cities brings an array of emerging urbanization challenges. With

the development of technologies such as sensor networks, storage devices, and cloud computing,

we are able to collect, store, and analyze a large amount of data in real time. Modern cities have

brought to life unprecedented opportunities and challenges for allocating limited resources in a

data-driven way. Intelligent transportation system is one emerging research area, in which sensing

data provides us opportunities for understanding spatial-temporal patterns of demand human and

mobility. However, greedy or matching algorithms that only deal with known requests are far from

efficient in the long run without considering demand information predicted based on data.

In this dissertation, we develop a data-driven robust resource allocation framework to consider

spatial-temporally correlated demand and demand uncertainties, motivated by the problem of ef-

ficient dispatching of taxi or autonomous vehicles. We first present a receding horizon control

(RHC) framework to dispatch taxis towards predicted demand; this framework incorporates both

information from historical record data and real-time GPS location and occupancy status data. It

also allows us to allocate resource from a globally optimal perspective in a longer time period, be-

sides the local level greedy or matching algorithm for assigning a passenger pick-up location of each

vacant vehicle. The objectives include reducing both current and anticipated future total idle driving

distance and matching spatial-temporal ratio between demand and supply for service quality. We

then present a robust optimization method to consider spatial-temporally correlated demand model

uncertainties that can be expressed in closed convex sets. Uncertainty sets of demand vectors are

constructed from data based on theories in hypothesis testing, and the sets provide a desired proba-

v



bilistic guarantee level for the performance of dispatch solutions. To minimize the average resource

allocation cost under demand uncertainties, we develop a general data-driven dynamic distribution-

ally robust resource allocation model. An efficient algorithm for building demand uncertainty sets

that compatible with various demand prediction methods is developed. We prove equivalent com-

putationally tractable forms of the robust and distributionally robust resource allocation problems

using strong duality. The resource allocation problem aims to balance the demand-supply ratio at

different nodes of the network with minimum balancing and re-balancing cost, with decision vari-

ables on the denominator that has not been covered by previous work.

Trace-driven analysis with real taxi operational record data of San Francisco shows that the RHC

framework reduces the average total idle distance of taxis by 52%, and evaluations with over 100GB

of New York City taxi trip data show that robust and distributionally robust dispatch methods reduce

the average total idle distance by 10% more compared with non-robust solutions. Besides increasing

the service efficiency by reducing total idle driving distance, the resource allocation methods in this

dissertation also reduce the demand-supply ratio mismatch error across the city.
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CHAPTER 1 : Introduction

The number of cities is increasing worldwide and the transformation to smarter cities is taking

place, which bring an array of emerging urbanization challenges [63, 16]. With the development of

technologies such as radio-frequency identification (RFID), sensor networks, storage devices, and

cloud computing, we are able to collect, store, and analyze a large amount of data efficiently [38].

Cities have grown into complex systems saturated by aging infrastructures of increasing running

costs, fading control over private data, and a growing pool of interlinked socio-economic problems

urging for immediate solutions. The United Nations forecasts that by 2050, over six billion people,

or about 66% of the world population, will live in cities or towns [67]. Increased urbanization

worldwide presents a variety of challenges related to the systems integral to any city, such as public

transportation, roads and bridges, water and energy systems, and telecommunications networks.

Future cities will be highly instrumented with sensors and devices that provide almost real-time

updates of various states of cities, including congestions, level of pollutions, or availability of re-

sources. The scaling laws observed in the evolution and growth of the modern cities fundamentally

have brought to life unprecedented opportunities to address these challenges in a data-driven way.

In order to manage the complexity of such urban environments in a smarter way, it is inevitable that

real-time control and decision be implemented based on the state of cities measured by sensors.

1.1. Opportunities with Smart Cities

Intelligent transportation system is one emerging research area, in which sensing data collected

in real time provides us opportunities for understanding spatial-temporal human mobility patterns.

More and more transportation systems are equipped with various sensors and wireless radios to

enable better mobility service, such as intelligent highways, traffic light control, supply chain man-

agement, and autonomous fleets. The embedded sensing and control technologies in these systems

significantly improve their safety and efficiency over traditional systems. Examples include traffic

speed [5], travel time [41, 6], passengers’ demand model of taxi network [61], and road transporta-
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tion network efficiency [82].

Based on such rich spatial-temporal information about passenger mobility patterns and demand,

many control solutions have been designed for intelligent transportation systems. Coverage con-

trol and coordination algorithms to allocate groups of autonomous vehicles are presented with dis-

tributed gradient descent algorithms [25]. Dispatch algorithms that aim to minimize customers’

waiting time [85, 47] or to reduce cruising mile [90] have been developed. A smart parking sys-

tem that assigns and reserves an optimal resource (parking space) for a driver based on the driver’s

cost function has been proposed, and the overall efficient utilization of parking capacity is guaran-

teed [35]. Although these works heavily rely on precise passenger-demand models or prior infor-

mation to make dispatch decisions, they show the possibility to improve system’s performance with

information provided by data.

Research and development on autonomous cars is currently very active. Researchers are not only

developing the technology to make autonomous cars a reality, but are also analyzing their potential

impact on urban mobility. By considering average demand predicted based on either historical

or streaming data when making current decisions, vehicle re-balancing and re-allocating costs are

reduced for shared automated vehicles [69, 92]. Similarly, the above mentioned projects of smart

parking systems [35] and coordinating algorithms for groups of vehicles towards demand [25] are

both examples in the autonomous vehicle area. A case study based on Singapore data shows that

autonomous car sharing could reduce the number of passenger vehicles by 60% [81]. These work

provide guidelines and justification for the design of shared-vehicle mobility-on-demand systems.

More work that considers different transportation system design requirements are necessary with

the trend of urbanization and technology development.

Meanwhile, resource allocation schemes with various performance metrics have been designed for

numerous systems in the literature [60], such as wireless networks [31], data-centers [45], power

systems [19], health-care and emergency response systems [30, 32], and transportation systems [35,

81]. Resilience properties of dynamical networks are analyzed for distributed routing policies [23,

24]. Strategies for resource allocation depend on the model of demand in general, and the knowledge
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(a) New York City (b) San Francisco

Figure 1: Visualization of taxi pick-up and drop-off events

and assumptions about the demand affect the performance of the supply-providing approaches [21,

68]. Based on these exiting methods designed for different service requirements, new frameworks

that deal with resource allocation problems with the paradigm of smart cities can be developed.

1.2. Challenges for Data-Driven Dynamic Resource Allocation of Efficient Transportation

Systems

The ultimate goal of a modern transportation system is to fulfill the mobility requirement of people

and goods while minimizing various operational costs such as greenhouse gas emissions and wears

of the infrastructure. In the context of urban environments, on-demand mobility, including taxicabs

and other ride-sharing services, has gained popularity in recent years due to the rapidly rising ex-

penses of car ownership in cities. Figure 1 shows a visualization of taxi pick-up and drop-off events

in New York City and San Francisco. The operation of on-demand mobility services with limited

service resources, however, is far from optimal — they may result to extra costs and conflicts of

interests to the limited resources in cities.

Though existing works for mobility-on-demand service of autonomous vehicle consider system-

level optimality [92, 69, 81], how to incorporate historical and real-time sensing data to improve

dynamic resource allocation performance or how to deal with demand uncertainties has not been

explicitly studied or empirically tested yet. The challenges considered in this dissertation are as

follows.
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1.2.1. How to Improve Global Optimality and Efficiency with Predicted Demand

Greedy strategies may increase human satisfaction myopically, while the total utilization is not

optimal under conflict of interests. How to incorporate historical recording data and real-time

sensing information to allocate resources from a system-level optimality perspective is critical

for smart cities, since resource is limited.

Compared with transportation systems such as subway, bus, and trains, ride-sharing or taxi service

is more flexible without a repeated schedule every day, and dispatch decisions should be made in

real time. However, efficient coordination of taxi networks based on the current system state at a

large scale is a challenging task. Traditional taxi networks in metropolitan areas heavily rely on

taxi drivers’ experience to look for passengers on streets to maximize individual profit. However,

such self-interested, uncoordinated behaviors of drivers usually result in spatial-temporal mismatch

between taxi supply and passenger demand. Greedy algorithms are widely employed by large taxi or

ride-sharing service companies, such as finding the nearest vacant taxi to pick up a passenger [51],

or first-come, first-served.

Considering a transportation system such as a taxi dispatch system or an on-demand ride-sharing

system (e.g., uber, lyft and Sidecar), the current applied service usually assigns the driver that

can reach the customer in shortest time once a request appears in the system. Though aiming to

minimize each individual’s waiting time, the total profit is not globally optimal and the service is

not efficient– passengers at over-supplied regions have shorter average waiting time than those at

under-supplied regions, and the service may lose their customer in those under-supplied regions.

Meanwhile, without a system-level regulator, drivers tend to stay within areas that they think there

will be more potential customers, and traverse on streets in hoping to pick up the next passenger

in a short idle distance or idle time based on their own experience. Before a request enters to the

system, drivers do not have ideas where to go, hence, there will be extra idle driving distance,

energy consumption and unnecessary congestion or occupation of the road resources caused by the

behavior of searching passengers. There has not been previous work that considers this type of real-

time resource allocation problem from a system-optimal perspective, with the demand predicted
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based on either existing record data or streaming data. Further more, real-time sensing data provides

update of a vehicle’s status such as location, speed, and vacancy, and shows the mobility pattern of

both vacant and in-service vehicles. How to define the measurement of service quality or efficiency

considering available information provided by data is critical for improving the performance of the

system.

1.2.2. How to Consider Demand Uncertainties in Dynamic Decisions

Given a demand-related dataset, how to formulate a computationally tractable robust re-

source allocation problem under predicted uncertain demand is a rising questions for many

smart city applications.

Previous research has shown that sensing data contains rich information about passenger and taxi

mobility patterns [91, 74, 73]. Moreover, recent studies have shown that the passenger demand

information can be extracted and used to reduce passengers’ waiting time, taxi cruising time, or fu-

ture supply re-balancing cost to serve requests [49, 75, 92]. Meanwhile, considering future demand

when making the current dispatch decisions helps to reduce resource re-allocating costs [92, 84].

However, passenger-demand models have their intrinsic model uncertainties that result from many

factors, such as weather, passenger working schedule, and city events etc. Algorithms that do

not consider these uncertainties can lead to inefficient dispatch services, resulting in long waiting

times of under-served passengers, imbalanced workloads, and increased taxi idle mileage. While

robust optimization aims to minimize the worst-case cost under all possible random parameters,

it sacrifices average system performances [2]. It is essential to address the trade-off between the

worst-case system performance guarantee and the average dispatch cost under uncertain demand,

with system performance metric such as service fairness and service allocate/re-allocate cost under

practical constraints.
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1.2.3. How to Efficiently Construct Spatial-Temporal Demand Uncertainty Sets

How to construct spatial-temporally correlated uncertain demand sets based on a large amount

of data for robust resource allocation problems is beyond the scope of designing an accurate

machine learning algorithm— we need to bridge the gap between machine learning algorithm

and robust optimization methods.

It is difficult to find a very accurate demand model based on data for many applications; even such a

model exists, it may be too complicated to fit the requirement of a computationally tractable robust

optimization problem. Thus, building an uncertain set that includes appropriate information for

robust resource allocation strategies is critical and challenging. The demand uncertainty set should

include information about either the value of the distribution of the random demand to make sure that

the robust solutions based on it provides the desired performance guarantee, and the computational

cost of reaching such robust solutions are not too high for a large-scale system.

Many application areas need a spatial-temporal model of demand uncertainties for regulating the

supply more efficiently. For instance, in the area of clean and renewable energy, an adaptive ro-

bust dispatch method has been designed for wind power systems [52] but no probabilistic guarantee

of the performance is guaranteed. Motivated by portfolio management problems in financial area,

data-driven robust optimization approaches have been developed for independent and identically

distributed (i.i.d.) sampled random vectors in the literature [12, 27, 79, 28]. For transportation sys-

tems such as taxi systems or autonomous vehicle systems, no previous work has considered to build

a spatial-temporally correlated demand uncertainty set, or formulate a robust resource allocation

framework given the uncertain predicted demand yet. An efficient modeling algorithm for a large

sensing dataset need to be developed, the performance improvement based on uncertainty demand

sets need to be evaluated based on data.

1.3. Contributions of the Thesis

Our goal is to utilize information provided by a large amount of sensing data to optimize real-

time resource allocation strategies in smart cities. From a high level perspective, we fill in the
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gap between demand data to dynamic resource allocation decisions, designs both computationally

tractable robust optimal resource allocation models in a real-time framework and uncertain demand

modeling algorithms. With the objective of balancing demand-supply ratio for a fair service, we

prove computationally tractable forms and the corresponding uncertain demand set construction

process. The decision variable of the robust problem is on the denominator, which has not been

covered by previous work in the literature.

Regarding to the specific example of taxi or autonomous ride-sharing car dispatch framework, both

anticipated future idle driving cost and global geographical service fairness are considered, while

fulfilling current, local passenger demand. To accomplish such a goal, we incorporate both system

models learned from historical data and real-time taxi data into a taxi network control framework.

Evaluations based on datasets of metropolitan areas in the US show that the total idle distance of all

taxis is reduced by our framework, and supply is more balanced across different regions of one city.

Contributions of this dissertation are explicitly stated as the following.

1.3.1. A Receding Horizon Control Framework for Real-Time Taxi Dispatch

We design a computationally efficient moving time horizon framework for taxi dispatch with large-

scale real-time information of the taxi network. Our dispatch solutions in this framework consider

future costs of balancing the supply demand ratio under physical constraints. We take a receding

horizon control (RHC) approach to dynamically control taxis in large-scale networks. Future de-

mand is predicted based on either historical taxi data sets [18] or streaming data [91, 62]. The

real-time GPS and occupancy information of taxis is also collected to update supply and demand

information for future estimation. This design iteratively regulates the mobility of idle taxis for high

performance, demonstrating the capacity of large-scale smart transportation management.

The contributions of this domain are as follows.

• To the best of our knowledge, we are the first to design an RHC framework for large-scale

taxi dispatching. We consider both current and future demand, saving costs under constraints
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by involving anticipated future idle driving distance for re-balancing supply.

• The framework incorporates large-scale data in real-time control. Sensing data is used to

build predictive passenger demand, taxi mobility models, and serve as real-time feedback for

RHC.

• Extensive trace driven analysis based on a San Francisco taxi data set shows that our ap-

proach reduces average total taxi network idle distance by 52%, and the error between local

and global supply demand ratio by 45%, compared to the actual historical taxi system perfor-

mance.

• Spatial-temporal context information such as disruptive passenger demand is formulated as

uncertainty sets of parameters into a robust dispatch problem. This allows the RHC frame-

work to provide more robust control solutions under uncertain contexts. The error between

local and global supply demand ratio is reduced by 25% compared with the error of solutions

without considering demand uncertainties.

1.3.2. Data-Driven Robust Taxi Dispatch

Though real-time sensing information corrects parts of model prediction error based on the evalua-

tions of the receding horizon control taxi dispatch framework, demand model uncertainty is still one

critical factor that affects the performance of the dispatch algorithm. To consider model uncertainty

with a real-time computable resource allocation approach, we design a promising yet challenging

approach — a robust dispatch framework with an uncertain demand model, called an uncertainty

set, that captures spatial-temporal correlations of demand uncertainties and provides a probabilistic

guarantee (as defined in problem (4.12)). Solving the robust dispatch problem with the constructed

uncertainty set yields a probabilistic guarantee for the optimality of the actual dispatch cost. We

have the freedom to specify a lower bound for the probability that an actual dispatch cost under

the true demand vector being smaller than the optimal cost of the robust dispatch solutions. Hence,

we are able to find a better solution for considering the trade-off between the average dispatch cost

and the minimum cost under the worst-case scenario than previous methods that do not provide any

8



guarantees.

We first develop the objective and constraints of a multi-stage robust dispatch problem considering

spatial-temporally correlated demand uncertainties. The objective of a system-level optimal dis-

patch solution is balancing workload of taxis in each region of the entire city with minimum total

current and expected future idle cruising distance. We then design a data-driven algorithm for con-

structing uncertainty demand sets without assumptions about the true distribution of the demand

vector. The constructing algorithm is based on theories proved for independent and identically dis-

tributed (i.i.d.) sampled random vectors in the robust optimization literature [12, 27, 79]. However,

how to apply these theories for spatial-temporal data and a robust resource allocation form of taxi

dispatch problem based on the constructed spatial-temporally correlated uncertainty sets have not

been explored before. To the best of our knowledge, this is the first work to design a robust taxi

dispatch framework that provides a desired probabilistic guarantee using demand uncertainty sets

built from realistic data.

With two types of uncertainty sets — one box type and one second-order-cone (SOC) type, we

prove equivalent convex optimization forms of the robust dispatch problem via the strong duality

theorem. The robust dispatch problem formulated in this work is convex over the decision vari-

ables and concave over the constructed uncertain sets, with decision variables on the denominators.

This form is not the standard form (i.e., linear programming (LP) or semi-definite programming

(SDP) problems) that has already been covered by previous work [8, 12, 26]. With proofs shown

in this work, both system performance and computational tractability are guaranteed under spatial-

temporal demand uncertainties. Based on four years of taxi trip data in New York City, we evaluate

factors that affect the accuracy of the uncertainty sets, properties of each type of uncertainty sets,

and trade- off between the probabilistic guarantee levels and the average dispatch costs of robust

dispatch solutions.

The contributions of our work in this domain are:

• We develop a multi-stage robust optimization model for taxi dispatch systems under spatial
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temporal uncertainties of predicted demand, with the weighted sum of multi- objective of

balancing vacant taxi supply and reducing total idle driving distance.

• We design a data-driven algorithm to construct uncertainty sets that provide a desired level

of probabilistic guarantee for the robust taxi dispatch solutions. We show that the second-

order-cone type of uncertain set provides a smaller average dispatch cost than the box type

via evaluations.

• We prove that there exists an equivalent computationally tractable convex optimization form

for the robust dispatch problem with each type of constructed uncertainty set.

• Evaluations on four years of taxi trip data in New York City show that the average demand-

supply ratio mismatch is reduced by 31.7%, and the average total idle distance is reduced by

10.13% or about 20 million miles annually with robust dispatch solutions.

1.3.3. Data-Driven Dynamic Distributionally Robust Resource Allocation

The knowledge and assumptions about the demand model affect the performance of resource allo-

cation strategies. A robust allocation scheme shows its advantage in worst-case scenarios compared

with non-robust approaches [2, 54, 52]. Considering the trade-off between system’s average perfor-

mance and worst-case performance, robust taxi dispatch techniques with a probabilistic guarantee

level for an original chance constrained problem are developed and evaluated based on a realistic

dataset [57]. Stochastic programming (SP) is another approach to describe decision-making prob-

lems under uncertain parameters. However, the computational complexity of an SP problem is

not polynomial of the spatial-temporal decision variables, and not scalable for dynamic resource

allocation in general. Moreover, it is difficult to obtain an explicit formulation about the true dis-

tribution function of the random demand purely based on data in practice. Hence, when we are

able to construct a set of distribution functions that includes the true distribution function of the

random demand given a demand dataset, minimizing the expected cost over the worst-case distri-

bution function in the set is a promising approach. Distributionally robust optimization techniques

are developed under this scenario in control optimization literature [28, 36].
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To minimize the average resource allocation cost under demand uncertainties, we design a data-

driven distributionally robust dynamic resource allocation model under uncertain spatial-temporally

correlated demand, with an application in taxi dispatch problem given demand data. An efficient

algorithm for constructing an uncertain set of the distribution function based on data without as-

sumptions about prior knowledge is proposed, by utilizing the rolling-horizon property of the dis-

tribution uncertain set. The constructing algorithm is based on theories proved for independent

and identically distributed (i.i.d.) sampled random vectors in hypothesis testing and data-driven

optimization literature [18, 12, 28]. We prove an equivalent computationally tractable form of the

distributionally robust resource allocation problem via strong duality theorem. With proofs shown

in this work, both average performance of the system and computational tractability are guaranteed

under spatial-temporal demand uncertainties.

The contributions of our work in this domain are

• We design an efficient algorithm to construct distributional uncertainty set based on spatial-

temporal demand data for a data-driven dynamic distributionlly robust resource allocation

model.

• We derive an equivalent computationally tractable convex optimization form for a general

form of resource allocation problem with each type of constructed uncertainty set. The re-

source allocation problem aims to balance the demand-supply ratio at different nodes of the

network with minimum balancing and re-balancing cost, with decision variables on the de-

nominator that has not been covered by previous work [8, 12, 28].

• For an example problem of fairly allocating vacant taxis according to uncertain demand at

each region of the city with minimum total idle driving distance, we evaluate the average cost

of the distributionally robust taxi dispatch solutions based on four years taxi trip records of

New York City. Results show that the average demand-supply ratio error is reduced by 28.6%,

and the average total idle driving distance is reduced by 10.05%.
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1.4. Outline of the Dissertation

The dissertation is organized as follows. Chapter 2 presents a summary of the used notation and

background knowledge from convex optimization, robust optimization and hypothesis testing. We

present the receding horizon control framework that incorporates both historical record and real-

time sensing information in Chapter 3. Chapter 4 addresses the problem of demand uncertainties

with a data-driven robust taxi dispatch framework, and both the process of constructing a demand

uncertainty set from data and computationally tractable robust optimization formulations are de-

signed. Motivated by the efficient transportation problem, Chapter 5 presents a general form of

distributionally robust resource allocation method and an efficient algorithm of constructing uncer-

tainty sets. Finally, in Chapter 6, we give our concluding remarks and highlight some future work

in this field.
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CHAPTER 2 : Background and Notation

In this dissertation, we denote 1N as a lengthN column vector of all 1s. Superscripts of variables as

in Xk, Xk+1 denote discrete time. We denote the j-th column of matrix Xk as Xk
·j . For any vector

x, we denote by xT the transpose of x, and xi as the i-th component of x. For a random vector

y ∈ Rn, we denote one sample of the y as ỹ. For a differentiable Lagrangian function L(x, y), we

denote ∆xL(x, y) as its partial derivative over x.

2.1. Strong Duality of Convex Optimization

We briefly review the strong duality property in convex optimization literature [17], and the proofs

of equivalent computationally tractable forms of the (distributionally) robust resource allocation

problem are based on strong duality. In the following we describe a general standard form opti-

mization problem and its dual, while concrete formulations of both the primal and dual problems

will be defined in the following chapters of this dissertation.

Consider a standard form convex optimization problem [17]

minimize f0(x)

subject to fi(x) 6 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p,

(2.1)

with variable x ∈ Rn, and nonempty domain x ∈ D. The Lagrangian L : Rn × Rm × Rp → R

associated with the primal problem (2.1) is defined as

L(x, λ, v) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

vjhj(x),

with domain L = D × Rm × Rp. We refer to the dual variables λi and vi as the Lagrange mul-

tiplier associated with the ith inequality constraint fi(x) 6 0 and equality constraint hj(x) = 0,

respectively.
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Then the (Lagrange) dual function g : Rm ×Rp → R is defined as the minimum value of L over x:

g(λ, v) = inf
x∈D

L(x, λ, v) = inf
x∈D

f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

vjhj(x)

 .

The Lagrange dual problem associated with problem (2.1) is then

maximize g(λ, v)

subject to λ > 0.

(2.2)

We denote p∗ as the optimal value of primal problem (2.1), and d∗ as the optimal value of the

dual problem (2.2). The property of weak duality always hold for the d∗ and p∗, that the optimal

value of the Lagrange dual problem is the best lower bound of the optimal value of the primal

problem (2.1),i.e.,

d∗ 6 p∗.

The difference p∗ − d∗ is defined as the optimal duality gap of problem (2.1), and the gap value is

always nonnegative.

2.1.1. Slater’s Constraint Qualification

When the primal convex problem (2.1) satisfies that the equality constraints are affine, or hj(x) = 0

is specified as the form Ax = b, the Slater’s condition is defined as: there exists an x ∈ relintD

such that

fi(x) < 0, i = 1, . . . ,m, Ax = b. (2.3)
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If the first l constraint functions f1, . . . , fl are affine, then the Slater’s condition can be refined as:

there exists an x ∈ relintD such that

fi(x) < 0, i = 1, . . . , l, fi(x) < 0, i = l + 1, . . . ,m, Ax = b. (2.4)

When a primal convex problem (2.1) satisfies Slater’s condition, strong duality holds [17], and we

have

d∗ = p∗. (2.5)

Proof and examples of convex primal and dual problems when strong duality holds are given in

book [17]; for more details about strong duality please refer to it.

It is worth noting that when the primal problem is a convex maximization problem, then the dual

problem is a minimization form. The process of finding the dual form is similar as defined above.

2.2. Hypothesis Testing

We briefly review the general process of a hypothesis testing that designed for i.i.d. samples. The

algorithms of building demand uncertain sets in this dissertation are based on hypothesis testing.

Hypothesis testing is a widely applied technique to examine the property of a data set [48]. A

hypothesis testing starts from a given null-hypothesis H0 that makes a claim about an unknown

distribution P∗, and we need to decide whether to acceptH0 or reject it, based on a data set S drawn

from P∗. The fact that a null-hypothesis is false means there is no sufficient evidence to determine

its validity.

A typical test designs a statistic T ≡ T (S, H0), and a threshold Γ ≡ Γ(αh,S, H0), where αh

is a given significance level for data S on hypothesis H0. If T > Γ, we reject H0. T is also

random since it depends on the randomly sampled data S. The threshold Γ is the value that with a

probability at most αh, H0 will be incorrectly rejected with respect to samples S. Values of α =

15



1%, 5%, 10%, 20% are common in applications, but it can be set according to specific requirements.
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CHAPTER 3 : Real-Time Resource Allocation in Smart Cities: A Receding Horizon

Control Approach

3.1. Introduction

Traditional taxi systems in metropolitan areas often suffer from inefficiencies due to uncoordinated

actions as system capacity and customer demand change. With the pervasive deployment of net-

worked sensors in modern vehicles, large amounts of information regarding customer demand and

system status can be collected in real time. This information provides opportunities to perform

various types of control and coordination for large-scale intelligent transportation systems. In this

chapter, we present a receding horizon control (RHC) framework to dispatch taxis, which incor-

porates highly spatiotemporally correlated demand/supply models and real-time GPS location and

occupancy information. The objectives include matching spatiotemporal ratio between demand

and supply for service quality with minimum current and anticipated future taxi idle driving dis-

tance. Extensive trace-driven analysis with a data set containing taxi operational records in San

Francisco shows that our solution reduces the average total idle distance by 52%, and reduces the

supply demand ratio error across the city during one experimental time slot by 45%. Moreover, our

RHC framework is compatible with a wide variety of predictive models and optimization problem

formulations. This compatibility property allows us to solve robust optimization problems with

corresponding demand uncertainty models that provide disruptive event information.

The rest of this chapter is organized as follows. The background of taxi monitoring system and

control problems are introduced in Section 3.3. The taxi dispatch problem is formally formulated

in Section 3.4, followed by the RHC framework design in Section 3.5 and a multi-level dispatch

framework in Section 3.5.2. A case study with a real taxi data set from San Francisco to evaluation

the RHC framework is shown in Section 3.6.
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3.2. Related Work

There are three categories of research topics related to the work of this chapter: taxi dispatch sys-

tems, transportation system modeling, and multi-agent coordination and control.

A number of recent works study approaches of taxi dispatching services or allocating transportation

resources in modern cities. Zhang and Pavone [92] designed an optimal rebalancing method for

autonomous vehicles, which considers both global service fairness and future costs, but they didn’t

take idle driving distance and real-time GPS information into consideration. Truck schedule meth-

ods to reduce costs of idle cruising and missing tasks are designed in the temporal perspective in

work [87], but the real-time location information is not utilized in the algorithm. Seow et.al focus

on minimizing total customer waiting time by concurrently dispatching multiple taxis and allowing

taxis to exchange their booking assignments [78]. A shortest time path taxi dispatch system based

on real-time traffic conditions is proposed by Lee et.al [47]. In [76, 43, 75], authors aim to maximize

drivers’ profits by providing routing recommendations. These works give valuable results, but they

only consider the current passenger requests and available taxis. Our design uses receding horizon

control to consider both current and predicted future requests.

Various mobility and vehicular network modeling techniques have been proposed for transportation

systems [22, 15]. Researchers have developed methods to predict travel time [34, 41] and traveling

speed [5], and to characterize taxi performance features [49]. A network model is used to describe

the demand and supply equilibrium in a regulated market is investigated [86]. These works provide

insights to transportation system properties and suggest potential enhancement on transportation

system performance. Our design takes a step further to develop dispatch methods based on available

predictive data analysis.

There is a large number of works on mobility coordination and control. Different from taxi ser-

vices, these works usually focus on region partition and coverage control so that coordinated agents

can perform tasks in their specified regions [25, 3, 42]. Aircraft dispatch system and air traffic

management in the presence of uncertainties have been addressed [9, 83], while the task models
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and design objectives are different from taxi dispatching problem. Also, receding horizon control

(RHC) has been widely applied for process control, task scheduling, and multi-agent transportation

networks [64, 46, 50]. These works provide solid results for related mobility scheduling and control

problems. However, none of these works incorporates both the real-time sensing data and historical

mobility patterns into a receding horizon control design, leveraging the taxi supply based on the

spatiotemporal dynamics of passenger demand.

Remark 1 The results from this chapter have been captured in [59, 56].

3.3. Taxi Dispatch Problem: Motivation and System

Taxi networks provide a primary transportation service in modern cities. Most street taxis respond

to passengers’ requests on their paths when passengers hail taxis on streets. This service model has

successfully served up to 25% public passengers in metropolitan areas, such as San Francisco and

New York [39, 65]. However, passenger’s waiting time varies at different regions of one city and taxi

service is not satisfying. In the recent years, ”on demand” transportation service providers like Uber

and Lyft aim to connect a passenger directly with a driver to minimize passenger’s waiting time.

This service model is still uncoordinated, since drivers may have to drive idly without receiving

any requests, and randomly traverse to some streets in hoping to receive a request nearby based on

Passenger 
Distribution

Taxi 
Mobility

Real-Time 
Control

Pickup & Delivery

Dispatch Center

Cellular 
Ratio

GPS

Occupancy 
Sensing

Figure 2: A prototype of the taxi dispatch system
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experience.

Our goal in this work is a centralized dispatch framework to coordinate service behavior of large-

scale taxi Cyber-Physical system. The development of sensing, data storage and processing tech-

nologies provide both opportunities and challenges to improve existing taxi service in metropolitan

areas. Figure 14 shows a typical monitoring infrastructure, which consists of a dispatch center

and a large number of geographically distributed sensing and communication components in each

taxi. The sensing components include a GPS unit and a trip recorder, which provides real-time ge-

ographical coordinates and occupancy status of every taxi to the dispatch center via cellular radio.

The dispatch center collects and stores data. Then, the monitoring center runs the dispatch algo-

rithm to calculate a dispatch solution and sends decisions to taxi drivers via cellular radio. Drivers

are notified over the speaker or on a special display.

Given both historical data and real-time taxi monitoring information described above, we are ca-

pable to learn spatiotemporal characteristics of passenger demand and taxi mobility patterns. This

paper focuses on the dispatch approach with the model learned based on either historical data or

streaming data. One design requirement is balancing spatiotemporal taxi supply across the whole

city from the perspective of system performance. It is worth noting that heading to the allocated

position is part of idle driving distance for a vacant taxi. Hence, there exists trade-off between

the objective of matching supply and demand and reducing total idle driving distance. We aim at

a scalable control framework that directs vacant taxis towards demand, while balancing between

minimum current and anticipated future idle driving distances.

3.4. Taxi Dispatch Problem Formulation

Informally, the goal of our taxi dispatch system is to schedule vacant taxis towards predicted passen-

gers both spatially and temporally with minimum total idle mileage. We use supply demand ratio

of different regions within a time period as a measure of service quality, since sending more taxis

for more requests is a natural system-level requirement to make customers at different locations

equally served. Similar service metric of service node utilization rate has been applied in resource
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allocation problems, and autonomous driving car mobility control approach [92].

The dispatch center receives real-time sensing streaming data including each taxi’s GPS location

and occupancy status with a time stamp periodically. The real-time data stream is then processed

at the dispatch center to predict the spatiotemporal patterns of passenger demand. Based on the

prediction, the dispatch center calculates a dispatch solution in real-time, and sends decisions to

vacant taxis with dispatched regions to go in order to match predicted passenger demands.

Besides balancing supply and demand, another consideration in taxi dispatch is minimizing the

total idle cruising distance of all taxis. A dispatch algorithm that introduces large idle distance in

the future after serving current demands can decrease total profits of the taxi network in the long

run. Since it is difficult to perfectly predict the future of a large-scale taxi service system in practice,

we use a heuristic estimation of idle driving distance to describe anticipated future cost associated

with meeting customer requests. Considering control objectives and computational efficiency, we

choose a receding horizon control approach. We assume that the optimization time horizon is T ,

indexed by k = 1, . . . , T , given demand prediction during time [1, T ].

3.4.1. Supply and demand in taxi dispatch

We assume that the entire area of a city is divided into n regions such as administrative sub-districts.

We also assume that within a time slot k, the total number of passenger requests at the j-th region

is denoted by rkj . We also use rk , [rk1 , . . . , r
k
n] ∈ R1×n to denote the vector of all requests. These

are the demands we want to meet during time k = 1, . . . , T with minimal idle driving cost. Then

the total number of predicted requests in the entire city is denoted by

Rk =

n∑
j=1

rkj .

We assume that there are total N vacant taxis in the entire city that can be dispatched according to

the real-time occupancy status of all taxis. The initial supply information consists of real-time GPS

position of all available taxis, denoted by P 0 ∈ RN×2, whose i-th row P 0
i ∈ R1×2 corresponds to
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Parameters Description
N the total number of vacant taxis
n the number of regions

rk ∈ R1×n the total number of predicted requests to be served by current vacant taxis
at each region

Ck ∈ [0, 1]n×n matrix that describes taxi mobility patterns during one time slot
P 0 ∈ RN×2 the initial positions of vacant taxis provided by GPS data
Wi ∈ Rn×2 preferred positions of the i-th taxi at n regions
α ∈ RN the upper bound of distance each taxi can drive for balancing the supply
β ∈ R+ the weight factor of the objective function
Rk ∈ R+ total number of predicted requests in the city
Variables Description

Y k ∈ {0, 1}N×n the dispatch order matrix that represents the region each vacant taxi should go
P k ∈ [0, 1]N×n predicted positions of dispatched taxis at the end of time slot k

dki ∈ R+ lower bound of idle driving distance of the i-th taxi for reaching
the dispatched location

Table 1: Parameters and variables of the RHC problem (3.8).

the position of the i-th vacant taxi. While the dispatch algorithm does not make decisions for occu-

pied taxis, information of occupied taxis affects the predicted total demand to be served by vacant

taxis, and the interaction between the information of occupied taxis and our dispatch framework

will be discussed in section 3.5.

The basic idea of the dispatch problem is illustrated in Figure 3. Specifically, each region has a

predicted number of requests that need to be served by vacant taxis, as well as locations of all vacant

taxis with IDs given by real-time sensing information. We would like to find a dispatch solution that

balances the supply demand ratio, while satisfying practical constraints and not introducing large

current and anticipated future idle driving distance. Once dispatch decisions are sent to vacant taxis,

the dispatch center will wait for future computing a new decision problem until updating sensing

information in the next period.

3.4.2. Optimal dispatch under operational constraints

The decision we want to make is the region each vacant taxi should go. With the above initial

information about supply and predicted demand, we define a binary matrix Y k ∈ {0, 1}N×n as the

dispatch order matrix, where Y k
ij = 1 if and only if the i-th taxi is sent to the j-th region during time
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(b) A dispatch solution – taxi 2 goes to
region 4, taxi 4 goes to region 3, and taxi
6 goes to region 4.

Figure 3: Unbalanced supply and demand at different regions before dispatching and possible dis-
patch solutions. A circle represents a region, with a number of predicted requests ([·] inside the
circle) and vacant taxis ({ taxi IDs } outside the circle) before dispatching. A black dash edge
means adjacent regions. A red edge with a taxi ID means sending the corresponding vacant taxi to
the pointed region according to the predicted demand.

k. Then

Y k1n = 1N , k = 1, . . . , T

must be satisfied, since every taxi should be dispatched to one region during time k.

Two objectives

One design requirement is to fairly serve the customers at different regions of the city — vacant taxis

should be allocated to each region according to predicted demand across the entire city during each

time slot. To measure how supply matches demand at different regions, we use the metric—supply

demand ratio. For region j, its supply demand ratio for time slot k is defined as the total number of

vacant taxis decided by the total number of customer requests during time slot k. When the supply

demand ratio of every region equals to that of the whole city, we have the following equations for
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j = 1, . . . , n, k = 1, . . . , T ,

1TNY
k
·j

rkj
=

N

Rk
, ⇐⇒

1TNY
k
·j

N
=

rkj
Rk

, (3.1)

For convenience, we rewrite equation (3.1) as the following equation about two row vectors

1

N
1TNY

k =
1

Rk
rk, k = 1, · · · , T. (3.2)

However, equation (3.2) can be too strict if used as a constraint, and there may be no feasible solu-

tions satisfying (3.2). This is because decision variables Y k, k = 1, . . . , T are integer matrices, and

taxis’ driving speed is limited that they may not be able to serve the requests from any arbitrary re-

gion during time slot k. Instead, we convert the constraint (3.2) into a soft constraint by introducing

a supply-demand mismatch penalty function JE for the requirement that the supply demand ratio

should be balanced across the whole city, and one objective of the dispatch problem is to minimize

the following function

JE =
T∑
k=1

∥∥∥∥ 1

N
1TNY

k − 1

Rk
rk
∥∥∥∥

1

. (3.3)

The other objective is to reduce total idle driving distance of all taxis. The process of traversing

from the initial location to the dispatched region will introduce an idle driving distance for a vacant

taxi, and we consider to minimize such idle driving distance associated with meeting the dispatch

solutions.

We begin with estimate the total idle driving distance associated with meeting the dispatch solutions.

For the convenience of routing process, the dispatch center is required to send the GPS location of

the destination to vacant taxis. The decision variable Y k only provides the region each vacant taxi

should go, hence we map the region ID to a specific longitude and latitude position for every taxi.

In practice, there are taxi stations on roads in metropolitan areas, and we assume that each taxi has a

preferred station or is randomly assigned one at every region by the dispatch system. We denote the
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preferred geometry location matrix for the i-th taxi by Wi ∈ Rn×2, and [Wi]j , where each row of

Wi is a two-dimensional geometric position on the map. The j-th row of Wi is the dispatch position

sent to the i-th taxi when Y k
ij = 1.

Once Y k
i is chosen, then the i-th taxi will go to the location Y k

i Wi, because the following equation

holds

Y k
i Wi =

∑
q 6=j

Y k
iq[Wi]q + Y k

ij [Wi]j = [Wi]j ∈ R1×2.

With a binary vector Y k
i that Y k

ij = 1, Y k
iq = 0 for q 6= j, we have Y k

iqWi = [0 0] for q 6= j. Since

Wi does not need to change with time k, the preferred location of each taxi at every region in the

city is stored as a matrix W, stored in the dispatch center before the process of calculating dispatch

solutions starts. When updating information of vacant taxis, matrix Wi is also updated for every

current vacant taxi i.

The initial position P 0
i is provided by GPS data. Traversing from position P 0

i to position Y 1
i Wi

for predicted demand will introduce a cost, since the taxi drives towards the dispatched locations

without picking up a passenger. Hence, we consider minimizing the total idle driving distance

introduced by dispatching taxis. Driving in a city is approximated as traveling on a grid road. To

estimate the distance without knowing the exact path, we use the Manhattan norm or one norm

between two geometric positions, which is widely applied as a heuristic distance in path planning

algorithms [72]. We define dki ∈ R as the estimated idle driving distance of the i-th taxi for reaching

the dispatched location Y k
i Wi. For k = 1, a lower bound of d1

i is given by

d1
i > ‖P 0

i − Y 1
i Wi‖1, i = 1, . . . , N. (3.4)

For k > 2, to estimate the anticipated future idle driving distance induced by reaching dispatched

position Y k
i Wi at time k, we consider the trip at the beginning of time slot k starts at the end location

of time slot k − 1. However, during time k − 1, taxis’ mobility patterns are related to pick-up and
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drop-off locations of passengers, which are not directly controlled by the dispatch center. So we

assume the predicted ending position for a pick-up location Y k−1
i Wi during time k− 1 is related to

the starting position Y k−1
i Wi as follows:

P k−1
i = fk(Y k−1

i Wi), fk : R1×2 → R1×2, (3.5)

where fk is a convex function, called a mobility pattern function. To reach the dispatched location

Y k
i Wi at the beginning of time k from position P k−1

i , the approximated driving distance is

dki > ‖fk(Y k−1
i Wi)− Y k

i Wi‖1. (3.6)

The process to calculate a lower bound for dki is illustrated in Figure 4.

Within time slot k, the distance that every taxi can drive should be bounded by a constant vector

αk ∈ RN :

dk 6 αk.

Total idle driving distance of all vacant taxis though time k = 1, . . . , T to satisfy service fairness is

then denoted by

JD =
T∑
k=1

N∑
i=1

dki . (3.7)

Possible paths

Estimated distance

Longitude

Latitude

Figure 4: Illustration of the process to estimate idle driving distance to the dispatched location for
the i-th taxi at k = 2: predict ending location of k = 1 denoted by EP 1

i in (3.9), get the distance
between locations EP 1

i and Y 2
i Wi denoted by d2

i in (3.10).
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It is worth noting that the idle distance we estimate here is the region-level distance to pick up

predicted passengers — the distance is nonzero only when a vacant taxi is dispatched to a different

region. We also require that the estimated distance is a closed form function of the locations of the

original and dispatched regions, without knowledge about accurate traffic conditions or exact time

to reach the dispatched region. Hence, in this work we use Manhattan norm to approximate the

idle distance—it is a closed form function of the locations of the original and dispatched regions.

When accessibility information of the road traffic network is considered in estimating street-level

distances, for the case that a taxi may not drive on rectangular grids to pick up a passenger (for

instance, when a U-turn is necessary), Lee et.al have proposed a shortest time path approach to pick

up passengers in shortest time [47].

An RHC problem formulation

Since there exists a trade-off between two objectives as discussed in Section 3.3, we define a weight

parameter βk when summing up the costs related to both objectives. A list of parameters and

variables is shown in Table 1. When mixed integer programming is not efficient enough for a large-

scale taxi network regarding to the problem size, one standard relaxation method is replacing the

constraint Y k
ij ∈ {0, 1} by 0 ≤ Y k

ij ≤ 1.

To summarize, we formulate the following problem (3.8) based on the definitions of variables,
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parameters, constraints and objective function

min.
Y k,dk

J = JE + βJD

=
T∑
k=1

(∥∥∥∥ 1

N
1TNY

k − 1

Rk
rk
∥∥∥∥

1

+ βk
N∑
i=1

dki

)

s.t d1
i > ‖P 0

i − Y 1
i Wi‖1, i = 1, . . . , N,

dki > ‖fk(Y k−1
i Wi)− Y k

i Wi‖1,

i = 1, . . . , N, k = 2, . . . , T,

dk 6 αk, k = 1, 2, . . . , T,

Y k1n = 1N , k = 1, 2, . . . , T,

0 6 Y k
ij 6 1, i ∈ {1, . . . , N}, j ∈ {1, . . . , n}.

(3.8)

After getting an optimal solution Y 1 of problem (3.8), for the i-th taxi, we may recover binary

solution through rounding by setting the largest value of Y 1
i to 1, and the others to 0. This may

violate the constraint of d0
i , but since we set a conservative upper bound αk, and the rounding

process will return a solution that satisfies dki 6 αk + ε with bounded ε, the dispatch solution can

still be executed during time slot k.

3.4.3. Discussions on the optimal dispatch formulation

Why use supply demand ratio as a metric

An intuitive measurement of the difference between the number of vacant taxis and predicted total

requests at all regions is:

e =
n∑
j=1

|skj − rkj |,

where skj is the total number of vacant taxis sent to the j-th region. However, when the total number

of vacant taxis and requests are different in the city, this error e can be large even under the case that

more vacant taxis are already allocated to busier regions and fewer vacant taxis are left to regions
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with less predicted demand. We do not have an evidence whether the dispatch center already fairly

allocates supply according to varying demand given the value of the above error e.

The meaning of αk

For instance, when the length of time slot k is one hour, and αk is the distance one taxi can traverse

during 20 minutes of that hour, this constraint means a dispatch solution involves the requirement

that a taxi should be able to arrive the dispatched position within 20 minutes in order to fulfill

predicted requests. With traffic condition monitoring and traffic speed predicting method [5], αk

can be adjusted according to the travel time and travel speed information available for the dispatch

system. This constraint also gives the dispatch system the freedom to consider the fact that drivers

may be reluctant to drive idly for a long distance to serve potential customers, and a reasonable

amount of distance to go according to predicted demand is acceptable. The threshold αk is related

to the length of time slot. In general, the longer a time slot is, the larger αk can be, because of

constraints like speed limit.

One example of mobility pattern function fk

When taxi’s mobility pattern during time slot k is described by a matrix Ck ∈ Rn×n satisfying∑n
j=1Cij = 1, where Ckij is the probability that a vacant taxi starts within region i will end within

region j during time k. From the queuing-theoretical perspective such probability transition matrix

approximately describes passenger’s mobility [92]. Given Xk−1
i and the mobility pattern matrix

Ck−1 ∈ [0, 1]n×n, the probability of ending at each region for taxi i is

p =

n∑
j=1

[Ck−1]jI(Y k−1
ij = 1) = Y k−1

i Ck−1 ∈ R1×n,

where the indicator function I(Y k−1
ij = 1) = 1 if and only if Y k−1

ij = 1, and [Ck−1]j is the j-th

row of Ck−1. However, introducing a stochastic formula in the objective function will cause high

computational complexity for a large-scale problem. Hence, instead of involving the probability of

taking different paths in the objective function to formulate a stochastic optimization problem, we
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take the expected value of the position of i-th taxi by the end of time k − 1

P k−1
i =

n∑
j=1

pj [Wi]j = pWi = Y k−1
i Ck−1Wi. (3.9)

Here P k−1
i ∈ R1×2 is a vector representing a predicted ending location of the i-th taxi on the map at

each dimension. Then a lower bound of idle driving distance for heading to Y k
i Wi to meet demand

during k is given by the distance between P k−1
i defined as (3.9) and Y k

i Wi.

dki > ‖(Y k−1
i Ck−1 − Y k

i )Wi‖1. (3.10)

In particular, when the transition probability Ck, k = 1, . . . , T is available, we can replace the

constraint about dki by dki > ‖(Y
k−1
i Ck−1 − Y k

i )Wi‖1.

It is worth noting that dki is a function of Y k−1
i and Y k

i , and the estimation accuracy of idle driving

distance to dispatched positions Y k
i (k = 2, . . . , T ) depends on the predicting accuracy of the

mobility pattern during each time slot k, or P k−1
i . The distance d1 is calculated based on real-

time GPS location P 0 and dispatch position Y 1, and we use estimations d2, . . . , dT to measure the

anticipated future idle driving distances for meeting requests.

The error of estimated Ck mainly affects the choice of idle distance dk when the true ending region

of a taxi by the end of time slot k is not as predicted based on its starting region at time slot k. This

is because Ck determines the constraint for dk (k = 2, 3, . . . , T ) as described by inequality (3.10).

However, the system also collects real-time GPS positions to make a new decision based on the cur-

rent true positions of all taxis, instead of only applying predicted locations provided by the mobility

pattern matrix. According to constraint (3.4) distance d1 is determined by GPS sensing data P 0 and

dispatch decision Y 1, and only Y 1 will be executed sent to vacant taxis as the dispatch solutions

after the system solving problem (3.8). From this perspective, real-time GPS and occupancy status

sensing data is significant to improve the system’s performance when we utilize both historical data

and real-time sensing data. We also consider the effect of an inaccurate mobility pattern estimation

Ck when choosing the prediction time horizon T — large prediction horizon will induce accumu-
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lating prediction error in matrix Ck and the dispatch performance will even be worse. Evaluation

results in Section 3.6 show how real-time sensing data helps to reduce total idle driving distance and

how the mobility pattern error of different prediction horizon T affects the system’s performance.

Information on road congestion and passenger destination

When road congestion information is available to the dispatch system, function in (3.5) can be

generalized to include real-time congestion information. For instance, there is a high probability

that a taxi stays within the same region during one time slot under congestions.

We do not assume that information of passenger’s destination is available to the system when mak-

ing dispatch decisions, since many passengers just hail a taxi on the street or at taxi stations instead

of reserving one in advance in metropolitan areas. When the destination and travel time of all trips

are provided to the dispatch center via additional software or devices as prior knowledge, the trip

information is incorporated to the definition of ending position function (3.5) for problem formu-

lation (3.8). With more accurate trip information, we get a better estimation of future idle driving

distance when making dispatch decisions for k = 1.

Customers’ satisfaction under balanced supply demand ratio

The problem we consider in this work is reaching fair service to increase global level of customers’

satisfaction, which is indicated by a balanced supply demand ratio across different regions of one

city, instead of minimizing each individual customer’s waiting time when a request arrives at the dis-

patch system. Similar service fairness metric has been applied in mobility on demand systems [92],

and supply demand ratio considered as an indication of utilization ratio of taxis is also one regulat-

ing objective in taxi service market [86]. For the situation that taxi i will not pick up passengers

in its original region but will be dispatched to another region, the dispatch decision results from

the fact that global customers’ satisfaction level will be increased. For instance, when the original

region of taxi i has a higher supply demand ratio than the dispatched region, going to the dis-

patched region will help to increase customer’s satisfaction in that region. By sending taxi i to some
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other region, customers’ satisfaction in the dispatched region can be increased, and the value of the

supply-demand cost-of-mismatch function JE can be reduced without introducing much extra total

idle driving distance JD.

3.4.4. Robust RHC formulations

Previous work has developed multiple ways to learn passenger demand and taxi mobility patterns [5,

34, 43], and accuracy of the predicted model will affect the results of dispatch solutions. We do not

have perfect knowledge of customer demand and taxi mobility models in practice, and the actual

spatial-temporal profile of passenger demands can deviate from the predicted value due to random

factors such as disruptive events. Hence, we discuss formulations of robust taxi dispatch problems

based on (3.8).

Formulation (3.8) is one computationally tractable approach to describe the design requirements

with a nominal model. One advantage of the formulation (3.8) is its flexibility to adjust the con-

straints and objective function according to different conditions. With prior knowledge of sched-

uled events that disturb the demand or mobility pattern of taxis, we are able to take the effects of

the events into consideration by setting uncertainty parameters. For instance, when we have basic

knowledge that total demand in the city during time k is about R̃k, but each region rkj belongs to

some uncertainty set, denoted by an entry wise inequality

Rk1 � rk � Rk2 ,

given Rk1 ∈ Rn and Rk2 ∈ Rn. Then

rkj ∈ [Rk1j , R
k
2j ], j = 1, . . . , n (3.11)

is an uncertainty parameter instead of a fixed value as in problem (3.8). Without additional knowl-

edge about the change of total demand in the whole city, we denote R̃k as the approximated total

demand in the city under uncertain rkj for each region. By introducing interval uncertainty (3.11) to
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rk and fixing R̃k on the denominator, we have the following robust optimization problem (3.12)

min.
Y k,dk

max
Rk1�rk�Rk2

T∑
k=1

(∥∥∥∥ 1

N
1TNY

k − 1

R̃k
rk
∥∥∥∥

1

+ βk
N∑
i=1

dki

)

s.t. constraints of problem (3.8).

(3.12)

The robust optimization problem (3.12) is computationally tractable, and we have the following

Theorem 1 to show the equivalent form to provide real-time dispatch decision.

Theorem 1 The robust RHC problem (3.12) is equivalent to the following computationally efficient

convex optimization problem

min
Y k,dk,tk

J ′ =

T∑
k=1

 n∑
j=1

tkj + βk
N∑
i=1

dki


s.t tkj ≥

1NY
k
·j

N
−
Rk1j

R̃k
, tkj ≥

Rk1j

R̃k
−

1NY
k
·j

N
,

tkj ≥
1NY

k
·j

N
−
Rk2j

R̃k
, tkj ≥

Rk2j

R̃k
−

1NY
k
·j

N
,

j = 1, . . . , n, , k = 1, . . . , T,

constraints of problem (3.8).

(3.13)

Proof 1 In the objective function, only the first term is related to rk. To avoid the maximize expres-

sion over an uncertain rk, we first optimize the term over rk for any fixed Y k. Let Y k
·j represent the

j-th column of Y k, then

max
Rk1�rk�Rk2

∥∥∥∥ 1

N
1TNY

k − 1

R̃k
rk
∥∥∥∥

1

= max
Rk1�rk�Rk2

n∑
j=1

∣∣∣∣∣ 1

N
1TNY

k
·j −

rkj

R̃k

∣∣∣∣∣ =

n∑
j=1

max
rkj ∈[Rk1j ,R

k
2j ]

∣∣∣∣∣ 1

N
1TNY

k
·j −

rkj

R̃k

∣∣∣∣∣ .
(3.14)

The second equality holds because each rkj can be optimized separately in this equation. For Rk1j ≤
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rkj ≤ Rk2j , we have

Rk1j

R̃k
≤

rkj

R̃k
≤
Rk2j

R̃k
.

Then the problem is to maximize each absolute value in (3.14) for j = 1, . . . , n. Consider the fol-

lowing problem for x, a, b ∈ R to examine the character of maximization problem over an absolute

value:

max
x0∈[a,b]

|x− x0| =


|x− a|, if x > (a+ b)/2

|x− b|, otherwise

= max{|x− a|, |x− b|} = max{x− a, a− x, x− b, b− x}.

Similarly, for the problem related to rkj , we have

max
rkj ∈[Rk1j ,R

k
2j ]

∣∣∣∣∣1NY k
·j

N
−
rkj

R̃k

∣∣∣∣∣ = max

{∣∣∣∣∣1NY k
·j

N
−
Rk1j

R̃k

∣∣∣∣∣ ,
∣∣∣∣∣1NY k

·j
N

−
Rk2j

R̃k

∣∣∣∣∣
}
. (3.15)

Thus, with slack variables tk ∈ Rn, we re-formulate the robust RHC problem as (3.13).

Taxi mobility patterns during disruptive events can not be easily estimated (in general), however, we

have knowledge such as a rough number of people are taking part in a conference or competition,

or even more customer reservations because of events in the future. The uncertain set of predicted

demand rk can be constructed purely from empirical data such as confidence region of the model,

or external information about disruptive events. By introducing extra knowledge besides historical

data model, the dispatch system responds to such disturbances with better solutions than the those

without considering model uncertainties. Comparison of results of (3.13) and problem (3.8) is

shown in Section 3.6.
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3.5. RHC Framework Design

Demand and taxi mobility patterns can be learned from historical data, but they are not sufficient

to calculate a dispatch solution with dynamic positions of taxis when the positions of the taxis

change in real time. Hence, we design an RHC framework to adjust dispatch solutions according

to real-time sensing information in conjunction with the learned historical model. Real-time GPS

and occupancy information then act as feedback by providing the latest taxi locations, and demand-

predicting information for an on-line learning method like [91, 62]. Solving problem (3.8) or (3.12)

is the key iteration step of the RHC framework to provide dispatch solutions.

RHC works by solving the cost optimization over the window [1, T ] at time k = 1. Though we get a

sequence of optimal solutions in T steps – X1, . . . , XT , we only send dispatch decisions to vacant

taxis according toX1. We summarize the complete process of dispatching taxis with both historical

and real-time data as Algorithm 1, followed by a detail computational process of each iteration. The

lengths of time slots for learning historical models (t1) and updating real-time information (t2) do

not need to be the same, hence in Algorithm 1 we consider a general case for different t1, t2.

3.5.1. RHC Algorithm

Remark 2 Predicted values of requests r̂(h1) depend on the modeling method of the dispatch sys-

tem. For instance, if the system only applies historical data set to learn each r̂(h1), r̂(h1) is not

updated with real-time sensing data. When the system applies online training method such as [91]

to update r̂(h1) for each h1, values of r, rk are calculated based on the real-time value of r̂(h1).

Update r

We receive sensing data of both occupied and vacant taxis in real-time. Predicted requests that

vacant taxis should serve during h1 is re-estimated at the beginning of each h1 time. To approximate

the service capability when an occupied taxi turns into vacant during time h1, we define the total

number of drop off events at different regions as a vector dp(h1) ∈ Rn×1. Given dp(h1), the
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Algorithm 1: RHC Algorithm for real-time taxi dispatch
Inputs: Time slot length t1 minutes, period of sending dispatch solutions t2 minutes (t1/t2 is
an integer); a preferred station location table W for every taxi in the network; estimated
request vectors r̂(h1), h1 = 1, . . . , 1440/t1, mobility patterns f̂(h2), h2 = 1, . . . , 1440/t2;
prediction horizon T ≥ 1.

Initialization: The predicted requests vector r = r̂(h1) for corresponding algorithm start
time h1.

while Time is the beginning of a t2 time slot do
(1) Update sensor information for initial position of vacant taxis P 0 and occupied taxis
P ′0, total number of vacant taxis N , preferred dispatch location matrices Wi.

if time is the beginning of an h1 time slot then
Calculate r̂(h1) if the system applies an online training method; count total number
of occupied taxis no(h1); update vector r.

end 2
Update the demand vectors rk based on predicted demand r̂(h1) and potential service
ability of no(h1) occupied taxis; update mobility functions fk(·) (for example, Ck), set
up values for idle driving distance threshold αk and objective weight βk,
k = 1, 2, . . . , T .

(3) if there is knowledge of demand rk as an uncertainty set ahead of time then
solve problem (3.13);

else
solve problem (3.8) for a certain demand model;

end 4
Send dispatch orders to vacant taxis according to the optimal solution of matrix X1. Let
h2 = h2 + 1.

end
Return:Stored sensor data and dispatch solutions.
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probability that a drop off event happens at region j is

pdj(h1) = dpj(h1)/1ndp(h1), (3.16)

where dpj(h1) is the number of drop off events at region j during h1. We assume that an occu-

pied taxi will pick up at least one passenger within the same region after turning vacant, and we

approximate future service ability of occupied taxis at region j during time h1 as

roj(h1) = dpdj(h1)× no(h1)e, (3.17)

where d·e is the ceiling function, no(h1) is the total number of current occupied taxis at the begin-

ning of time h1 provided by real-time sensor information of occupied taxis. Let

r = r̂(h1)− ro(h1),

then the estimated service capability of occupied taxis is deducted from r for time slot h1.

Update rk for problem (3.8)

We assume that requests are uniformly distributed during h1. Then for each time k of length t2,

if the corresponding physical time is still in the current h1 time slot, the request is estimated as an

average part of r; else, it is estimated as an average part for time slot h1 + 1, h1 + 2, . . . , etc. The

rule of choosing rk is

rk =


1
H r, if (k + h2 − 1)t2 ≤ h1t1

1
H r̂
(⌈

(k+h2−1)t2
t1

⌉)
, otherwise

where H = t1/t2.
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Update rk for robust dispatch (3.13)

When there are disruptive events and the predicted requests number is a range r̂(h1) ∈ [R̂1(h1), R̂2(h1)],

similarly we set the uncertain set of rk as the following interval for the computationally efficient

form of robust dispatch problem (3.13)

rk ∈


1
H

[
R̂1(h1)− ro(h1), R̂2(h1)− ro(h1)

]
, if (k + h2 − 1)t2 ≤ h1t1,

1
H

[
R̂1(
⌈

(k+h2−1)t2
t1

⌉
), R̂2(

⌈
(k+h2−1)t2

t1

⌉
)
]
, o.w.

Spatial and temporal granularity of Algorithm 1

The main computational cost of each iteration is on step (3), and t2 should be no shorter than the

computational time of the optimization problem. We regulate parameters according to experimental

results based on a given data set, since there are no closed form equations to decide optimal design

values of these parameters.

For the parameters we estimate from a given GPS dataset, the method we use in the experiments

(but not restricted to it) will be discussed in Section 3.6. The length of every time slot depends

on the predict precision of prediction, desired control outcome, and the available computational

resources. We can set a large time horizon to consider future costs in the long run. However, in

practice we do not have perfect predictions, thus a large time horizon may amplify the prediction

error over time. Applying real-time information to adjust taxi supply is a remedy to this problem.

Modeling techniques are beyond the scope of this work. If we have perfect knowledge of customer

demand and taxi mobility models, we can set a large time horizon to consider future costs in the

long run. However, in practice we do not have perfect predictions, thus a large time horizon may

amplify the prediction error over time. Likewise, if we choose a small look-ahead horizon, then the

dispatch solution may not count on idle distance cost of the future. Applying real-time information

to adjust taxi supply is a remedy to this problem. With an approximated mobility pattern matrix Ck,

the dispatch solution with large T is even worse than small T .
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Selection process of parameters βk, αk, and T

The process of choosing values of parameters for Algorithm 1 is a trial and adjusting process, by

increasing/decreasing the parameter value and observing the changing trend of the dispatch cost,

till a desired performance is reached or some turning point occurs that the cost is not reduced any

more. For instance, objective weight βk is related to the objective of the dispatch system, whether

it is more important to reach fair service or reduce total idle distance. Some parameter is related to

additional information available to the system besides real-time GPS and occupancy status data; for

instance, αk can be adjusted according to the average speed of vehicles or traffic conditions during

time k as discussed in subsection 3.4.3. Adjustments of parameters such as objective weight βk,

idle distance threshold αk, prediction horizon T when considering the effects of model accuracy,

control objectives are shown in Section 3.6. A formal parameter selection method is a direction for

future work.

3.5.2. Multi-level Dispatch framework

We do not assume that the customer demand is provided to the RHC framework in the previous

session and only require that demand-related data is available for predicting the future service re-

quirements. Furthermore, we do not restrict the data source of customer demand – it can be either

predicted results or existing reservation records in the system. Some companies provide taxi ser-

vice according to the current requests in the queue. For reservations received by the dispatch center

ahead of time, the RHC framework in Algorithm 1 is compatible with this type of demand infor-

mation — we then assign value of the waiting requests vector rk, taxi mobility function fk in (3.8)

according to the reservations, and the solution is subject to customer bookings.

For customer requests received in real-time, a multi-level dispatch framework is available based on

Algorithm 1. The process is as follows: run Algorithm 1 with predicted demand rk, and send dis-

patch solutions to vacant taxis. When vacant taxis arrive at dispatched locations, the dispatch center

updates real-time demand such as bookings that recently appear in the system. Then suboptimal

dispatch or matching algorithm based on current demand such as the algorithm designed by Lee et
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Taxicab GPS Data set
Collection Period Number of Taxis Data Size Record Number
05/17/08-06/10/08 500 90MB 1, 000, 000

Format
ID Status Direction

Date and Time Speed GPS Coordinates

Table 2: San Francisco Data in the Evaluation Section. Giant baseball game in AT&T park on May
31, 2008 is a disruptive event we use for evaluating the robust optimization formulation.

al. [47] and Ma et.al [80] can be applied.

By this multi-level dispatch framework, vacant taxis are first pre-dispatched at a regional level

according to predicted demand using the RHC framework. After arriving the dispatched regions,

specific locations to pick up a passenger who just booked a taxi is sent to a vacant taxi. The lower

level picking up decisions is a one-to-one (or multi-to one under carpooling strategies) matching

between passengers and drivers. Each vacant taxi is assigned to one or multiple booking within its

current region according to a heuristic or matching algorithm such as [47, 80, 1], with the benefit

of real-time traffic conditions. Since previous work usually belongs to the area of heuristic, greedy

dispatching algorithms or matching algorithms, we do not present or restrict a specific lower level

vacant taxi allocating approach to the RHC approach designed in this dissertation.

Previous work of routing algorithms for mobility-on-demand autonomous vehicle systems [93, 81,

92, 69] or ride-sharing algorithms for taxi/autonomous vehicle systems [1] usually assumes that the

trip of each request is provided to the vehicle dispatch center. Even involving a model predictive

control process, the authors assume the demand trip information is given [93, 69]. In contrast, the

RHC framework designed in this work does not rely on priority knowledge of the demand or mobil-

ity pattern—instead of making assumptions about the demand model, it provides an exact process

of incorporating the model predicted based on historical/streaming data to calculate a system-level

optimal dispatch decisions.
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(a) Requests during weekdays
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(b) Requests during weekends
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(c) Drop off during weekdays
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(d) Drop off during weekends

Figure 5: Requests at different hours during weekdays and weekends, for four selected regions. A
given historical data set provides basic spatiotemporal information about customer demands, which
we utilize with real-time data to dispatch taxis.

3.6. Case Study: Method Evaluation

We conduct trace-driven simulations based on a San Francisco taxi data set [74] summarized in

Table 2. In this data set, a record for each individual taxi includes four entries: the geometric

position (latitude and longitude), a binary indication of whether the taxi is vacant or with passengers,

and the Unix epoch time. With these records, we learn the average requests and mobility patterns

of taxis, which serve as the input of Algorithm 1. We note that our learning model is not restricted

to the data set used in this simulation, and other models [91] and date sets can also be incorporated.

We implement Algorithm 1 in Matlab using the optimization toolbox called CVX [37]. We assume

that all vacant taxis follow the dispatch solution and go to suggested regions. Inside a target region,

we assume that a vacant taxi automatically picks up the nearest request recorded by the trace data,

and we calculate the total idle mileage including distance across regions and inside a region by
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simulation. When taxis are autonomous vehicles, this assumption will not be violated at all; for the

case of human drivers, the incentive design problem that motivates the drivers to follow the dispatch

suggestion is a venue of future work. The evaluation result in this work aims to show that the RHC

framework we design indeed improve the system performance, and then it is valuable to implement

this method in the real world.

The trace data records the change of GPS locations of a taxi in a relatively small time granularity

such as every minute. Moreover, there is no additional information about traffic conditions or the

exact path between two consecutive data points when they were recorded. Hence, we consider

the path of each taxi as connected road segments determined by each two consecutive points of

the trace data we use in this section. Assume the latitude and longitude values of two consecutive

points in the trace data are [lx1, ly1] and [lx2, ly2], for a short road segment, the mileage distance

between the two points (measured in one minute) is approximated as being proportional to the value

(|lx1− lx2|+ |ly1− ly2|). The geometric location of a taxi is directly provided by GPS data. Hence,

we calculate geographic distance directly from the data first, and then convert the result to mileage.

Experimental figures shown in Subsection 3.6.2 and 3.6.4 are average results of all weekday data

from the data set 2. Results shown in Subsection 3.6.3 are based on weekend data.

3.6.1. Predicted demand based on historical data

Requests during different times of a day in different regions vary a lot, and Figure 3.5(a) and Fig-

ure 3.5(b) compare bootstrap results of requests r̂(h1) on weekdays and weekends for selected

regions. This shows a motivation of this work— necessary to dispatch the number of vacant taxis

according to the demand from the perspective of system-level optimal performance. The detailed

process is described as follows.

The original SF data set does not provide the number of pick up events, hence one intuitive way to

determine a pick up (drop off) event is as follows. When the occupancy binary turns from 0 to 1 (1

to 0), it means a pick up (drop off) event has happened. Then we use the corresponding geographical

position to determine which region this pick up (drop off) belongs to; use the time stamp data to
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decide during which time slot this pick up (drop off) happened.

After counting the total number of pick up and drop off events during each time slot at every region,

we obtain a set of vectors rd′(hk), dpd′(hk), d′ = 1, . . . , d, where d is the number of days for

historical data . In the following analysis, each time slot h1 is the time slot of predicting demand

model chosen by the RHC framework. The SF data set includes about 24 days of data, so we use

d = 18 for weekdays, and d = 6 for weekends. The bootstrap process for a given sample time

number B = 1000 is given as follows.

(a) Randomly sample a size d dataset with replacement from the data set {r1(h1), . . . , rd(h1)},

calculate

r̂1(h1) =
1

d

d∑
d′=1

rd′(h1), for h1 = 1, . . . , 1440/h1.

(b) Repeat step (a) for (B − 1) times, so that we have B estimates for each h1,

r̂b(h1), b = 1, . . . , B.

The estimated mean value of r̂(h1) based on B samples is

r̂(h1) =
1

B

B∑
l=1

r̂l(h1).

(c) Calculate the sample variance of the B estimates of r(h1) for each h1,

V̂r̂(h1) =
1

B

B∑
b=1

(r̂b(h1)− 1

B

B∑
l=1

r̂l(h1)). (3.18)

To estimate the demand range for robust dispatch problem (3.13) according to historical data, we

construct the uncertain set of demand rk based on the mean and variance of the bootstrapped demand
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Region ID 1 2 3 4 5 6 7 8
Transit probability 0.0032 0.0337 0.5144 0.0278 0.0132 0.0577 0.1966 0.0263

Region ID 9 10 11 12 13 14 15 16
Transit probability 0.0001 0.0050 0.0340 0.0136 0.0018 0.0082 0.0248 0.0396

Table 3: An estimation of state transition matrix by bootstrap: one row of matrix Ĉ(hk)

model. For every region j, the boundary of demand interval is defined as

R̃1,j(h1) = r̂j(h1)−
√
V̂r̂(h1),j ,

R̃2,j(h1) = r̂j(h1) +
√
V̂r̂(h1),j ,

(3.19)

where r̂j(h1) is the average value of each step (b) and V̂r̂(h1),j is the variance of estimated request

number defined in (3.18). This one standard deviation range is used for evaluating the performance

of robust dispatch framework in this work.

Estimated drop off events vectors dp(h1) are also calculated via a similar process. Figure 3.5(c)

and 3.5(d) show bootstrap results of passenger drop off events dp(h1) on weekdays and weekends

for selected regions.

For evaluation convenience, we partition the city map to regions with equal area. To get the longi-

tude and latitude position Wi ∈ Rn×2 of vacant taxi i, we randomly pick up a station position in the

city drawn from the uniform distribution.

3.6.2. RHC with real-time sensor information

To estimate a mobility pattern matrix Ĉ(h2), we define a matrix T (h2), where T (h2)ij is the total

number of passenger trajectories that starting at region i and ending at region j during time slot h2.

We also apply bootstrap process to get T̂ (h2), and

Ĉ(h2)ij = T̂ (h2)ij/(
∑
j

T̂ (h2)ij).

Table 3 shows one row of Ĉ(h2) for 5:00-6:00 pm during weekdays, the transition probability for
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different regions. The average cross validation error for estimated mobility matrix Ĉ(h2) of time slot

h2, h2 = 1, . . . , 24 during weekdays is 34.8%, which is a reasonable error for estimating total idle

distance in the RHC framework when real-time GPS and occupancy status data is available. With

only estimated mobility pattern matrix Ĉ(h2), the total idle distance is reduced by 17.6% compared

with the original record without a dispatch method, as shown in Figure 3.6(a). We also tested the

case when the dispatch algorithm is provided with the true mobility pattern matrix Ck, which is

impossible in practice, and the dispatch solution reduces the total idle distance by 68% compared

with the original record. When we only have estimated mobility pattern matrices instead of the

true value to determine ending locations and potential total idle distance for solving problem (3.8)

or (3.13), updating real-time sensing data compensates the mobility pattern error and improves the

performance of the dispatch framework.

Real-time GPS and occupancy data provides latest position information of all vacant and occupied

taxis. When dispatching available taxis with true initial positions, the total idle distance is reduced

by 52% compared with the result without dispatch methods, as shown in Figure 3.6(a), which is

compatible with the performance when both true mobility pattern matrix Ck and real-time sensing
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(a) Comparison of average idle distance. Idle distance
is reduced by 52% given real-time information, com-
pared with historical data without dispatch solutions.
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(b) Comparison of supply-demand ratio of the whole
city and each region. With real-time GPS and occu-
pancy data, the supply demand ratio of each region is
closest to the global level. The supply demand ratio
mismatch error is reduced by 45% with real-time infor-
mation, compared with historical data without dispatch
solutions.

Figure 6: Comparisons of average idle distance and supply-demand ratio at each region under three
conditions: historical record without dispatch, dispatch without real-time data, and dispatch with
real-time GPS and occupancy information.
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Figure 7: Heat map of passenger picking-up events in San Francisco (SF) with a region partition
method. Region 3 covers several busy areas, include Financial District, Chinatown, Fisherman
Wharf. Region 7 is mainly Mission District, Mission Bay, the downtown area of SF.

data are available. This is because the optimization problem (3.8) returns a solution with smaller

idle distance cost given the true initial position information P 0, instead of estimated initial position

provided only by mobility pattern of the previous time slot in the RHC framework. Figure 3.6(a)

also shows that even applying dispatch solution calculated without real-time information is better

than non dispatched result.

Based on the partition of Figure 7, Figure 3.6(b) shows that the supply demand ratio at each region

of the dispatch solution with real-time information is closest to the supply demand ratio of the whole

city, and the error ∥∥∥∥ 1

N
1TNY

k − 1

Rk
rk
∥∥∥∥

1

is reduced by 45% compared with no dispatch results. Even the supply demand ratio error of

dispatching without real-time information is better than no dispatch solutions. We still allocate

vacant taxis to reach a nearly balanced supply demand ratio regardless of their initial positions, but

idle distance is increased without real-time data, as shown in Figure 3.6(a). Based on the costs of two

objectives shown in Figures 3.6(a) and 3.6(b), the total cost is higher without real-time information,

mainly results from a higher idle distance.

46



3.6.3. Robust taxi dispatch

One disruptive event of the San Francisco data set is Giant baseball at AT&T park, and we choose

the historical record on May 31, 2008 as an example to evaluate the robust optimization formula-

tion (3.12). Customer request number for areas near AT&T park is affected, especially Region 7

around the ending time of the game, which increases about 40% than average value.

Figure 8 shows that with dispatch solution of the robust optimization formulation (3.12), the supply

demand mismatch error
∥∥ 1
N 1TNY

k − 1
Rk
rk
∥∥

1
is reduced by 25% compared with the solution of (3.8)

and by 46% compared with historical data without dispatch. The performance of robust dispatch

solutions does not vary significantly and depends on what type of predicted uncertain demand is

available when selecting the formulation of robust dispatch method. Even under solutions of (3.8),

the total supply demand ratio error is reduced 28% compared historical data without dispatch. In

general, we consider the factor of disruptive events in a robust RHC iteration, thus the system level

supply distribution responses to the demand better under disturbance.

3.6.4. Design parameters for Algorithm 1

Parameters like the length of time slots, the region division function, the objective weight parameter

and the prediction horizon T of Algorithm 1 affect the results of dispatching cost in practice. Opti-
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Figure 8: Comparison of supply demand ratio at each region under disruptive events, for solutions
of robust optimization problems (3.12), problem (3.8) in the RHC framework, and historical data
without dispatch. With the roust dispatch solutions of (3.12), the supply demand ratio mismatch
error is reduced by 46%.
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βk 0 2 10 without dispatch
s/d error 0.645 1.998 2.049 2.664

idle distance 3.056 1.718 1.096 4. 519
total cost 0.645 5.434 13.009 47.854

Table 4: Average cost comparison for different values of βk.

mal values of parameters for each individual data set can be different. Given a data set, we change

one parameter to a larger/smaller value while keep others the same, and compare results to choose

a suboptimal value of the varying parameter. We compare the cost of choosing different parameters

for Algorithm 1, and explain how to adjust parameters according to experimental results based on a

given historical data set with both GPS and occupancy record.

How the objective weight of (3.8) – βk affects the cost:

The cost function includes two parts –the idle geographical distance (mileage) cost and the supply

demand ratio mismatch cost. This trade-off between two parts is addressed by βk, and the weight of

idle distance increases with βk. A larger βk returns a solution with smaller total idle geographical

distance, while a larger error between supply demand ratio, i.e., a larger
∥∥ 1
N 1TNY

k − 1
Rk
rk
∥∥

1
value.

The two components of the cost with different βk by Algorithm 1, and historical data without
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(a) Comparison of supply-demand ratio at each region
during one time slot. When βk is smaller, we put less
cost weight on idle distance that taxis are allowed to
run longer to some region, and taxi supply matches
with the customer requests better.
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Figure 9: Comparisons of supply-demand ratio at each region and average total idle distance for
different βk values.
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Algorithm 1 are shown in Table 4. The supply demand ratio mismatch is shown in the s/d error

column.

We calculate the total cost as (s/d error +βk× idle distance) (Use βk = 10 for the without dispatch

column). Though with βk = 0 we can dispatch vacant taxis to make the supply demand ratio of

each region closest to that of the whole city, a larger idle geographical distance cost is introduced

compared with βk = 2 and β = 10. Compare the idle distance when βk = 0 with the data without

dispatch, we get 23% reduction; compare the supply demand ratio error of βk = 10 with the data

without dispatch, we get 32%.

Average total idle distance during different hours of one day for a larger βk is smaller, as shown in

Figure 3.9(b). The supply demand ratio error at different regions of one time slot is increased with

larger βk, as shown in Figure 3.9(a).

How to set idle distance threshold αk: Figure 10 compares the error between local supply demand

ratio and global supply-demand ratio. Since we directly use geographical distance measured by the

difference between longitude and latitude values of two points (GPS locations) on the map, the

threshold value αk is small — 0.1 difference in GPS data corresponds to almost 7 miles distance

on the ground. When αk increase, the error between local supply demand ratio and global supply-

demand ratio decreases, since vacant taxis are more flexible to traverse further to meet demand.
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Figure 10: Comparison of supply demand ratios at each region during one time slot for different αk.
When αk is larger, vacant taxis can traverse longer to dispatched locations and match with customer
requests better.
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How to choose the number of regions: In general, the dispatch solution of problem (3.8) for a

vacant taxi is more accurate by dividing a city into regions of smaller area, since the dispatch is

closer to road-segment level. However, we should consider other factors when deciding the number

of regions, like the process of predicting requests vectors and mobility patterns based on historical

data. A linear model we assume in this work is not a good prediction for future events when the

region area is too small, since pick up and drop off events are more irregular in over partitioned

regions. While Increasing n, we also increase the computation complexity. Note that the area of

each region does not need to be the same as we divide the city in this experiment.

Figure 11 shows that the idle distance will decrease with a larger region division number, but the

decreasing rate slows down; while the region number increases to a certain level, the idle distance

almost keeps steady.

How to decide the prediction Horizon T : In general, when T is larger, the total idle distance to

get a good supply demand ratio in future time slots should be smaller. However, when T is large

enough, increasing T can not reduce the total idle distance any more, since the model prediction

error compensates the advantage of considering future costs. For T = 2 and T = 4, Figure 12

shows that the average total idle distance of vacant taxis at most hours of one day decreases as

T increases. For T = 8 the driving distance is the largest. Theoretical reasons are discussed in
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Figure 11: Average total idle distance of all taxis during one day, for different region partitions. Idle
distance decreases with a larger region-division number, till the number increases to a certain level.
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Figure 12: Average total idle distance at different time of one day compared for different prediction
horizons.When T = 4, idle distance is decreased at most hours compared with T = 2. For T = 8
the costs are worst.

Section 3.5.

Decide the length of time slot t2: For simplicity, we choose the time slot t1 as one hour, to estimate

requests. A smaller time slot t2 for updating GPS information can reduce the total idle geographical

distance with real-time taxi positions. However, one iteration of Algorithm 1 is required to finish in

less than t2 time, otherwise the dispatch order will not work for the latest positions of vacant taxis,

and the cost will increase. Hence t2 is constrained by the problem size and computation capability.
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(a) Comparison of average total idle distance. With a
smaller t2, the cost is smaller. But when t2 = 1 is too
small to complete calculating problem (3.8), the dispatch
result is not guaranteed to be better than t2 = 10.
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For t2 = 30, t2 = 10 minutes and t2 = 1 hour, results are
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complete one iteration

Figure 13: Comparison of average total idle distance and supply-demand ratio at each region for
different t2 – the length of time slot for updating sensor information.
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Figure 3.13(a) shows that smaller t2 returns a smaller idle distance, but when t2 = 1 Algorithm 1

can not finish one step iteration in one minute, and the idle distance is not reduced. The supply

demand ratio at each region does not vary much for t2 = 30, t2 = 10 minutes and t2 = 1 hour,

as shown in Figure 3.13(b). Comparing two parts of costs, we get that t2 mainly affects the idle

driving distance cost in practice.
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CHAPTER 4 : Data-Driven Robust Resource Allocation

4.1. Introduction

Cities are known to have large concentration of resources and facilities, and billions of sensors are

connected and used for efficient and effective resource management in Smart Cities [70]. They pro-

vide knowledge of system models on users’ demand and spatial-temporal. Considering the specific

taxi dispatch problem where large amounts of taxi occupancy status and location data are collected

from networked in-vehicle sensors in real-time, a receding horizon control framework is designed

for efficient resource allocation and coordination strategies in the previous chapter. Such approaches

face a new challenge: how to deal with uncertainties of predicted customer demand while fulfill-

ing the system’s performance requirements, including minimizing total resource balancing cost and

maintaining service fairness. Two aspects of problems exist for a robust taxi dispatch framework:

(1) how to formulate a robust resource allocation problem that dispatches vacant taxis towards pre-

dicted uncertain demand given a taxi-operational records dataset, and (2) how to construct spatial-

temporally correlated uncertain demand sets for this robust resource allocation problem without

sacrificing too much average performance of the system.

To address these problems, we develop a data-driven robust taxi dispatch framework to consider

spatial-temporally correlated demand uncertainties. The robust optimization problem is concave in

the uncertain demand and convex in the decision variables with decision variables on the denomi-

nators. This form is not the standard form (i.e., linear programming (LP) or semi-definite program-

ming (SDP) problems) that has already been covered by previous work [8, 12, 26]. Box type and

second order cone (SOC) type of uncertainty sets of random demand vectors are constructed from

data based on theories in hypothesis testing, and provide a desired probabilistic guarantee level for

the dispatch cost of robust taxi dispatch solutions. We prove equivalent computationally tractable

forms of the robust dispatch problem using the minimax theorem and strong duality. Although a

robust RHC formulations is designed in Chapter 3, the objective function is not concave of the un-

certain parameters and can only be analytically converted to a convex optimization problem for a
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special case of uncertain demand model. For a general polynomial or SOC type of demand uncer-

tainty set, the robust dispatch model of Chapter 3 does not work, while approaches developed in this

chapter are more general and include moments information about the uncertain demand.

Evaluations on four years of taxi trip data for New York City show that by selecting a probabilistic

guarantee level at 75%, the average demand-supply ratio error is reduced by 31.7%, and the average

total idle driving distance is reduced by 10.13% or about 20 million miles annually, compared with

non-robust dispatch solutions.

The rest of this chapter is organized as follows. The taxi dispatch problem is described and formu-

lated as a robust optimization problem given a closed and convex uncertainty set in Section 4.2. The

requirement of modeling uncertain demand sets are described in Section 4.3, followed by the algo-

rithm for constructing uncertain demand sets based on taxi operational records data in Section 4.4.

Equivalent computationally tractable forms of the robust taxi dispatch problem given different forms

of uncertainty sets are proved in Section 4.5. Evaluation results based on a real data set are shown

in Section 4.6.

Remark 3 The results from this chapter have been captured in [54, 57].

4.2. Problem Formulation

The goal of taxi dispatch is to direct vacant taxis towards current and future passengers with mini-

mum total idle mileage. There are two objectives. One is sending more taxis for more requests to

reduce mismatch between supply and demand across all regions in the city. The other is to reduce

the total idle driving distance for picking up expected passengers in order to save cost. Involving

predicted customer demand of the future when making current decisions benefits to increasing total

profits, since drivers are able to travel to regions with better chances to pick up future passengers.

In this section, we formulate a taxi dispatch problem with uncertainties in the predicted spatial-

temporal patterns of passenger demand. A typical monitoring and dispatch infrastructure is shown

in Figure 14. The dispatch center periodically collects and stores real-time information such as GPS
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location, occupancy status and road conditions; dispatch solutions are sent to each taxi via cellular

radio. An RHC framework that cooperates predicted demand model and real-time sensing data

is designed in [59], where either a deterministic model or an uncertain demand model is applied

to calculate a dispatch solution at each step of sliding the time window and updating the latest

sensing information. However, the robust dispatch problem formulated in [59] does not provide any

probabilistic guarantee as the model we design in this work. We define the problem of finding a

robust dispatch in the rest of this section, which is compatible with the RHC framework of [59].

4.2.1. Problem description

We discretize time and space in problem formulation for computational efficiency. We assume that

the entire city is divided into n regions, and discrete time slots are indexed by k = 1, 2, . . . , τ .

Typically, it is difficult to predict a deterministic value of passenger demand of a region during

specific time. With prior knowledge and data sets, we assume that the passenger demand model is

described by uncertainty vectors belonging to closed and convex sets defined as

rk ∈ ∆k ⊂ Rn+, k = 1, . . . , τ,

where rkj is the number of total requests within region j during time k, and τ is the model predicting

time horizon. Here we relax the integer constraint of rkj ∈ N to positive, since constructing an
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Figure 14: A prototype of the taxi dispatch system
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Parameters of (4.11) Description
n the number of regions
τ model predicting time horizon

rk ∈ ∆k the uncertain total number of requests at each region during time k
W ∈ Rn×n weight matrix, Wij is the distance from region i to region j

Ck ∈ [0, 1]n×n probability matrix for taxi mobility patterns during one time slot
L1 ∈ Nn the initial number of vacant taxis at each region provided by

GPS and occupancy status data
m ∈ R+ the upper bound of distance each taxi can drive idly for

picking up a passenger
α ∈ R+ the power on the denominator of the cost function
β ∈ R+ the weight factor of the objective function

Variables of (4.11)
Xk
ij ∈ R+ the number of taxis dispatched from region i to region j during time k

Lk ∈ Rn+ the number of vacant taxis at each region before dispatching
at the beginning of time k

Table 5: Parameters and variables of taxi dispatch problem (4.11).

uncertainty set for a continuous vector is more convenient and this relaxation provides an accurate

enough demand model. The total number of requests at region j may have similar patterns as its

neighbors, for instance, during busy hours, several regions locate in downtown area may all have

peak demand. This type of spatial correlations of demand across each region during the same

time slot k is reflected by the correlation of each element of rk. Meanwhile, demand can also

be temporal correlated, that demand during several consecutive time slots rk, k = 1, . . . , τ may

show similar characteristics like busy hours. Hence, it is possible to describe both spatial and

temporal correlations by one set ∆ for uncertain demand vectors rk, k = 1, . . . , τ . We define the

concatenation of sequences (r1 ∈ Rn, . . . , rτ ∈ Rn) as

rc =

[
(r1)T , (r2)T , · · · , (rτ )T

]T
∈ ∆ ⊂ Rτn,

and each closed, convex set ∆k is a projection of ∆

∆k := {rk |∃r1, . . . , rk−1, rk+1, . . . , rτ , s.t. rc ∈ ∆}.
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Parameters of Alg. 2 Description
rc ∈ ∆ the uncertain concatenated demand vector of τ consecutive time slots

r̃c(dl, t, Ip) one sample of rc(t) according to sub-dataset Ip, records of date dl
Uε the uncertainty set that provides 1− ε probabilistic guarantee level

for problem (4.11)
αh significance level of a hypothesis testing

Table 6: Parameters of Algorithm 2.

The closed and convex form of ∆ depends on the method and theory applied to construct the uncer-

tainty set, which we will describe in Section 4.3.

Considered as one type of resource allocation problem, the basic idea of a robust dispatch model

that balances taxis’ supply in a network flow model is described in Figure 15. The dispatch frame-

work decides the amount of vacant taxis that should traverse between each node pair according to

the demand at each node according to control requirements and practical constraints. The edge

weight of the graph represents the distance between two regions. Specifically, each region has an

initial number of vacant taxis provided by real-time sensing information and an uncertain predicted

demand.

We define a non-negative decision variable matrix Xk ∈ Rn×n+ , Xk
ij ≥ 0, where Xk

ij is the number

of taxis (amount of resource) dispatched from region i to region j. We relax the integer constraint

of Xk
ij ∈ N to a non-negative constraint, since mixed integer programming is not computational

efficient for a large-scale robust optimization problem. In this work we consider the following

robust resource allocation problem

min.
X1

max
r1∈∆1

min
X2

max
r2∈∆2

. . .min
Xτ

max
rτ∈∆τ

J =
τ∑
k=1

(JD(Xk) + βJE(Xk, rk))

s.t. Xk ∈ Dc,

(4.1)

where JD is a convex cost function for allocating or re-allocating resources, JE is a function concave

in rk and convex inXk that measures the service fairness of the resource allocating strategy, andDc
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Figure 15: A network flow model of the robust taxi dispatch problem. A circle represents a region
with region ID 1, 2, 3, 4. We omit the superscript of time k since every parameter is for one time slot
only. Uncertain demand is denoted by ri, Li is the original number of vacant taxis before dispatch
at region i, and Xij is a dispatch solution that sending the number of vacant taxis from region i to
region j with the distance Wij .

is a convex domain of the decision variables that describes the constraints of the resource allocating

strategies. We define specific formulations of the objective and constraint functions for a robust taxi

dispatch problem in the rest of this section.

4.2.2. Robust taxi dispatch problem formulation

Estimated cross-region idle-driving distance: When traversing from region i to region j, taxi

drivers take the cost of cruising on the road without picking up a passenger till the target region.

Hence, we consider to minimize this kind of idle driving distance while dispatching taxis. We define

the weight matrix of the network in Fig. 15 asW ∈ Rn×n, whereWij is the distance between region

i and region j. The across-region idle driving cost according to Xk is

JD(Xk) =
∑
i

∑
j

Xk
ijWij . (4.2)

We assume that the region division method is time-invariant in this work, andW is a constant matrix

for the optimization problem formulation – for instance, the value of Wij represents the length of

shortest path on streets from the center of region i to the center of region j 1.
1For control algorithms with a dynamic region division method, the distance matrix can be generalized to a time

dependent matrix W k as well.
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The distance every taxi can drive should be bounded by a threshold parameter m ∈ R+ during

limited time

Xk
ij = 0 if Wij > m,

which is equivalent to

Xk
ij > 0, Xk

ijWij ≤ mXk
ij , ∀i, j ∈ {1, . . . , n}. (4.3)

To explain this, assume the constraint (4.3) holds. If Wij > m and Xk
ij > 0, we have

Xk
ijWij > mXk

ij ,

which contradicts to (4.3). The thresholdm is related to the length of time slot and traffic conditions

on streets. For instance, with an estimated average speed of cars in one city during time k =

1, . . . , τ , and idle driving time to reach a dispatched region is required to be less than 10 minutes,

then the value of m should be the distance one taxi can drive during 10 minutes with the current

average speed on road (m can also be dependent on k, denoted as mk if a different average speed

during each time slot k can be monitored or predicted).

Metric of serving quality: We design the metric of service quality as a function JE(Xk, rk) con-

cave in rk and convex in Xk in this work for computational efficiency [8]. Besides vacant taxis

traverse to region j according to matrix Xk, we define Lkj ∈ R+ as the number of vacant taxis at

region j before dispatching at the beginning of time k, and Lk ∈ Rn+, and L1 ∈ Rn+ is provided by

real-time sensing information. We assume that the total number of vacant taxis is greater than the

number of regions, i.e., N > n, and each region should have at least one vacant taxi after dispatch.

Then the total number of vacant taxis at region i during time k satisfies that

1TnX
k
·i −Xk

i·1n + Lki > 1, i = 1, . . . , n, (4.4)

where Xk
·i is the i-th column of Xk and Xk

i· is the i-th row of Xk. Dispatch is an action of re-
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allocating resources among regions and does not change the total number of vacant taxis N before

the taxis pick up new passengers during time k

∑
i

(1TnX
k
·i −Xk

i·1n + Lki ) =
∑
i

Lki = N. (4.5)

One service metric is fairness over all regions, or that the demand-supply ratio of each region equals

to that of the whole city. A balanced distribution of vacant taxis is an indication of good system

performance from the perspective that a customer’s expected waiting time is short as shown by a

queuing theoretic model in [92]. Meanwhile, a balanced demand-supply ratio means that regions

with less demand will also get less resources, and idle driving distance will also be reduced in

regions with more supply than demand if we pre-allocate possible redundant supply to those regions

in need. We define the objective of minimizing demand-supply ratio mismatch between each region

and the whole city as minimizing the following function

JE(Xk, rk) =
∑
i

rki
(1TnX

k
·i −Xk

i·1n + Lki )
α
, α→ 0. (4.6)

This is because by minimizing (4.6) under the constraints (4.4) and (4.5), we get the same op-

timal solution of minimizing the following demand-supply ratio mismatch function under con-

straints (4.4) and (4.5).

τ∑
k=1

n∑
i=1

∣∣∣∣ rki
1TnX

k
·i −Xk

i·1n + Lki
− 1Tnr

k

N

∣∣∣∣ . (4.7)

It is worth noting that the function JE(Xk, rk) defined as (4.6) is affine in rk for any Xk, and

convex in Xk for any rk, while the mismatch function (5.18) is not concave in rk for any Xk.

To explain how (4.6) approximates (5.18) under constraints (4.4) and (4.5), consider the following

problem

minimize
b>0,

∑
i bi=c

∑
i

ai
bαi
, c is a constant. (4.8)
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Substitute bn = c − b1 · · · − bn−1 into (4.8), and take partial derivatives of
∑

i
ai
bαi

over bi, i =

1, . . . , n− 1. When the minimum of (4.6) is achieved, each partial derivative should be 0, namely

−α ai

bα+1
i

− α(−1)
an

(c− b1 · · · − bn−1)α+1
= 0,

which is equivalent to

a1

bα+1
1

= · · · = an−1

bα+1
n−1

=
an

bα+1
n

.

Hence, when α→ 0, α+ 1→ 1, the optimal solution of minimizing JE over Xk satisfies

rj

1TnX
k
·j −Xk

j·1n + Lkj
=

1Tnr
k

N
.

Therefore, with function (4.6), we map the objective of balancing supply according to demand

across every region in the city to a computationally tractable function that concave in the uncertain

parameters and convex in the decision variables for a robust optimization problem.

The number of initial vacant taxis Lk+1
j depends on the number of vacant taxis at each region after

dispatch during time k and the mobility patterns of passengers during time k, while we do not

directly control the latter. We define Ckij as the probability that a taxi traverses from region i to

region j and turns vacant again (after one or several drop off events) around the beginning of time

k + 1, provided it is vacant at the beginning of time k. Examples of getting Ckij based on data

include but not limited to methods of describing trip patterns of taxis [59] and autonomous mobility

on demand systems [92]. Then the number of vacant taxis within region j by the end of time k is(
1TnX

k − (Xk1n)T + (Lk)T
)
Ck·j , where Ck·j is the j-th column of Ck, and

(Lk+1)T = (1TnX
k − (Xk1n)T + (Lk)T )Ck. (4.9)

Weighted-sum objective function: Since there exists a trade-off between two objectives, we define

a weight parameter β of two objectives JD(Xk) in (4.2) and JE(Xk, rk) in (4.6). Without consid-
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ering model uncertainties corresponding to rk, a convex optimization form of taxi dispatch problem

is

min.
Xk,Lk

J =
τ∑
k=1

(JD(Xk) + βJE(Xk, rk))

s.t (4.3), (4.4), (4.9).

(4.10)

Robust taxi dispatch problem formulation: We aim to find out a dispatch solution robust to an

uncertain demand model in this work. For time k = 1, . . . , τ , uncertain demand rk only affects the

dispatch solutions of k + 1, . . . , τ , similar to the multi-stage robust optimization problem in [13].

Hence, with a list of parameters and variables shown in Table 5, considering effects of current

decisions to estimated future costs, a multi-stage robust taxi dispatch problem is defined as following

min.
X1

max
r1∈∆1

min
X2,L2

max
r2∈∆2

. . . min
Xτ ,Lτ

max
rτ∈∆τ

J =
τ∑
k=1

(JD(Xk) + βJE(Xk, rk))

=
τ∑
k=1

∑
i

∑
j

Xk
ijWij +

βrki
(1TnX

k
·i −Xk

i·1n + Lki )
α


s.t. (Lk+1)T = (1TnX

k − (Xk1n)T + (Lk)T )Ck,

1TnX
k − (Xk1n)T + (Lk)T > 1,

Xk
ijWij ≤ mXk

ij ,

Xk
ij ≥ 0, i, j ∈ {1, 2, . . . , n}.

(4.11)

After getting an optimal solution X1∗ of (4.11), we adjust the solution by rounding methods to get

an integer number of taxis to be dispatched towards corresponding regions. It does not affect the

optimality of the result much in practice, since the objective function is related to the demand-supply

ratio of each region. A feasible integer solution of (4.11) always exists, since Xk
ij = 0, ∀i, j, k is

feasible.
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4.3. Constructing Uncertainty Sets

With many factors affecting taxi demand during different time within different areas of a city, ex-

plicitly describing the model is a strict requirement and errors of the model will affect the perfor-

mance of dispatch frameworks. Considering future demand uncertainties benefits for minimizing

worst-case demand-supply ratio mismatch error and idle distance described as shown in [59, 55].

However, the uncertainty set constructed by only using a standard deviation range [59, 55] cannot

tell how possible the true real-world cost is smaller than the optimal cost. Hence, with a large

amount of taxi operational records data, it is essential to construct a model that captures the spatial-

temporal demand uncertainties and provides a probabilistic guarantee about the true possible values

of costs by solving robust dispatch problem (4.11).

4.3.1. Samples of concatenated demand vector

Informally, we consider the concatenated demand vector rc as a random variable. It is worth noting

that we do not have additional assumptions about either the form of ∆ besides closeness and con-

vexity, or the form of marginal distribution of each element of vector rc, or the true distribution of

P∗(rc).

Methods of constructing uncertainty sets in robust optimization literature is typically designed for

i.i.d. sampled random vectors that utilize information from a dataset of samples to provide theoretic

guarantee for the performance of robust optimization problems [12], [11], [20]. We transform the

knowledge of previous work to construct an uncertainty set ∆ for the random vector rc that contains

spatial-temporal relations of the demand model. We assume that one day is discretized as K time

slots in total, and the demand of each region during one time slot is described as rk, k = 1, . . . ,K.

Then every τ discretized time slots of rk, k = t, . . . , t + τ are concatenated to a vector rc(t) to

represent the possible temporal correlations among consecutive time slots. We define one sample

of vector rc(t) of date dl as r̃c(dl, t), a vector calculated via aggregating total number of pick up

events of all taxis at each region for time slots t, t+ 1, . . . , t+ τ . For instance, for consecutive time

slots (1, . . . , τ), (2, . . . , τ + 1), . . . , the sampled vectors on date d for time index t = 1, 2, . . . are
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denoted as

r̃c(d, 1) =



r̃1(d)

r̃2(d)

...

r̃τ (d)


, r̃c(d, 2) =



r̃2(d)

r̃3(d)

...

r̃τ+1(d)


, . . . .

We consider demand vectors of different dates for the same time slot as independent samples, i.e.,

demand r̃c(d1, t), r̃c(d2, t), . . . , r̃c(dN , t) sampled from N days for time index t are independent

with each other for every time index t. For convenience, we omit the time index t of rc(t) in later

discussions when there is no confusion.

There are two advantages to building uncertain sets for the concatenated demand model rc. The

first one is that theories and results proposed for i.i.d. sampled dataset is applicable to design

uncertainty sets based on a spatial-temporal dataset. The second one is computational efficiency,

that we are able to construct an uncertain set with spatial-temporal properties for all regions during

several consecutive predicting time slots by calculating a hypothesis testing one time. It is worth

noting that the objective function of problem (4.11), a function concave of rk, k = 1, . . . , τ is still

concave of the uncertain parameter rc with the uncertainty sets constructed in this section. This

property guarantees that uncertainty sets constructed in this work can be directly applied for the

robust optimization problem (4.11) with rk, k = 1, . . . , τ as parameters.

4.3.2. An uncertainty set with probabilistic guarantee

For convenience, we concisely denote all the variables of the taxi dispatch problem as x. Assume

that we do not have knowledge about the true distribution P∗(rc) of the random demand vector rc.

When the uncertainty parameter is included in the objective function J(rc, x) of problem (4.11),

the probabilistic guarantee for the event that the true dispatch cost being smaller than the optimal
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dispatch cost is described by the following chance constrained problem

min.
x

M

s.t Prc∼P∗(rc)(f(rc, x) = J(rc, x)−M 6 0) > 1− ε.
(4.12)

Here x ∈ Rn is the optimization variable, and rc ∈ Rτn is an uncertain parameter. The constraint

f and objective function J are concave in rc for any x, and convex in x for any rc. Without loss of

generality about the objective and constraint functions, equivalently we aim to find solutions of the

following form of chance constrained problem

min.
x

J(x)

subject to Prc∼P∗(rc)(f(rc, x) 6 0) > 1− ε.
(4.13)

When it is difficult to explicitly estimate P∗(rc), given constraints f(rc, x) that concave in rc for any

x, we solve the following robust optimization problem such that optimal solutions of (4.14) satisfy

the probabilistic guarantee of constraints for problem (4.13)

min.
x

max
rc∼∆

J(x), subject to f(rc, x) 6 0, (4.14)

Then rc of problem (4.14) can be any vector in the uncertainty set ∆ instead of a random vector

in problem (4.13), and we require that by solving an optimization problem with this constrained

uncertain set performance of optimal solutions is guaranteed for rc ∼ P∗. Another requirement is

that the robust optimization problem is computationally tractable problem with this uncertainty set.

To emphasize the probability of holding the constraint of (4.13) with the uncertainty set ∆ of the

robust dispatch problem, we denote the uncertainty set as Uε for the the process of constructing a

computationally tractable uncertainty set. Hence, for a general form of constraint function f(rc, x)

appeared in robust taxi dispatch problem, the uncertainty set construction problem is defined as the

following:

Problem 1 Construct an uncertainty set Uε, given ε and a data set of random vectors rc, such that
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(P1). The robust constraint (4.14) is computationally tractable.

(P2). The set Uε implies a probabilistic guarantee for the true distribution P∗(rc) of a random

vector rc at level ε, that is, for any optimal solution x∗ ∈ Rk and for any function f(rc, x) concave

in rc, we have the implication:

If f(rc, x
∗) ≤ 0, for ∀rc ∈ Uε,

then P∗rc∼P∗(rc)(f(rc, x
∗) 6 0) ≥ 1− ε.

(4.15)

The given probabilistic guarantee level ε is related to the degree of conservativeness of the robust

optimization problem. The trade-off between the average cost of robust optimal solutions and the

probabilistic level is shown by evaluations in Section 3.6. It is worth noting that a confidence region

Uc,ε of the random vector that satisfies P(rc ∈ Uc,ε) > 1− ε does not need to be the same with the

uncertainty set Uε satisfies (4.15) in general [7]. Instead of purely building a confidence region Uc,ε,

we focus on the performance of the robust solutions based on the data-driven uncertainty sets.

The probabilistic guarantee considered in robust optimization literature is stronger than what we

require in this work, that the above implication (4.15) should be satisfied for any feasible solution

x of the robust optimization problem [12, 11]. In practice, we will apply the optimal solution of the

robust dispatch problems as suggestions for taxi drivers, hence only the optimal solution will affect

the performance of the dispatch framework, and we require implication and empirical test of (4.15)

for optimal solutions only in this work.

4.3.3. Uncertainty Modeling

In this section, we briefly review the theories related to constructing uncertainty demand mod-

els based on a spatial-temporal dataset considered in this work. Since we do not assume that the

marginal distribution for every element of vector rc is independent with each other, we select two

approaches without any assumptions about the true distribution P∗(rc) in the literature [12, 27, 79].

The basic idea is to find a threshold for a hypothesis testing that is acceptable with respect to the
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given dataset and a required probabilistic guarantee level, and then construct an uncertainty set

based on the hypothesis testing.

Uncertainty demand sets built from marginal samples

One intuitive description about a random vector is to define a range for each element.

For instance, David and Nagaraja [27] considered the following multivariate hypothesis with given

thresholds q̄i,0, qi,0 ∈ R, i = 1, 2, . . . , τn

H0,i :inf{t : P(rc,i 6 t) > 1− ε

τn
} > q̄i,0

inf{t : P(−rc,i 6 t) > 1− ε

τn
} > −q

i,0
.

(4.16)

This hypothesis is related to the bound of the ε
τn probability value on the random vector, and we

divide ε by τn because rc is a multivariate random vector that we need the hypothesis testing for each

component rc,i holds simultaneously to provides the probabilistic guarantee described as (4.15).

Assume that we have N random samples for each component rc,i of rc, ordered in increasing value

as r(1)
c,i , r

(2)
c,i , . . . , r

(N)
c,i no matter the original sample order. Then this order is also the order of the

estimated value r̂c,i, i.e., r̂(1)
c,i = r

(1)
c,i , . . . , r̂

(N)
c,i . We define the index s by

s = min

k ∈ N :
N∑
j=k

 N

j

( ε

τn

)N−j (
1− ε

τn

)j
6

αh
2τn

 , (4.17)

and let s = N + 1 if the corresponding set is empty. The test H0 is rejected if

To construct an uncertainty set, we need an accepted hypothesis test. Hence, we set q̄i,0 = r̂
(s)
c,i and

q
i,0

= r̂
(N−s+1)
c,i with r̂(s)

c,i and r̂(N−s+1)
c,i from the sampled dataset, thenH0,i is always accepted. The

following uncertainty set is then applied in this work based on the range hypothesis testing (4.16).

Proposition 1 ([12], [27]) If s defined by equation (4.17) satisfies that N − s + 1 < s, then, with
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probability at least 1− αh over the sample, the set

UMε (rc) =
{
rc ∈ Rτn : r̂

(N−s+1)
c,i 6 rc,i 6 r̂

(s)
c,i

}
(4.18)

implies a probabilistic guarantee for P∗(rc) at level ε.

The hypothesis (4.16) is tested for each component rc,i separately, and the uncertainty demand

model also describes the range of rc,i, i = 1, 2, . . . , τn separately provided by Proposition 1. We

do not assume that the marginal distributions of P∗ are independent, their correlations are reflected

in the box uncertainty set in the sense that changing the value of n and τ result in a different index

value s (4.17), and the order statistics r̂(N−s+1)
c,i and r̂(s)

c,i will be different. However, the model of

the box type of uncertainty set formula does not directly describe the spatial-temporal correlations

among components of rc.

Uncertainty set motivated by moment hypothesis testing

Though the box type of uncertainty set reflects the spatial-temporal correlations by varying range

values with different dimensions of rc, it is not easy to tell directly from the uncertainty set (4.18)

when the range of one component changes how will others be affected. To construct an uncertainty

set that directly shows the spatial-temporal correlations of the demand model, we consider to apply

hypothesis testing related to the first and second moments of the random vector. The following null

assumptions are about the mean and covariance of the true distribution P∗(rc) of random vector

rc [79]

H0 : EP∗ [rc] = r0 and EP∗ [rcr
T
c ]− EP∗ [rc]EP∗ [rTc ] = Σ0,

with test statistics T defined as ‖r̂c − r0‖ and ‖Σ̂ − Σ0‖. Given thresholds ΓB1 and ΓB2 , H0 is

rejected when the difference among the estimation of mean or covariance according to multiple
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times of samples is greater than the threshold, i.e.,

‖EP[r̃c]− r̂c‖2 > ΓB1 or ‖EP[r̃cr̃
T
c ]− EP[r̃c]EP[r̃Tc ]− Σ̂‖F > ΓB2 ,

where EP[r̃] is the estimated mean value of one experiment, r̂c and Σ̂ are the estimated mean and

covariance of multiple times of experiments. The remaining problem is then to select the thresh-

olds such that the above hypothesis testing holds given the dataset. In the following Section ??,

the detailed steps of calculating the thresholds ΓB1 and ΓB2 at a desired significance value αh and

probabilistic guarantee level ε based on the given dataset is described2.

The uncertainty set derived based on the moment hypothesis testing is defined in the following

proposition.

Proposition 2 ([12], [79]) With probability at least 1−αh with respect to the sampling, the follow-

ing uncertainty set UCSε (rc) implies a probabilistic guarantee level of ε for P∗(rc)

UCSε (rc) ={rc > 0, r̂c + y + CTw : ∃y, w ∈ Rnτ s.t.

‖y‖2 6 ΓB1 , ‖w‖2 6

√
1− ε
ε
},

(4.19)

where CTC = Σ̂ + ΓB2 I is a Cholesky decomposition.

By testing the properties of both first and second moments of the dataset, the uncertainty set (4.19)

reflects the spatial-temporal correlations of the demand model directly compared with the box

type (4.18). When one component of rc increases or decreases, we have an intuition how it af-

fects the value of other components of rc by the expression (4.19). More properties of each type of

uncertainty set and application level problems, such as how to choose the number of samples N for

the hypothesis testing with high dimensional rc will be discussed in evaluations of Section 3.6.
2Bootstrapped thresholds and theoretic bounds proposed by work [48] are compared in [12]. The bootstrapped thresh-

olds result in a smaller uncertainty set in general, hence reduces the ambiguity in P∗. In this work, we apply the boot-
strapped thresholds ΓB1 and ΓB2 based on the dataset.
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4.4. Algorithm For Constructing Uncertain Demand Sets

Given a dataset, the algorithm for constructing uncertainty sets includes three main steps—getting

a sample set of rc from the original dataset and partition the sample set, bootstrapping a threshold

for the test statistics according to the requirement of the probability guarantee, and calculating the

model of uncertainty sets based on the thresholds. In this section, we explain each step, summarize

the process in Algorithm 2, and discuss factors to consider for choosing parameters of the algorithm.

Numerical examples are shown in Section 3.6.

4.4.1. Aggregating demand and partition the sample set

The first step is to transform the original dataset of taxi operational records to a dataset of sampled

vector r̃c(d, t) of different dates for each index t. For instance, assume we choose the length of each

time slot as one hour, and the dataset records all trip information of taxis during each day. According

to the start time and GPS coordinate of the pick-up position of each trip, we aggregate the total

number of pick up events during one hour at each region to get samples of rk, k ∈ {1, 2, . . . , τ}

and the concatenated demand vector rc. It is computationally efficient to process the original data

for obtaining a sample set of rc in general, though the amount of available taxi trips or trajectory

information is large – the time complexity is O(Nrecord) of the number of total records Nrecord. By

only passing through the raw data once, we are able to group each pick up and drop off events to a

specific discretized time slot and region.

We assume that the dataset contains independent samples of the random vector rc, and we do not

impose any prior knowledge of the true distribution P∗(rc). It is always possible to describe the

support of the distribution of the entire dataset, even when all samples contained in the dataset

do not follow the same distribution, as explained in Figure 16. When there is prior knowledge or

categorical information such that the dataset can be partitioned into several subsets according to

some feature space, we get a more accurate uncertainty set according to each sub-dataset to provide

the same probabilistic guarantee level compared with the uncertainty set from the entire dataset.

Clustering algorithms with categorical information [44] is applicable for dataset partition when in-

70



P2

P
P1

P3

Figure 16: Intuition for partitioning the whole dataset. When the data set includes data from three
distributions P1, P2, P3, without prior knowledge, we can build a larger uncertainty set that de-
scribes the range of all samples in the dataset. The problem is that the uncertainty set is not accurate
enough.

formation besides pick up events is available in the dataset, such as weather or traffic conditions. It is

worth noting that if the uncertainty sets are built for a categorical information set I = {I1, I2, . . . },

then for the robust dispatch problems, we require the same set of categories is available in real-time,

hence we apply the uncertainty set built for I1 to find solutions when the current situation is con-

sidered as I1. For instance, when there is additional information like weather or traffic condition

for each trip provided by the taxi operational records, these types of information can be used as

categorical information for clustering. The dataset applied in the evaluations of Section 3.6 does

not have additional categorical information of trips that available for a clustering algorithm such

as [44], hence, we partition the dataset as demand during weekdays and demand during weekends.

Even with this simple and intuitive partition process, we shrink the area of an uncertainty for the

same probabilistic guarantee level. Then during weekdays (weekends) we use uncertainty sets built

from weekdays (weekends) data to calculate robust dispatch solutions.

4.4.2. Algorithm

The uncertainty sets designed in this work require an accepted null hypothesis testing. Given origi-

nal operational records data, the null hypothesis H0, αh, and the test statistics T , we need to find a

threshold that accepts H0 at significance value α for each subset of sampled demand vectors. With

a threshold of the test statistics calculated via the given dataset, we then apply the formula (4.18) for
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constructing a box type of uncertainty set, and the formula (4.19) for an SOC type of uncertainty set,

respectively. The following Algorithm 2 describes the complete process for constructing uncertain

demand sets based on the original dataset.

Algorithm 2: Algorithm for constructing uncertain demand sets
Input: A dataset of taxi operational records
1. Demand aggregating and sample set partition
Aggregate demand to get a sample set S of the random demand vector rc from the original
dataset. Partition the sample set S and denote a subset S(Ip) ⊂ S, p = 1, . . . , P as the
subset partitioned according to either prior knowledge or categorical information Ip.
Denote the partitioned sample subset for each time index t as S(t, Ip).

2. Bootstrapping thresholds for test statistics
for each subset S(t, Ip) do
Initialization: Testing statistics T , a null-hypothesis H0, the probabilistic guarantee level ε,
a significance level 0 < αh < 1, the number of bootstrap time NB ∈ Z+.

Estimate the mean r̂c(t, Ip) and covariance Σ̂(t, Ip) for vector rc based on subset
S(t, Ip).

for j = 1, . . . , NB do
(1). Re-sample Sj(t, Ip) = {r̃c(d1, t, Ip), . . . , r̃c(dN , t, Ip)} data points from S(t, Ip)

with replacement for each t.
(2). Get the value of the test statistics based on Sj(t, Ip).

end for
(3). Get the thresholds of the α significance level for H0.
end for

3. Calculate the model of uncertainty sets
Get the box type and the SOC type of uncertainty sets according to (4.18) and (4.19),
respectively, for each t and Ip. Output: Uncertainty sets for problem (4.11)

We do not restrict the method of estimating mean r̂c(t, Ip) and covariance Σ̂(t, Ip) matrices of a

subset S(t, Ip) in step 2, and bootstrap is one method for this step. The estimations of this step are

considered as the true mean and covariance for calculating ΓB1 and ΓB2 in the following repeated

sampling process. For step 2.(2), the process for the box type of uncertainty sets is: calculate index

s that satisfies (4.17) with the given ε, sort each component of sampled vectors rc(dl, t, Ip), and

get the order statistics r(N−s+1)
c,i (j, t, Ip), r(s)

c,i (j, t, Ip) of the j-th sample set Sj(t, Ip). For the SOC

type, we calculate the mean and covariance of the samples of the vector according to the subset

Sj(t, Ip) as r̂c(j, t, Ip) and Σ̂(j, t, Ip), respectively.

In step 2.(3), the αh level thresholds for the box type of uncertainty sets are the dNB(1 − αh)e-th
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largest value of the upper bound r(s)
c,i (j, t, Ip) and the dNBαhe-th largest value of the lower bound

r
(N−s+1)
c,i (j, t, Ip) for the i-th component of each t and Ip. For the SOC type of uncertainty sets, we

calculate the mean and covariance of rc(t, Ip) for the NB times bootstrap as r̂c(t, Ip) and Σ̂(t, Ip),

and get

Γ1(j, t, Ip) = ‖r̂c(j, t, Ip)− r̂c(t, Ip)‖2,

Γ2(j, t, Ip) = ‖Σ̂(j, t, Ip)− Σ̂(t, Ip)‖2.

Denote the dNB(1−αh)e-th largest value of Γ1(j, t, Ip) and Γ2(j, t, Ip)as ΓB1 (t, Ip) and ΓB2 (t, Ip),

respectively.

Remark 4 The process of constructing uncertainty sets only requires that the hypothesis test is

accepted for i.i.d. samples of the random vector. We accept the hypothesis test when there is not

enough evidence to reject it, which does not mean the claim of H0 is true. This property is very

important for constructing the uncertainty demand set of the robust dispatch problem, since the

true distribution function of a demand model can be complex and we only have datasets of taxi

operational records instead of ground truth knowledge of the distribution function. Hence, even

without enough knowledge of the true, high-dimensional demand model, based on the dataset and

an accepted hypothesis test, we are able to construct an uncertainty set with probabilistic guarantee

for the robust taxi dispatch problem.

It is worth noting that the above Algorithm 2 provides a valid estimation of uncertain sets based

on hypothesis testing and bootstrapped thresholds for the robust resource allocation problem when

the sampled data set is consistent with the real world scenario. For demand missed in the dataset,

for instance, some customer might leave the request queue after waiting for a long time and the

operational records did not show the event of picking up the customer, we are not able to get the

exact rate of missed customers. However, missed requests are only part of the historical requests,

and this type of events is also random – for instance, even for the same time length of waiting, some

customers were more patient and finally got a taxi. By constructing an uncertainty set to describe

the demand model based on occurred records of the original dataset, we involve the effect of random

missing events better than only applying a deterministic model from this perspective.
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In summary, to construct a spatial-temporal uncertain demand model for the robust taxi dispatch (4.11),

in this section, we consider the taxi operational record of each day as one independent and identi-

cally distributed (i.i.d.) sample for the concatenated demand vector rc. By partitioning the entire

dataset to several subsets according to categorical information such as weekdays and weekends, we

are able to build uncertainty sets for each subset of data without additional assumptions about the

true distribution of the spatial-temporal demand profile. Then we apply theories proved for i.i.d.

samples of random vectors in the literature [12] [27] [79] to construct a box type and an SOC type

of uncertainty sets. The key advantage of the data-driven approach we propose is that we do not rely

on prior knowledge of the true distribution of the random demand vector to provide a desired proba-

bilistic guarantee of robust solutions. Furthermore, theories proved for i.i.d. datasets are applicable

to construct uncertainty sets that reflect the spatial-temporal correlations of the demand model.

4.5. Computationally Tractable Formulations

We build equivalent computationally tractable formulations of problem (4.11) with different defi-

nitions of uncertain sets built in Section 4.3 in this section, and show that the robust taxi dispatch

problem in this work can be solved efficiently. Computational tractability of a robust linear pro-

gramming problem for ellipsoid uncertainties are discussed in [8]. The process is to reformulate

constraints of the original problem to equivalent convex constraints that must hold given the un-

certainty set. The objective function of problem (4.11) is concave of the uncertain parameters rk,

convex of the decision variablesXk, Lk with the decision variables on the denominators, hence, not

standard forms of linear programming (LP) or semi-definite programming (SDP) problems that al-

ready covered by previous work [8, 12]. Hence, we prove one equivalent computationally tractable

form of problem (4.11) for each uncertainty set constructed in Section 4.3.

Only the JE components of objective functions in (4.11) include uncertain parameters, and the de-

cision variables of the function are in the denominator of the function JE . The box type uncertainty

set defined as (4.18) is a special form of polytope, hence, we first prove an equivalent standard form

of convex optimization problem for (4.11) for a polytope uncertainty set as the following.
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Theorem 2 (Next step dispatch) If the uncertainty set of problem (4.11) when τ = 1 is defined as

the following polytope

∆ := {r ≥ 0, Ar ≤ b},

and we omit the superscripts k for variables and parameters without confusion. Then problem (4.11)

with τ = 1 is equivalent to the following convex optimization problem

minimize
X≥0,λ≥0

∑
i

∑
j

XijWij + bTλ

subject to ATλ− β


1

(1TnX·1−X1·1n+L1)α

...

1
(1TnX·n−Xn·1n+Ln)α

 ≥ 0,

1TnX −X1n + LT > 1,

XijWij ≤ mXij ,

Xij ≥ 0, ∀i, j ∈ {1, . . . , n}.

(4.20)

Proof 2 See Appendix A.1.1.

For the multi-stage robust optimization problem (4.11), we prove that the order of minimize and

maximum is exchangeable in the following theorem, and equivalent computationally tractable forms

are proved based on this theorem.

Lemma 1 (Exchange the order of minimize and maximum) Assume that the definition of the un-

certainty set ∆ satisfies that the domain of each rk is a compact set, then the multi-stage robust

dispatch problem defined as (4.11) is equivalent to the following robust dispatch problem

min.
Xk,Lk

max
rk∈∆k

J =

τ∑
k=1

(JD(Xk) + βJE(Xk, rk))

s.t. constraints of (4.11), k = 1, . . . , τ.

(4.21)

Here L1 is the initial number of vacant taxis within each region before dispatch provided by sensor
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information, not a decision variable, and we omit the time index of Lk, k = 2, . . . , τ in minimization

for notation convenience.

Proof 3 See Appendix A.1.2.

For the multi-stage robust optimization problem (4.11), the computationally tractable convex form

depends on the definition of uncertainty sets. For a multi-stage robust optimization problem that

minimax theorem does not hold, an approximated semidefinite programming form for calculat-

ing time dependent control input of linear dynamical systems affected by uncertainty is proposed

in [13]. When conditions of Lemma 1 hold, equivalent convex optimization forms of problem (4.11)

are derived based on problem (4.21).

The box type uncertainty set (4.18) is a special form of polytope, that the uncertain demand model

during different time of a day is described separately. The process of converting problem (4.11)

to an equivalent computationally tractable convex form is similar to that of the one-stage robust

optimization problem. The result is described as the following lemma.

Lemma 2 If the uncertain set for rk, k = 1, . . . , τ describes each demand vector rk separately as

a polytope with the form

∆k := {rk ≥ 0, Akr
k ≤ bk}, k = 1, . . . , τ, (4.22)

problem (4.11) is equivalent to the following convex optimization problem

min.
Xk,λk,Lk≥0

τ∑
k=1

(
∑
i

∑
j

Xk
ijWij + bTk λ

k)

subject to ATk λ
k − β


1

(1TnX
k
·1−Xk

1·1n+Lk1)α

...

1
(1TnX

k
·n−Xk

n·1n+Lkn)α

 ≥ 0,

other constraints of (4.11), k = 1, . . . , τ.

(4.23)
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Proof 4 See Appendix A.1.3.

For a more general case that the uncertainty sets for r1, . . . , rτ are temporally correlated, the fol-

lowing theorem and proof describe the equivalent computationally tractable convex form of (4.11).

Theorem 3 When ∆ is defined as the following polytope

∆ := {(∆1, . . . ,∆τ )|A1r
1 + · · ·+Aτr

τ ≤ b, rk ≥ 0}, (4.24)

problem (4.11) is equivalent to the following convex optimization problem

min.
Xk,Lk,λ≥0

τ∑
k=1

(
∑
i

∑
j

Xk
ijWij) + bTλ

subject to ATk λ− β


1

(1TnX
k
·1−Xk

1·1n+Lk1)α

...

1
(1TnX

k
·n−Xk

n·1n+Lkn)α

 ≥ 0,

constraints of (4.11), k = 1, . . . , τ.

(4.25)

Proof 5 See Appendix A.1.3.

With an uncertain demand model defined as (4.19) for concatenated r1, . . . , rτ , the following theo-

rem derive the equivalent computationally tractable form of problem (4.11).

Theorem 4 When the uncertainty set for r1, . . . , rτ is defined as the SOC form of (4.19), prob-

lem (4.11) is equivalent to the following convex optimization problem (4.26).

min.
Xk,Lk,z

τ∑
k=1

∑
i

∑
j

Xk
ijWij + β

(
r̂Tc z + ΓB1 ‖z‖2 +

√
1

ε
− 1‖Cz‖2

)

subject to cl(X) 6 z,

constraints of (4.11), k = 1, . . . , τ,

(4.26)

77



where cl(X) ∈ Rτn is the concatenation of c(X1), . . . , c(Xτ ).

Proof 6 See Appendix A.1.4.

It is worth noting that any optimal solution for problem (4.10) has a special form between any pair

of regions (i, q).

Proposition 3 Assume X1∗, . . . , Xτ∗ is an optimal solution of (4.10), then any Xk∗ satisfies that

for any pair of (p, q), at least one value of the two elements Xk∗
qi and Xk∗

iq is 0.

Proof 7 We prove by contradiction. Assume that one optimal solution has the form Xk such that

Xk
qi > 0 and Xk

iq > 0. Without loss of generality, we assume that Xk
qi ≥ Xk

iq, and let

Xk∗
qi = Xk

qi −Xk
iq, X

k∗
iq = 0,

other elements of Xk∗ equal to Xk. Then

1TnX
k
·i −Xk

i·1n + Lki = 1TnX
k∗
·i −Xk∗

i· 1n + Lki ,

because

∑
j

Xk
ji −

∑
l

Xk
il = Xk

qi −Xk
iq +

∑
j 6=q

Xk
ij −

∑
l 6=q

Xk
qi

=Xk∗
qi + 0 +

∑
j 6=q

Xk∗
ij −

∑
l 6=q

Xk∗
qi =

∑
j

Xk∗
ji −

∑
l

Xk∗
il .

Hence, we have JE(Xk, rk) = JE(Xk∗, rk). All constraints are satisfied andXk∗ is also a feasible

solution for (4.11).

Next, we compare JD(Xk) and JD(Xk∗). With Xk
qi > Xk

iq > 0, and Xk∗
qi = Xk

qi − Xk
iq ≥ 0, we

have

Xk
qi > Xk∗

qi , X
k
qiWqi +Xk

iqWiq > Xk∗
qi Wqi +Xk∗

iq Wiq.
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Thus the partial cost JD(Xk) > JD(Xk∗), which contradicts with the assumption that Xk is an

optimal solution. To summarize, we show that an optimal solution cannot have Xk
qi > 0, Xk

iq > 0

at the same time, and at least one of Xk∗
qi and Xk∗

iq should be 0.

With equivalent convex optimization forms under different uncertainty sets, robust taxi dispatch

problem (4.11) is computationally tractable and solved efficiently.

4.6. Data-Driven Evaluations

4.6.1. A Motivation Example

We first conduct simulations based on a San Francisco taxi data set [74]. Information for each

individual taxi includes three components: the Unix epoch time, the geometric position (latitude

and longitude), and a binary indicator of whether the taxi is vacant or with passengers. We show the

motivation to find robust dispatch solutions with model uncertainties, and compare the optimal cost

of robust dispatch (4.11) with convex optimization form (4.10) in this section.

Estimate uncertainty sets for demand rk:

A boxplot of total number of requests (pick up events) during one hour (5 : 00 − 6 : 00 pm) in

different regions is shown in Figure 17. The mean and standard deviation of the model are calculated
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Boxplot of total requests number during one hour

Figure 17: Boxplot of total number of equests at each region during one hour. The red line in the
middle shows the median value of all samples, the box shows the distribution of data, with range
first quartile and third quartile.
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via bootstrap [18]. Figure 17 shows a motivation of this work — a robust dispatch algorithm to

balance the number of taxis according to the demand from the perspective of system-level optimal

performance.

How vacant taxis are balanced across regions with different α values: Figure 18 shows mis-

match between supply and demand defined as (5.18) for different optimal solutions of minimizing

JE defined in (4.6) for α ∈ (0, 1]. With α closer to 0, the optimal value of (5.18) is smaller. We

choose α = 0.1 for calculating optimal solutions of (4.11) and (4.10) in this section.

Compare robust solutions with non-robust solutions: We compare the cost distribution of 200

Monte-Carlo simulations based on the data set of robust optimization solutions (4.11) and convex

optimization solutions (4.10) in Figure 19. The customer demand models applied in the two al-

gorithms are different. For the objective function (4.10), the nominated demand prediction rk is a

deterministic value, for instance — the average or mean of the bootstrap model which is constructed

based on the historical data set. For the robust problem formulation (4.11) considered in this work,

the uncertainty set is a box defined according to the mean and covariance matrix of the bootstrap

model.

Figure 19 shows that the robust dispatch solutions result in 35.5% fewer experiments with a cost
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Figure 18: Comparison of demand and supply mismatch values defined as (5.18) with different
solutions for minimizing JE defined in (4.6) with α in range (0, 1]. The value of function (5.18)
under an optimal solution of JE is smaller with an α closer to 0, which means the dispatch solution
tends to be more balanced throughout the entire city.

80



12 16 20 24 28 32 36 40 44 48 520

10

20

30

40

Cost rangeN
um

be
r o

f e
xp

er
im

en
ts

 Costs distribution of dispatch solutions

 

 

non−robust solutions
robust solutions

Figure 19: Cost distribution comparison of robust optimization (4.11) solutions in this work and
non-robust optimization (4.10) solutions. The lines show the number of experiments with cost
falling in intervals [12, 14], (14, 16], . . . , (48, 50] of two methods applying Monte-Carlo experi-
ments based on the historical data set. Robust optimization solutions in this work has a shorter tail
than non-robust solutions.

greater than 37, compared with non-robust solutions. It means the cost distribution of the robust

optimization (4.11) in this work has a shorter tail than that of the deterministic convex optimization

formulation (4.10). With model uncertainty information in decision making, system performance is

improved compared with solutions only based on the nominal demand model.

4.6.2. Evaluations based on a 100GB dataset

We then conduct data-driven evaluations based on four years of taxi trip data of New York City [29].

A summary of this data set is shown in Table 7. In this data set, every record represents an individual

taxi trip, which includes the GPS coordinators of pick up and drop off locations, and the date and

time (with precision of seconds) of pick-up and drop-off locations.

One region partition example according to the map of Manhattan of New York City is shown in

Figure 20 where we visualize the density of taxi passenger demand with the data we used for our

large-scale data-driven evaluation. The lighter the region, the higher the daily demand density. As

we can see in the figure, the middle regions typically have higher density than the uptown and

downtown regions in Manhattan. We construct uncertainty sets according to Algorithm 2, discuss

factors that affect modeling of the uncertainty set, and compare optimal costs of the robust dispatch

formulation (4.11) and the non-robust optimization form (4.10) in this section.
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Taxi Trip Data
Collecting Period Data Size Record Number

01/01/2010-12/31/2013 100GB 700 million
Data Format

Trip Information Trip Time Trip Locations
Start and end points Date/hour:minute:second GPS coordinates

Table 7: New York city data used in this evaluation section.

4.6.3. Box type of uncertainty set

For all box type of uncertainty sets shown in this subsection with the model described in Sub-

section 4.3.3, we set the confidence level of hypothesis testings as αh = 10%, bootstrap time as

Nb = 1000, number of randomly sampled data (with replacement) for each time of bootstrap as

N = 10000.

Partitioned dataset compared with non-partitioned dataset: We show the effects of partitioning

the trip record dataset by weekdays and weekends in Figure 4.21(a) and 4.21(b). The whole city is

partitioned into 50 regions and the prediction time horizon τ = 4, ε = 0.3, and every rc ∈ R200×1.

Figures 4.21(a) and 4.21(b) show the lower and upper bounds of each region during one time slot

of (4.18). By applying data of weekdays and weekends separately, the range [r̂
(s)
c,i , r̂

(N−s+1)
c,i ] of

each component is reduced. To get a measurement of the uncertainty level, we defined the sum of

Figure 20: Map of Manhattan area in New York City.

82



All data
Weekday

(a) Comparison of box type of uncertainty sets con-
structed from all data and those constructed only based
on trip records of weekdays.

All data
Weekend

(b) Comparison of box type of uncertainty sets con-
structed from all data and uncertainty sets constructed
only based on trip records of weekends.

Figure 21: Comparison of box type of uncertainty sets constructed from all data and those con-
structed only based on trip records of weekdays and weekends. When keeping all parameters the
same, by applying data of weekdays or weekends only, the range of uncertainty set for each rc,i is
smaller than that based on the whole dataset.

range of every component for r̂c as the following

U(r̂c) =
τn∑
i=1

(r̂
(s)
c,i − r̂

(N−s+1)
c,i ).

For the box type of uncertainty sets, when values of the dimension of rc, i.e., τn, αh and ε are fixed,

a smaller U(r̂c) means a smaller area of the uncertainty set, or a more accurate model. We de-

note U(r̂c) calculated via records of weekdays and weekends as Uwd(r̂c) and Uwn(r̂c) respectively,

compared with U(r̂c) constructed from the complete dataset, we have

U(r̂c)− Uwd(r̂c)
U(r̂c)

= 52%,
U(r̂c)− Uwn(r̂c)

U(r̂c)
= 28%.

This result shows that when by constructing an uncertainty set for each subset of partitioned data,

we reduce the range of uncertainty sets to provide the same level of probabilistic guarantee for the

robust dispatch problem. This is because samples contained in each subset of data do not follow the

same distribution and can be categorized as two clusters.

Choose an appropriate N for high-dimensional rc: It is worth noting that the index s affects

the range selection for every component rc,i, hence, for different values of αh, ε, τ, n, we should

adjust the number of samples N to get an accurate estimation of the marginal range. As shown in
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N αh ε n τ s

10000 0.1 0.2 50 2 9992

10000 0.1 0.5 50 2 9970

10000 0.3 0.2 50 2 9991

10000 0.1 0.2 1000 2 9999

10000 0.1 0.5 1000 2 9999

Table 8: Value of index s for the box type uncertainty set (4.17). For large τn, N need to be large,
or s is too close to N that the range covers values of almost all samples.

Data type Weekdays Weekends Non partitioned
ΓB1 10.53 13.84 17.96
ΓB2 2576.94 2923.35 3864.47

Table 9: Comparing thresholds with and without discriminating weekdays and weekends data.
When ΓB1 or ΓB2 is smaller, the volume of the uncertainty set is smaller. Here n = 1000, τ = 3,
N = 1000, ε = 0.3, αh = 0.2.

Table 11, N need to be large enough for a large τn value, or s is too close to N and the upper

and lower bounds r̂(N−s+1)
c,i , r̂(s)

c,i cover almost the whole range of samples. Hence, the box type

uncertainty set is not a good choice for large τn value, though the computational cost of solving

problem (4.25) is smaller than that of (4.26) with the same size of τn.

4.6.4. SOC type of uncertainty set

The SOC type of uncertainty set is a high-dimensional convex set that is not able to be plotted. The

bootstrapped thresholds for the hypothesis testing to construct the SOC uncertainty sets based on

partitioned and non-partitioned data are summarized in Table 9. Similarly as the box type of uncer-

tainty sets, when we separate the dataset and construct an uncertainty demand model for weekdays

and weekends respectively, the sets are smaller compared to the uncertain demand model for all

dates. When α and ε values are fixed, with smaller ΓB1 and ΓB2 , the demand model UCSε is more ac-

curate to guarantee that with at least probability 1−ε, the constraints of the robust dispatch problems

are satisfied. Numerical results of this conclusion are shown in Table 9.

How n and τ affect the accuracy of uncertainty sets: For a box type of uncertainty set, when τn

is a large value, the bootstrap sample number N should be large enough such that index s is not too

close to N . Without a large enough sample set, we choose to construct an SOC type of uncertainty
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ΓB1 ΓB2
n = 50, τ = 1 42.37 1.52× 105

n = 50, τ = 3 52.68 4.29× 104

n = 50, τ = 6 107.35 8.23× 105

n = 10, τ = 3 71.35 3.56× 105

n = 1000, τ = 3 10.53 2576.94

Table 10: Comparing thresholds of SOC uncertainty sets for different dimensions rc, by changing
either the region partition number n or the prediction time horizon τ .

set (such as τn = 1000, N = 10000 in Table 11). Since SOC captures more information about the

second moment properties of the random vector compared with the box type uncertainty set, some

uncorrelated components of rc will be reflected by the estimated covariance matrix, and the volume

of the uncertainty set will be reduced. We show the value of ΓB1 and ΓB2 with different dimensions

of rc or τn values in table 11. When increasing the value of τn, values of ΓB1 and ΓB2 are reduced,

which means the uncertainty set is smaller. However, it is not helpful to reduce the granularity of

region partition to a smaller than street level, since we construct the model for a robust dispatch

framework and a too large n is not computationally efficient for the dispatch algorithm.

4.6.5. Compare robust solutions with non-robust solutions

For testing the quality of the uncertainty sets applied in the robust dispatch problems, we use the

idea of cross-validation from machine learning. The dataset is separated as a training set for building

the uncertain demand model, and a testing set for comparing the results of the dispatch solutions.

The customer demand models applied in the robust and non-robust optimization problems are dif-

ferent. For the non-robust dispatch problem, the demand prediction rk is a deterministic value. For

instance, in this work we use the average or mean of the bootstrapped value of the training dataset.

In the experiments, the idle geographical distance of one taxi between a drop-off event of one

passenger and the following pick-up event is approximately as the one norm distance between the

2D geographical coordinates (provided as longitude and latitude values of GPS data in the trip

dataset) of the two points. Then the corresponding idle miles on ground is converted from the

geographical distance according to the geographical coordinates of New York City.
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Figure 22: Demand-supply ratio error distribution of the robust optimization solutions with the
SOC type of uncertain demand set (ε = 0.25, or probabilistic guarantee level 75%) and non-robust
optimization solutions. The demand-supply ratio error of robust solutions is smaller than that of the
non-robust solutions, that the average demand-supply ratio error is reduced by 31.7%.

In the robust dispatch problem, the part that directly includes the uncertain demand rk is the penalty

function for violating a balanced demand-supply ratio requirement. For each testing data rk, we

denote the demand-supply ratio mismatch error of a dispatch solution as (5.18). We then compare

the value of (5.18) of robust dispatch solutions with the SOC type of uncertainty set constructed in

this work with the value of (5.18) of non-robust solutions of testing samples. The distribution of

values are shown in Figure 22. The average demand-supply ratio error is reduced by 31.7% with

robust solutions.

We compare the cost distribution of total idle distance in Figure 23. It shows the average total idle

distance is reduced by 10.13%. For all testing, the robust dispatch solutions result in no idle distance

greater than 0.8× 105, and non-robust solutions has 48% of samples with idle distance greater than

0.8 × 105. The cost of robust dispatch (4.11) is a weighted sum of both the demand-supply ratio

error and estimated total idle driving distance, and the average cost is reduced by 11.8% with robust

solutions. It means that the performance of the system is improved when the true demand deviates

from the average historical value considering model uncertainty information in the robust dispatch

process. It is worth noting that the number of total idle distance shown in this figure is the direct

calculation result of the robust dispatch problem. When we convert the number to an estimated

value of corresponding miles in one year, the result is a total reduction of 20 million miles in NYC.

Check whether the probabilistic level ε is guaranteed: Theoretically, the optimal solution of the
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Figure 23: Total idle distance comparison of robust optimization solutions with the SOC type of
uncertain demand set (ε = 0.25, or probabilistic guarantee level 75%) and non-robust optimization
solutions. The average total idle distance is reduced by 10.13%. For all samples used in testing, the
robust dispatch solutions result in no idle distance greater than 0.8× 105, and non-robust solutions
has 48% of samples with idle distance greater than 0.8 × 105. The number of total idle distance
shown in this figure is the direct calculation result of the robust dispatch problem, and we convert
the number to an estimated value of corresponding miles in one year, the result is a total reduction
of 20 million miles in NYC.

robust dispatch problems with the uncertainty set should guarantee that with at least the probability

(1− ε), when the system applies the robust dispatch solutions, the actual dispatch cost under a true

demand is smaller than the optimal cost of the robust dispatch problem. Figures 4.24(a) and 4.24(b)

show the cross-validation testing result that the probabilistic guarantee level is reached for both
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(a) Comparison result with the box type of uncertainty set.
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(b) Comparison result with the SOC type of uncertainty set.
The true percentage value is closer to the value of 1 − ε
compared with the solution given a box type uncertainty set.

Figure 24: The percentage of tests that have a smaller true dispatch cost than the optimal cost of
the robust dispatch problem with the box and SOC types of uncertainty sets constructed from data.
When 1− ε decreases, the percentage value also decreases, but always greater than 1− ε.
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(a) Comparison result with box type of uncertainty set.
When ε = 0.3 the average cost is the smallest.
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(b) Comparison result with SOC type of uncertainty set.
When ε = 0.25 the average cost is the smallest.

Figure 25: Comparisons of the optimal cost of the robust dispatch problem with box and SOC types
of uncertainty sets and the average cost when applying the robust solutions for the test subset of
sampled rc.

box type and SOC type of uncertainty sets via solving (4.25) and (4.26), respectively. Comparing

these two figures, one key insight is that the robust dispatch solution with an SOC type uncertainty

set provides a tighter bound on the probabilistic guarantee level that can be reached under the true

random demand compared with solutions of the box type uncertainty set. It shows the advantage of

considering second order moment information of the random vector, though the computational cost

is higher to solve problem (4.26) than to solve problem (4.25).

How probabilistic guarantee level affects the average cost: There exists a trade-off between the

probabilistic guarantee level and the average cost with respect to a random vector rc. Selecting

a value for ε is case by case, depending on whether a performance guarantee for the worst case

scenario is more important or whether the average cost performance is more important. For a high

probabilistic guarantee level or a large 1− ε value, the average cost may not be good enough since

we minimize a worst case that rarely happens in the real world. When the 1 − ε value is relatively

small, the average cost can also be large since many possible values of the random vector are not

considered.

We compare the optimal cost of robust solutions and average cost of empirical tests for two types

of uncertainty sets via solving (4.25) and (4.26) in Figure 4.25(a) and 4.25(b), respectively. The

optimal cost of the robust dispatch framework shows that the result of minimized worst case scenario
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for all possible rc included in the uncertainty set, and the average cost of empirical tests show the

real world scenario when we applying the optimal solution to dispatch taxis under random demand

rc. The horizontal line shows the average cost of non-robust solutions since this cost is not related

to ε. The ε values that provide the best average costs are not exactly the same for different types

of uncertainty sets according to the experiments. For the box type of uncertainty set shown in

Figure 4.25(a), ε = 0.3 provides the smallest average experimental cost, and for SOC type of

uncertainty set shown in Figure 4.25(b), ε = 0.25 provides the smallest average experimental cost.

The minimum average cost of an SOC robust dispatch solution is smaller than that of a box type. It

indicates that the second order moment information of the random variable should be included for

modeling the uncertainty set and calculating robust dispatch solutions for the dataset we use in this

section, though its computational cost is higher.
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CHAPTER 5 : Data-Driven Dynamic Distributionally Robust Resource Allocation

5.1. Introduction

With the transformation to smarter cities and the development of technologies, a large amount of

data is collected from networked sensors in real-time [40, 71]. This paradigm provides both oppor-

tunities and challenges for improving systems’ performance in the city. Considering the trade-off

between system’s average performance and worst-case performance, robust taxi dispatch techniques

with a probabilistic guarantee level for an original chance constrained problem are developed and

evaluated based on a realistic dataset in Chapter 4. However, we do not know the average service

performance before running empirical testing by the robust dispatch methods developed in Chapter

4. Hence, motivated by the taxi dispatch problem under demand uncertainties, in this chapter, we

consider a general form of data-driven dynamic resource allocation problem that takes the optimal

average resource allocation cost or payoff under uncertain distributions of the demand as the control

goal of the decisions.

We develop a data-driven distributionally robust resource allocation framework to consider spatial-

temporally correlated uncertainties, motivated by the problem of taxi dispatch under demand un-

certainties. The optimal resource allocation problem has an objective function that is concave in

the uncertain demand and convex in the decision variables, with decision variables on the denom-

inator that has not been covered by the optimization literature. The form of objective function is

related to the demand-supply ratio, since the demand-supply ratio or supply-demand ratio is one

critical factor that affects the utility or price of resources discussed in previous work such as virtual

machine allocations of cloud computing [4, 89], bandwidth providing strategy of video-on-demand

systems [66, 88], and power systems [33, 52].

We then design an efficient algorithm for constructing uncertain distribution sets of random demand

vectors based on theories in hypothesis testing and distributionally robust optimization literature.

This construction process is compatible with various machine learning methods. We prove equiva-

lent computationally tractable forms of the distributionally robust resource allocation problem with
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the constructed distributional uncertainty set using strong duality.

With a taxi dispatch problem aiming to balance demand-supply ratio at each region of the city with

minimum idle driving distance, we evaluate the performance of the distributionally robust resource

allocation framework. Based on four years of taxi trip data for New York City, we show that the

average demand-supply ratio error is reduced by 28.6%, and the average total idle driving distance

is reduced by 10.05%.

The rest of the chapter is organized as follows. The distributionally robust resource allocation prob-

lem motivated by a taxi dispatch problem under demand uncertainties is described in Section 5.2.

An efficient algorithm for constructing distributional uncertainty sets based on spatial-temporal data

is designed in Section 5.3, and generalized to more learning methods in Subsection 5.3.3. An equiv-

alent computationally tractable form of the general distributionally robust resource allocation prob-

lem is proved in Section 5.4. With an example of taxi dispatch problem, evaluations based on a real

data set are shown in Section 5.5.

Remark 5 Some parts of the work presented in this chapter have been captured in [58].

5.2. Dynamic Distributionally Robust Resource Allocation

The robust allocation scheme designed in Chapter 4 shows its advantage in worst-case scenarios

compared with non-robust approaches with the example of efficient transportation resource alloca-

tion. However, the robust solutions do not provide a value for the average cost before we test the

performance empirically. In this section, we propose a dynamic distributionally robust resource al-

location model motivated by the multi-stage taxi dispatch problem under demand uncertainties. We

first briefly review the robust taxi dispatch problem with an objective of fairly allocating resources

with minimum idle driving distance [54, 57]. For the sake of generality, we then define a form of

distributionally robust resource allocation problem that covers the taxi dispatch problem formulated

in [54, 57].

The resource allocating solutions we consider in this work are calculated in a receding horizon
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Figure 26: Concept of receding time horizon with 30-minute time periods and τ = 3.

framework. With a time window of τ time slots for k = 1, 2, . . . , τ , the effect of current decisions

to the future allocating cost is involved. The idea of receding time horizon is explained in Figure 26.

Only the solution of k = 1 is implemented, while the allocating solutions for remaining time slots

are not materialized. When the time horizon rolls forward by one time step, information about

uncertain demand is first updated, and available resources are observed, provided to solve a new

resource allocation problem for the current time window. Examples of receding time horizon format

of resource allocation frameworks include economic dispatch of power systems [52], taxi dispatch

systems [59], etc.

5.2.1. Problem Formulation

We assume that there are n regions (nodes) to be served, with rkj > 0 as the predicted total amount

of demand (number of passengers for a taxi dispatch system) within region j during time window

k, j = 1, . . . , n, k = 1, . . . , τ . We define rk ∈ Rn as a random demand vector instead of a

deterministic value, and demand during every τ consecutive time slots also have spatial-temporal

correlations. Hence, we define the concatenation of demand sequences (r1 ∈ Rn, . . . , rτ ∈ Rn) as

rc =

[
(r1)T , (r2)T , · · · , (rτ )T

]T
∈ Rτn.

We assume that F ∗ is the true distribution function for the random vector rc, i.e., rc ∼ F ∗.

We consider a single type of resource allocation problem under the above demand model. We denote
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by a nonnegative matrix Xk the matrix of resource allocation decisions at time k, where

Xk ∈ Rn×n+ , Xk
ij ≥ 0,

andXk
ij is the amount of resource (number of taxis for a taxi dispatch problem) sent from region i to

region j (or node i to node j) at time k according to demand or service requirements. For notational

convenience, we define a concatenation of decision variables as

X [1,τ ] = [X1 X2 . . . Xτ ].

With an objective function J(X [1,τ ], rc) related to the random demand rc, a stochastic optimization

form of resource allocation problem is defined as the following

min.
Xk

Erc∼F ∗
[
J(X [1,τ ], rc)

]
s.t X1, . . . , Xτ ∈ Dc.

(5.1)

However, in many application problems we only limited knowledge about the true distribution func-

tion F ∗. Moreover, problem (5.1) is computationally demanding, not suitable for a large-scale dy-

namic resource allocation framework in general. With historical or streaming data (or prior knowl-

edge if there is any), we assume that we are able to construct a set of distribution functions F such

that F ∗ ∈ F . Then the uncertainty information about demand rc is described through F . In this

work, we propose the following form of distributionally robust resource allocation problem as a

robust form of problem (5.1) to minimize the worst-case expected cost

min.
Xk

max
F∈F

E
[
J(X [1,τ ], rc)

]
s.t X1, . . . , Xτ ∈ Dc.

(5.2)

Then by solving (5.2), the average resource allocation cost is guaranteed to be smaller than the op-

timal solution of (5.2), since we minimize the expected cost for the worst-case distribution function

included in F .
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Specifically, to define the form of J(X [1,τ ], rc), we first introduce an example of fair resource al-

location problem— a taxi dispatch problem. We take the definitions of objective and constraint

functions of the robust taxi problem defined in [54], and a distributionally robust taxi dispatch prob-

lem considered in this work has the following form

min.
Xk,Lk

max
F∈F

E

[
J =

τ∑
k=1

(JD(Xk) + βJE(X [1,τ ], rk))

]

s.t. (Lk+1)T = (1TnX
k − (Xk1n)T + (Lk)T )Ck,

1TnX
k − (Xk1n)T + (Lk)T > 1,

Xk
ijWij ≤ mXk

ij ,

Xk
ij ≥ 0, i, j ∈ {1, 2, . . . , n},

where

JD(Xk) =
∑
i

∑
j

Xk
ijWij ,

JE(X [1,τ ], rk) =
∑
i

rki
(1TnX

k
·i −Xk

i·1n + Lki )
α
.

(5.3)

Here JD(Xk) measures the resource balancing and re-balancing cost, JE(X [1,τ ], rk) is a penalty

function for violating service fairness that relates to the demand-supply ratio of each region, and

Lk+1 is the amount of available resources at time k+1 (released resource after serving tasks during

time k) before allocating resources as Xk+1.

The above distributionally robust taxi dispatch problem cannot be immediately translated into an

LP or SDP form. The fairness requirement is encoded in an objective function that has decision

variables on the denominator. Motivated by it, we consider a general form of function JE(X [1,τ ], rk)

as a metric to be minimized and a measurement of how resource is allocated to serve demand

according to the requirements. We define

s : Rn×τn → Rτn+
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as a function of the decision variables X [1,τ ], and

[s(X [1,τ ])](k−1)n+i > 0

is the ((k − 1)n + i)-th component of s(X [1,τ ]) such that 1
[s(X[1,τ ])](k−1)n+i

is convex of Xk, k =

1, . . . , τ . And JE(X [1,τ ], rk) takes the following form with constants aik > 0, i = 1, . . . , n, k =

1, . . . , τ

JE(X [1,τ ], rk) =
∑
i

(
aikr

k
i

[s(X [1,τ ])](k−1)n+i

)
. (5.4)

Here, JE(X [1,τ ], rk) is a function concave (linear) in rk and convex in Xk, k = 1, . . . , τ that

measures how demand is matched with the resource allocating strategy, and JE(X [1,τ ], rk) has the

decision variables on the denominator. Assume that JD(Xk) is a convex cost function for allocating

or re-allocating resources, and Dc is a convex domain of the decision variables that describes the

constraints of the resource allocating strategies. Then a distributionally robust resource allocation

problem considered in this work is

min.
Xk

max
F∈F

E

[
τ∑
k=1

(
JD(Xk) + β

∑
i

aikr
k
i

[s(X [1,τ ])](k−1)n+i

)]

s.t X1, . . . , Xτ ∈ Dc,

(5.5)

5.2.2. Forms of Objective Function

Problem (5.3) is one example of fair resource allocation covered by the general form of problem

defined in (5.5), where aik = 1, and

[s(X [1,τ ])](k−1)n+i = (1TnX
k
·i −Xk

i·1n + Lki )
α

is related to the total number of available resources that can provide service within region i during

time k. The power α is a constant parameter designed according to the objective. For instance, with
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α→ 0 in (5.3), as explained in Chapter 4, a surrogate function for balanced demand-supply ratio at

each region is part of the objective function.

For other fair resource allocation problems with a metric that demand-supply ratio at each region

should be as close to the global level as possible, we can use a similar form of objective function.

For instance, when the total amount of resource is limited and fixed (smaller than the total number

of demand), it is impossible to satisfy the demand of all users at the same time. Under this scenario,

the most efficient way to fairly allocate a single type of resource is to use all [45]. Then for a fair

single resource allocation, let the function s(X [1,τ ]) be

[s(X [1,τ ])](k−1)n+i = ([S(X [1,τ ])]ki )
α,

where [S(X [1,τ ])]ki is the total amount of resource available within region i during time k (but may

not have the exact form of (1TnX
k
·i −Xk

i·1n + Lki ) in taxi dispatch problem (5.3)), and

Nk =
∑
i

[S(X [1,τ ])]ki

is the total amount of available resource during time k. Then problem (5.5) is a distributionally ro-

bust form of fair resource allocation problem given uncertain demand rk and limited total resources

Nk, k = 1, 2, . . . , τ .

For queuing models, the average number of waiting customers in the queue is related to the demand-

supply ratio or supply-demand ratio for a stable queue [53, 14]. It also indicates that considering

a balanced demand-supply ratio is to consider balance the average number of waiting customers

intuitively.

Region priorities: Taking into account service priority of different regions in one city involves

simply adjusting the value of aik. In problem (5.3), aik=1, i = 1, . . . , n, k = 1, . . . , τ , and the re-

source allocation strategy aims to provide fair service for each region. We can give a higher priority

to regions with important events or assign weight, or values of aik according to price incentives.

96



5.3. Efficient Distributional Set Construction Algorithm

We design an algorithm for constructing the distributional set F of problem (5.5), with spatial-

temporal data that provides information about the true distribution function F ∗ of the demand vector

rc. Delage and Ye propose a model of distributional set and prove a confidence region for the mean

and the covariance matrix of a random vector [28]. While applying the theoretical bound of the

distributional set is too conservative in practice, with a large enough dataset, constructing F via

a bootstrap method [18] and hypothesis testing results good empirical performance in portfolio

management problems [28, 12]. How to model spatial-temporally correlated demand uncertainties

based on thresholds of accepted hypothesis testing is first analyzed in work [57]. Considering the

computational cost of building a distributional set for each time window of one day, we modify the

bootstrapped uncertainty set construction algorithm and develop a more efficient algorithm in this

section.

To describe the demand changing trend at different time of one day, we assume that one day is

discretized as K time slots in total, and the demand of each region during one time slot is described

as rh, h = 1, . . . ,K. We denote one sample of vector

rc(t) = [(rt)T , (r(t+1))T, . . . , (r(t+τ))T ]T

at date dl as r̃c(dl, t), a vector of aggregated total number of demand at each region for time slots

h = t, t+ 1, . . . , t+ τ . We define the distribution uncertainty set for a random demand vector rc(t)

as F(t), t = 1, 2, . . . ,K. Demand sampled from N days

r̃c(d1, t), r̃c(d2, t), . . . , r̃c(dN , t)

for time index t are independent with each other for every time index t. Hence, for each time index

t, we aim to construct a distributional set F(t) that describes possible distribution function of rc(t)

based on the support, mean and covariance values of a random vector of a given dataset.

97



For notational convenience, we omit t for the following problem definition. Based on the distribu-

tional set designed in [28] and the bootstrap algorithm for calculating the support (range), mean and

covariance values [12], the problem of constructing a distributional set is defined as

Problem 2 Given a dataset of rc, find the values of r̂c, Σ̂c, γB1 and γB2 , with probability at least

1−α with respect to the samples, the following distributional set F is true for rc based on the given

dataset

F(r̂c,l, r̂c,h, r̂c, Σ̂c, γ
B
1 , γ

B
2 )

={rc ∈ [r̂c,l, r̂c,h] : (E[rc]− r̂c)T Σ̂−1
c (E[rc]− r̂c) 6 γB1 ,

E[(rc − r̂c)(rc − r̂c)T ] ≤ γB2 Σ̂c}

(5.6)

where supp(rc) ⊂ [r̂c,l, r̂c,h] is the support of rc, r̂c,l and r̂c,h is the lower bound and higher bound

of each component of the demand vector, respectively.

Problem 2 is related to a hypothesis testing H0 given a dataset of random vector rc: given mean

µ0 and covariance Σ0, test statistics γ1, γ2, with probability at least 1 − α, the random vector rc

satisfies that

H0 :(r̃c − µ0)TΣ−1
0 (r̃c − µ0) 6 γ1,

(r̃c − µ0)(r̃c − µ0)T � γ2Σ0.

(5.7)

Since we do not have prior knowledge about the support, the true mean, covariance, and thresh-

old values γ1, γ2 of the test statistics, constructing set F based on data is an inverse process of

a hypothesis testing. We then design Algorithm 3 to calculate the bootstrapped estimations of

r̂c,l, r̂c,h, r̂c, Σ̂c, γ
B
1 , γ

B
2 for every rc(t), t = 1, 2, . . . ,K, that makes H0 defined in (5.7) acceptable

and consistent with data.

5.3.1. Reducing Computational Complexity

The computational cost of constructing a distributional set with bootstrapped method for spatial-

temporal data considered in this work is higher than that of the return model of financial assets in
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Figure 27: The idea of calculating Σ̂ ∈ RKn×Kn when receding time horizon. For example, when
index moves from t = 1 to t = 2, only the blocks of components in matrix Σ̂ shown in blue are
new and necessary for calculating Σ̂c(t), t = 2, and we only calculate these blocks of variance and
covariance matrices, store them in the corresponding positions of matrix Σ̂ for the future computing
process.

the literature [12, 28]. This is because F(t) is a function of time index t, the dimension of r̂c, Σ̂c is

decided by the number of regions n and prediction horizon τ , which can be large for applications

rising in smart cities, such as taxi or autonomous driving car dispatch problems and bicycle re-

balancing problems.

However, the mean and covariance matrices for t, t+1, . . . , t+τ have overlapping components: for

instance, r̂c(t) and r̂c(t+ 1) both include estimated mean values of demand during time (t+ 1, t+

2, . . . , t+ τ). Hence, instead of always repeating the process of calculating a mean and covariance

value for τ time slots together for each index t, the key idea of reducing computational cost of

constructing F(t), t = 1, . . . ,K is to calculate the mean and covariance of each pair of time slots

of the whole day only once. Then pick up the corresponding components needed to construct r̂c(t)

and Σ̂c(t) for each index t.

Specifically, we define the whole day demand vector as r = [(r1)T , (r2)T , . . . , (rK)T ]T ∈ RKn,

i.e., a concatenated demand vector that includes the total number of requests within each region at

each time slot of one day. And we denote r̂ as the estimated mean of the random vector r. To get all
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covariance component for each index t, the process is: at t = 1, calculate the covariance of rc(1),

store it as Σ̄[1:n,1:n]; and every time when rolling the time horizon from t to t+ 1, only calculate the

covariance between τ pairs of (rt+τ , rt+k) and store the result as

Σ̄[(t−1+τ)n:(t+τ)n,(t−1+k)n:(t+k)n] = Σ̄[(t−1+k)n:(t+k)n,(t−1+τ)n:(t+τ)n] = cov(rt+τ , rt+k) (5.8)

for k = 1, 2, . . . , τ , where [(t− 1 + k)n : (t+ k)n] means components from the (t− 1 + k)n-th to

the (t+k)n-th row or column in the matrix. This process of calculating Σ̂ is explained in Figure 27.

Remark 6 The computational complexity of repeating the process of calculating r̂c(t), Σ̂c(t) for

each index t is O(BNBKn
2τ2), while the computational complexity of calculating r̂, Σ̂ for the

whole day first and picking up the corresponding components for each index t is O(BNBKn
2τ).

5.3.2. Algorithm

Then we have the following Algorithm 3 that describes the complete process of constructing dis-

tributional sets. For instance, given a taxi trajectory or trip data, we count the total number of pick

up events during one hour at each region as rk, k ∈ {1, 2, . . . , τ} according to the start time and

GPS coordinate of the pick-up position of each trip. If the given dataset is the arriving time of

each customer at different service nodes of a network, then the total number of customer appeared

in every service node during each hour or every 30 minutes is a vector rk, and we concatenate τ

time slots of rk as one vector rc. The motivation of partitioning or clustering the entire dataset to

several subsets is explained in the uncertainty set constructing algorithm of work [57]. We denote

Ip, p = 1, 2, . . . , P as the categorical information index for data partition. A partition category can

be high demand season or low demand season of one year, normal days or holidays/special event

days of one year, different weather conditions or a combination of different contexts, etc. It depends

on information available to the process of constructing distributional sets.

For step 3(1), the process of picking components from the mean and covariance matrices of the
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Algorithm 3: Algorithm for constructing distributional sets
Input: A dataset of spatial-temporal demand
1. Demand aggregating and sample set partition
Aggregate demand to get a sample set S of demand for the whole day r (denote S(t) as a
sample set for rc(t)) from the original data. Partition S(S(t)) and denote S(Ip) ⊂ S
(S(t, Ip) ⊂ S(t)), p = 1, . . . , P as the subset partitioned according to categorical
information Ip.

2. Bootstrapping mean and covariance matrix
Initialization: a significance level 0 < αh < 1, the number of bootstrap time NB ∈ Z+.

for j = 1, . . . , NB do
Re-sample Sj(Ip) = {r̃(d1, Ip), . . . , r̃(dN , Ip)} from S(Ip) with replacement. Get the

mean and covariance matrix of the whole day demand vector of sample set Sj(Ip), denoted
as r̄j(Ip) and Σ̄j(Ip) (calculated as (5.8)), respectively.

end for
Get the bootstrapped mean covariance, and support of the whole day demand vector

(i = 1, . . . ,Kn)

r̂(Ip) = 1
B

B∑
j=1

r̄j(Ip), Σ̂(Ip) = 1
B

B∑
j=1

Σ̄j(Ip),

r̂i,l(Ip) = mindr̃i(d, Ip), r̂i,h(Ip) = maxdr̃i(d, Ip), for all samples r̃(d, Ip) in the subset
S(Ip).

3. Bootstrapping γB1 and γ2 for each time index t
for each subset Sj(t, Ip) do

for j = 1, . . . , NB do
(1) Get the mean and covariance vector for time index t of the bootstrapped estimation,

and the j-th re-sample, from the mean and covariance matrix of the whole day demand
vector in step 2: r̂c(t, Ip), Σ̂j

c(t, Ip), r̄jc(t, Ip), Σ̄j
c(t, Ip).

(2). Get values of γj1(t, Ip) and γj2(t, Ip) according to (5.9) and (5.10), respectively.
end for
(3). Get the dNB(1− αh)e-th largest value of γj1(t, Ip) and γj2(t, Ip) as γB1 (t, Ip) and
γB2 (t, Ip), respectively.

end for
3. Calculate the model of distributionally uncertainty sets
Get the model of set defined as (5.6) for every t and Ip.
Output: Distributionally uncertainty sets for problem (5.5)
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whole day demand is

r̂c(t, Ip) = r̂[tn:(t+τ)n](Ip), r̄jc(t, Ip) = r̄j[tn:(t+τ)n](Ip),

Σ̂j
c(t, Ip) = Σ̂j

[tn:(t+τ)n,tn:(t+τ)n](Ip), Σ̄j
c(t, Ip) = Σ̄j

[tn:(t+τ)n,tn:(t+τ)n](Ip),

where [tn : (t + τ)n] means components from the tn-th to the (t + τ)n-th row or column of a

vector/matrix.

For the j-th re-sampled subset Sj(t, Ip), the mean and covariance matrices are E[rc] = r̄jc(t, Ip)

and E[rcr
T
c ] = Σ̄j

c(t, Ip), respectively. For step 3(2), according to the definition of F in (5.6), we

get γj1(t, Ip) by the following equation

γj1(t, Ip) = [r̄jc(t, Ip)− r̂c(t, Ip)]T Σ̂−1
c (t, Ip)[r̄

j
c(t, Ip)− r̂c(t, Ip)]. (5.9)

According to definition (5.6), the left part of the inequality related to γB2 satisfies that

E[(rc − r̂c)(rc − r̂c)T ] = E[rcr
T
c ]− r̂cE[rTc ]− E[rc]r̂

T
c + r̂cr̂

T
c = Σ̄c − r̂cr̂Tc .

Then we get γj2 for index (t, Ip) by solving the convex optimization problem

min.
γ2

γ2

s.t Σ̄j
c(t, Ip)− [r̂c(t, Ip)][r̂c(t, Ip)]

T ≤ γ2Σ̂c(t, Ip)

(5.10)

5.3.3. Constructing Uncertainty Sets for a General Demand Prediction Model

The above Algorithm 3 considers to construct an uncertainty set of the concatenated demand vector

rc, and the estimated demand r̂c(t) for each index t is the average value of bootstrapped samples. It

is worth noting that besides directly building an uncertainty set for rc, Algorithm 3 is also compati-

ble with a general modeling method, that we can follow a similar process to build an uncertainty set

for the estimation residual.
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We do not restrict the learning or modeling method to predict demand, and assume that fr :

I[k−l,k] → Rn is a function that mapping sensing data available to the system by time k (from

time (k − l) to time k) to predicted demand at time k + 1

r̂k+1 = fr(I[k−l,k]), rk+1 = r̂k+1 + δk+1. (5.11)

Here δk+1 ∈ Rn is the estimation residual that measures the difference between the true demand

and the estimated value. One example of model (5.11) is time series function [77]. The available

data I[k−l,k] can be either purely historical data stored in the system, or purely on-line/streaming or

real-time vehicle state monitoring data, or both.

Then for each sample r̃k+1 of rk+1, a corresponding sample of residual is

δ̃k+1 = r̃k+1 − r̂k+1.

For a subset of samples S(k + 1) = {r̃k+1}, there will be one estimated value for r̂k+1, and the

corresponding mean and covariance values for the residual δk+1.

When constructing uncertainty set of rk with prediction function fr by the bootstrapped process

Algorithm 3, every step is the same, except one step — we use the estimation equation (5.11)

instead of the mean value of all samples for the estimated r̂k+1. It is worth noting that even for an

on-line learning algorithm such as the short-term time horizon demand prediction approach using

streaming data [62], the uncertainty set construction Algorithm 3 can be run off-line. Then the

predicted demand (5.11) is a sum of estimation based on streaming data and residual quantified by

a closed convex set calculated via historical data.

Similarly, to build an uncertainty set for the concatenated demand vector rc based on prediction

method fr, we only need to calculate the estimated concatenated demand r̂c(t+ 1) as

r̂c(t+ 1) = fr(Ic,[t−l,t]), rc(t+ 1) = r̂c(t+ 1) + δt+1, (5.12)
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where Ic,[t−l,t] is the available data related to rc by time t (from time (tl) to time (t)).

5.4. Computationally Tractable Form

In this section, we present the main theorem of this work–equivalent computationally tractable

form of the distributionally robust resource allocation (5.5). By the definition of the objective func-

tion and constraints, only JE(rk, X [1,τ ]) part of problem (5.5) is related to the random demand rc.

Hence, in the equivalent computationally tractable problem, the form of JD(Xk) keeps the same

and the process of converting problem (5.5) to a convex optimization problem is mainly about find-

ing an equivalent form for the JE(rk, X [1,τ ]) part. The objective function of the resource allocation

problem defined in this work is convex over the decision variables and concave (linear) over the

constructed uncertain sets, with decision variables on the denominators. This form is not a linear

programming (LP) or a semi-definite programming (SDP) examined by previous work [8, 12, 26].

The following theorem shows an equivalent convex optimization form for problem (5.5) with the

objective function defined as (5.4) in this work.

Theorem 5 The distributionally robust resource allocation problem defined in (5.5) has the follow-

ing equivalent convex optimization form

min. β(v + t) +
τ∑
k=1

JD(Xk)

s.t

v + (y+
1 )T r̂c,l − (y−1 )T r̂c,h

1
2(q − y − y1)T

1
2(q − y − y1) Q

 � 0

t > (γB2 Σ̂c + r̂cr̂
T
c ) ·Q+ r̂Tc q +

√
γB1 ‖Σ̂

1/2
c (q + 2Qr̂c)‖2

aik
[s(X [1,τ ])](k−1)n+i

6 y(k−1)n+i

y1 = y+
1 − y

−
1 , y

+
1 , y

−
1 , y > 0, Q � 0

X1, . . . , Xτ ∈ Dc.

(5.13)
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Proof 8 We have aik
[s(X[1,τ ])](k−1)n+i

> 0 and rc > 0 by the definitions of JE in (5.4) and the demand

model, then for any vector y ∈ Rτn that satisfies

0 <
aik

[s(X [1,τ ])](k−1)n+i

6 y(k−1)n+i,

we also have

0 6
τ∑
k=1

∑
i

aikr
k
i

[s(X [1,τ ])](k−1)n+i

6 yT rc,

and the second inequality strictly holds when all

aikr
k
i

[s(X [1,τ ])](k−1)n+i

= y(k−1)n+i, i = 1, . . . , n, k = 1, . . . , τ >

The constraints of problem (5.5) are independent of rc, hence, for any rc, the following minimization

problem

min.
Xk

β
τ∑
k=1

∑
i

aikr
k
i

[s(X [1,τ ])](k−1)n+i

+
τ∑
k=1

JD(Xk)

s.t X1, . . . , Xτ ∈ Dc

is equivalent to

min.
Xk

βyT rc +
τ∑
k=1

JD(Xk)

s.t
aik

[s(X [1,τ ])](k−1)n+i

6 y(k−1)n+i,

X1, . . . , Xτ ∈ Dc

(5.14)

In the following proof, we use the objective function of problem (5.14). In particular, only the part

of yT rc is related to rc, and we first consider the following maximum problem

max
rc∼F,F∈F

E[yT rc] (5.15)
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By the definition of problem (5.5) and problem (5.14), only the objective function includes the ran-

dom vector rc, and is concave of rc, convex of Xk, k = 1, . . . , τ . The distributional set F con-

structed by Algorithm 3, the domain of y, Xk, k = 1, . . . , τ are convex, closed, and bounded sets.

Hence, problem (5.15) satisfies the conditions of Lemma 1 in [28], and the maximum expectation

value of yT rc for any possible rc ∼ F, F ∈ F equals to the optimal value of the problem

min.
Q,q,v,t

v + t

s.t v > yT rc − rTc Qrc − rTc q, ∀rc ∈ [r̂c,l, r̂c,h]

t > (γB2 Σ̂c + r̂cr̂
T
c ) ·Q+ r̂Tc q +

√
γB1 ‖Σ̂

1/2
c (q + 2Qr̂c)‖2

Q � 0.

(5.16)

Hence, we first analytically find the optimal value of problem (5.16). Note that the first constraint

about v is equivalent to v > f(r∗c , y), where f(r∗c , y) is the optimal value of the following problem

max.
rc

yT rc − rTc Qrc − rTc q

s.t r̂c,l 6 rc 6 r̂c,h.

(5.17)

For a positive semidefinite Q, the optimal solution of problem (5.17) exists. The Lagrangian

of (5.17) under the constraint y+
1 , y

−
1 > 0 is

L(rc, y
+
1 , y

−
1 ) =yT rc − rTc Qrc − rTc q + (y+

1 − y
−
1 )T rc − (y+

1 )T r̂c,l + (y−1 )T r̂c,h.

When Q � 0, the supreme value of the Lagrangian is calculated via taking the partial derivative

over rc, let ∆rcL = 0, and

sup
rc
L(rc, y

+
1 , y

−
1 ) =

1

4
(q − y − y1)TQ−1(q − y − y1)− (y+

1 )T r̂c,l + (y−1 )T r̂c,h,

y1 =y+
1 − y

−
1 , y

+
1 , y

−
1 > 0.
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Then the first inequality constraint of problem (5.16) for any r̂c,l 6 rc 6 r̂c,h is equivalent to

v >
1

4
(q − y − y1)TQ−1(q − y − y1)− (y+

1 )T r̂c,l + (y−1 )T r̂c,h.

By Schur complement, the above constraint is

v + (y+
1 )T r̂c,l − (y−1 )T r̂c,h

1
2(q − y − y1)T

1
2(q − y − y1) Q

 � 0

Together with other constraints, the equivalent convex optimization form of problem (5.5) is prob-

lem (5.13).

Specifically, with the constraints of problem (5.3) to represent the constraint X1, . . . , Xτ ∈ Dc

in (5.13), and

aik
[s(X [1,τ ])](k−1)n+i

=
rki

(1TnX
k
·i −Xk

i·1n + Lki )
α
,

we have a computationally tractable form for the distributionally robust taxi dispatch problem (5.3).

5.5. Evaluations with Taxi Trip Data

With taxi dispatch problem as one example of resource allocation problem, we evaluate the per-

formance of the distributionally robust dispatch framework (5.3) considered in this work based on

four years of taxi trip data in New York City [29]. Information for every record includes the GPS

coordinators of locations, and the date and time (with precision of seconds) of pick up and drop

off locations, as summarized in Table 7. We construct distributional uncertainty sets according to

Algorithm 3, compare the average dispatch cost of the distributionally robust dispatch method (5.3)

with the robust dispatch model and non-robust dispatch method introduced in [57] in this section.

How does the number of samples affect the accuracy of distributional set: We partition the map

of New York City shown in Figure 20 into different number of equal-area grids and count the total

number of pick-up events within each region as the total demand. Then we compare the values
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ΓB1 ΓB2
NB = 10 n = 50, τ = 2 0.739 5.24

NB = 100 n = 50, τ = 2 0.368 2.47

NB = 1000 n = 50, τ = 3 0.013 1.56

NB = 5000 n = 50, τ = 6 0.012 1.49

Table 11: Comparing thresholds γB1 and γB2 for different NB and dimensions of rc

of γB1 and γB2 resulting from Algorithm 3. The set construction Algorithm 3 captures information

about the support, the first and second moments of the random vector. We show the value of γB1

and γB2 with different sample numbers NB in Algorithm 3 and the dimensions of rc or τn values in

table 11. When the value of NB is increased, values of γB1 and γB2 are reduced, which means the

volume of the distributional set is smaller. For a large enough NB , the value of τn does not affect

the results of γB1 and γB2 much.

Compare different types of robust solutions and non-robust solutions: To compare the average

dispatch cost of different methods, we use the idea of cross-validation from machine learning. All

data is separated as a training subset for constructing the uncertain distribution set and a testing

subset for comparing the true costs of different dispatch solutions for each time of testing. The cost

of each dispatch solution, such as the distributionally robust method (5.3) or the robust dispatch

model of [57] is a weighted sum of both the demand-supply ratio mismatch error and estimated total

idle driving distance. For each testing example rk, we denote the demand-supply ratio mismatch

error of a dispatch solution as the following:

τ∑
k=1

n∑
i=1

∣∣∣∣ rki
1TnX

k
·i −Xk

i·1n + Lki
− 1Tnr

k

N

∣∣∣∣ . (5.18)

The idle distance of each taxi between two trips with passengers is approximated as the distance

between one drop-off event and the following-up pick-up event. We use bootstrapped mean value of

the training dataset as predicted demand for the non-robust dispatch framework in the experiments.

We compare the average costs of cross-validation tests for the distributionally robust dispatch so-

lutions via solving (5.13), two types of uncertainty sets of the robust dispatch methods designed
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Figure 28: The average cost of empirical tests for the distributionally robust dispatch solutions via
solving (5.13), two types of uncertainty sets of the robust dispatch methods designed in [57] and
non-robust dispatch solutions. The line ”DRO” represents the average cost of the distributionally
robust dispatch solutions via solving problem (5.13).

in [57] and non-robust dispatch solutions in Figure 28. The average costs show the real world

scenario when we applying the optimal solution of each method to dispatch taxis under all testing

samples of the random demand rc.

The minimum average cost of an SOC robust dispatch solution is close to the average cost of the

distributionally robust dispatch solutions of (5.13). They both use the first and second moments

information of the random demand vector. In particular, the average demand-supply ratio mismatch

error is reduced by 28.6%, and the average total idle driving distance is reduced by 10.05%, the

weighted-sum cost of the two components is reduced by 10.98% compared with non-robust dispatch

solutions.

Comparing these methods, we know the average cost under true demand should be no greater than

the optimal cost of problem (5.13) but not the guarantee for a single worst-case example. Robust

dispatch solutions with the box type of uncertainty set and the SOC type of uncertainty set provide

a desired level of probabilistic guarantee — the probability that an actual dispatch cost under the

true demand vector being smaller than the optimal cost of the robust dispatch solutions is greater

than (1− ε). However, they do not directly minimize the average performance of the solutions and

we need to tune the value of ε and test the average cost. The horizontal lines show the average

cost of distributionally robust solutions and non-robust solutions, since these costs are irrelevant to

ε. The average cost of solutions of (5.13) is always smaller than costs of robust dispatch solutions
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based on the box type uncertainty set. It indicates that the second order moment information of

the random variable should be included for modeling the uncertainty of the demand model and

calculating dispatch solutions.

Either the distributionally robust dispatch framework (5.3) or the SOC robust dispatch framework

designed in [57] has its advantage, and does not provide full information about both the average

performance and the out-of-sample or worst-case performance together by only solving an opti-

mization problem. In practice, we choose a method according to the type of guarantee (average

performance or worst-case scenario) we want to provide.
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CHAPTER 6 : Conclusion and Future Work

In this chapter we outline the contributions of this dissertation and present potential future work.

6.1. Thesis Summary and Contributions

The objective of the dissertation has been to investigate the problem of data-driven dynamic resource

allocation under demand uncertainties. We have focused on two domains, the receding horizon con-

trol framework that incorporates both historical and real-time sensing data to control decisions, and

the robust/distributionally robust resource allocation models with uncertain demand sets constructed

from data. Furthermore, our goal has been to balance supply according to the demand at different

regions (nodes) of a network system in order to increase service efficiency. Applications in taxi dis-

patch system based on real-world data has shown that the approaches designed in this dissertation

can improve performance of the taxi system by reducing total idle distance and increasing service

fairness level.

The specific contributions of this dissertation are the following:

A Receding Horizon Control Framework for Real-Time Taxi Dispatch

With the development of data sensing, storage and processing technologies, the service efficiency of

modern transportation systems can be increased by utilizing the model information provided by data

to make resource allocation decisions. However, existing approaches and platforms usually apply

greedy algorithms and transportation service such as taxis are far from optimal. Hence, we propose

an RHC framework for the taxi dispatch problem. This method utilizes both historical and real-time

GPS and occupancy data to build demand models, and applies predicted models and sensing data to

decide dispatch locations for vacant taxis considering both current and anticipated future demand

and service costs. From a system-level perspective, we compute suboptimal dispatch solutions

for reaching a globally balanced supply demand ratio with least associated cruising distance under

practical constraints. Demand model uncertainties under disruptive events are considered in the

decision making process via robust dispatch problem formulations.
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By applying the RHC framework on a data set containing taxi operational records in San Francisco,

we show how to regulate parameters such as objective weight, idle distance threshold, and prediction

horizon in the framework design process according to experiments. Evaluation results based on a

SF dataset support system level performance improvements of our RHC framework, that the total

idle driving distance is reduced by 52% compared with the original historical record (without any

dispatch algorithm).

Data-Driven Robust Taxi Dispatch under Demand Uncertainties

Large amounts of sensing data provide opportunities to better regulate resource supply to meet the

demand. However, We develop a multi-stage robust optimization model considering demand model

uncertainties in taxi dispatch problems. We model spatial-temporal correlations of the uncertainty

demand by partitioning the entire data set according to categorical information, and applying the-

ories without assumptions on the true distribution of the random demand vector. We prove that

an equivalent computationally tractable form exist with the constructed polytope and SOC types of

uncertainty sets, and the robust taxi dispatch solutions are applicable for a large-scale transportation

system. A robust dispatch formulation that purely minimizes the worst-case cost under all possible

demand usually sacrifices the average system performance. The robust dispatch method we de-

sign allows any probabilistic guarantee level for a minimum cost solution, considering the trade-off

between the worst-case cost and the average performance.

Evaluations show that under the robust dispatch framework we design, the average demand-supply

ratio mismatch error is reduced by 31.7%, and the average total idle driving distance is reduced by

10.13% or about 20 million miles in total in one year.

A General Form of Data-Driven Distributionally Robust Resource Allocation

The robust resource allocation framework provides a probabilistic guarantee for system’s perfor-

mance under the worst-case scenario. However, the robust solutions do not provide a value for the

average cost before we test the performance empirically. Motivated by the problem of minimizing

the worst-case expected cost of taxi dispatch under demand uncertainties, we design a data-driven
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distributionally robust resource allocation model. Then we design an efficient algorithm to con-

struct an uncertain distribution set given a spatial-temporal historical demand dataset, by applying

theories in hypothesis testing literature. The resource allocation problem we consider is concave

in the random demand variable, convex in the decision variables and has decision variables on the

denominator. We prove that an equivalent computationally tractable form exists based on strong

duality and theories in distributionally robust optimization literature.

Evaluations show that by solving the computationally tractable form of distributionally robust dis-

patch problem, the average demand-supply ratio mismatch error is reduced by 28.6%, and the aver-

age total idle driving distance is reduced by 10.05%, compared with non-robust dispatch solutions.

In the future, we will design different resource allocation strategies in transportation systems con-

sidering other objectives and constraints.

6.2. Future Work

A Data-Driven Dynamic Hierarchical Resource Allocation Framework for Efficient Mobility

The problem of optimizing on-demand mobility services can be viewed as a resource allocation

problem, where the available resources are the empty vehicles under dispatch. In Chapter 3 we have

presented a receding horizon control framework for proactive planning of vehicle dispatch based

on robust optimal control theory. A multi-level algorithm that solves a centralized optimization

problem in a higher level first and runs heuristic algorithm in the lower level is introduced in Section

3.6. The simulation process of experiments in Chapter 3 also applies this multi-level idea. In

Chapter 4, our framework explicitly takes account of model uncertainties, which are quantified

from historical data via statistical methods, and the framework ensures that the resulting resource

allocation is robust to those model uncertainties. Numerical experiments on a realistic data set of

taxi operational records in New York City have shown that our framework significantly outperforms

naive proactive planning that does not incorporate model uncertainties.

While our previous resource allocation framework focuses on high-level planning of the distribu-

tion of vehicles, the framework does not address how each vehicle should be routed from an optimal
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control perspective. Also, the framework requires a centralized authority to collect all available in-

formation and make decisions for every vehicle in real time, and such an approach may not scale to

transportation networks with a large number of areas. To address theses open issues, a promising ap-

proach is a hierarchical resource allocation framework that consists of both high-level planning and

low-level distributed control of the vehicles, with the strategic goal being to further bridge the gaps

between our previous proactive planning framework and practical implementation. Two desired

features of the formal mathematical model of the hierarchical framework include accommodation

to multi-modal transportation and scalability to large networks.

Since on-demand mobility is not the exclusive mode of transportation in cities, the framework needs

to take account of other co-existing modes to resolve any potential conflicts of road utilization (for

instance,buses and private cars) and ensures that on-demand mobility stays minimally disruptive.

The high-level planner not only needs to provide target areas for on-demand vehicles but also ap-

propriate routing suggestions considering both mobility demand and the operation of other modes

of transportation.

For a large transportation network, the amount of data collected by each vehicle can be prohibitive

to transmit to the central planner in real time. Each low-level local controller needs to intelligently

determine what information should be communicated with the central planner based on collected

sensor information as well as limitation of the communication network. The lower-level controllers

for individual vehicles should be designed to handle local information such as road conditions and

communicate with the centralized high-level planner.

Design incentive mechanisms for real-time ridesharing and desirable social behavior under

traffic congestion

Future cities will be highly instrumented with sensors and devices providing an almost real-time

update of its various states, including traffic congestion and availability of resources. While the

taxicabs may follow the dispatch commands from their companies, other ridesharing services such

as Uber are operated under a different business model so that directly sending dispatch commands
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becomes impractical. In those cases, a common solution is to offer monetary incentives (such as

surge pricing currently implemented by Uber) so that drivers may be willing to relocate to the areas

with higher demand. The current implementation of monetary incentives suffers from the fact that

it only reacts to current demand and supply. As a result, the implementation often exhibits high

volatility (e.g., Uber’s surge pricing can often change rapidly within a few minutes) and may fail to

achieve the desired re-balancing of demand and supply.

Hence, a better potential approach is a real-time ridesharing framework considering motivation

strategies to motivate drivers and passengers follow the suggestions of ridesharing pairs designed

by the control system. The scheme is proactive to future demand and can achieve similar perfor-

mance to direct dispatch, reduce congestion and energy consumption by motivating resource sharing

especially under the case that people are not willing to execute system-level optimal strategies due

to short-term conflicting with personal interest.
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APPENDIX

A.1. Appendix

A.1.1. Proof of Theorem 2

Proof 9 For any fixed X , the maximum part of the objective function is equivalent to

max
r∈∆

JD(X) + βJE(X, r) = JD(X) + cT (X)r

[c(X)]i =β
1

(1TnX·i −Xi·1n + Li)α
, JD(X) =

∑
i

∑
j

XijWij .
(A.1)

The Lagrangian of problem (A.1) with the Lagrangian multipliers λ ≥ 0, v ≥ 0 is

L(X, r, λ, v) = JD(X) + bTλ− (ATλ− c(X)− v)T r,

where (ATλ− c(X)− v)T r is a linear function of r, and the upper bound exists only when

ATλ− c(X)− v = 0.

The objective function of the dual problem is

g(X,λ, v) = sup
r∈∆
L(X, r, λ, v)

=


JD(X) + bTλ if ATλ− c(X)− v = 0.

∞ otherwise

With v ≥ 0, the constraint ATλ− c(X)− v = 0 is equivalent to ATλ− c(X) ≥ 0. Strong duality

holds for problem (A.1) since it satisfies the Slater’s condition—the primal problem is convex and
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cT (X)r is affine of r. The dual problem of (A.1) is

minimize
λ≥0

JD(X) + bTλ

subject to ATλ− c(X) ≥ 0.

(A.2)

Hence, problem (4.11) with τ = 1 can be solved as the convex optimization problem defined

in (4.20).

A.1.2. Proof of Lemma 1

Proof 10 Now consider the minimax problem over stage k + 1 and k, 1 6 k 6 τ − 1 of prob-

lem (4.11)

max
rk∈∆k

min
Xk+1,Lk+1

J =
τ∑
k=1

(JD(Xk) + βJE(Xk, rk))

s.t. constraints of (4.11).

(A.3)

The domain of problem (A.3) satisfies that Xk+1, Lk+1, λ is compact, and the domain of rk is

compact. The objective function is a closed function convex over Xk+1, Lk+1 and concave over rk.

According to Proposition 2.6.9 with condition (1) of [10], when the objective and constraint func-

tions are convex of the decision variables, concave of the uncertain parameters, and the domain

of decision variables and uncertain parameters are compact, the set of saddle points of (A.3) is

nonempty. It means there exists an optimal minimax solution that is also optimal for the maximin

problem, and we can exchange the order of max and min without changing such an optimal solution,

i.e.,

max
rk∈∆k

min
Xk+1,Lk+1

J = min
Xk+1,Lk+1

max
rk∈∆k

J.
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A.1.3. Proof of Lemma 2 and Theorem 3

Proof of Lemma 2

Proof 11 With the polytope form of uncertainty set (4.22), the domain of each rk is closed and

convex, i.e., is compact, and Lemma 1 holds. Considering the maximizing part of problem (4.21)

max
rk∈∆k

J, s.t. constraints of (4.11), (A.4)

the Lagrangian of (A.4) with multipliers λk ≥ 0, vk ≥ 0 is

L(Xk, rk, λk, vk)

=

τ∑
k=1

(JD(Xk) + bTk λ
k − (ATk λ

k − c(Xk)− vk)T rk),
(A.5)

Hence, based on the proof of Theorem 2, we take partial derivative of the Lagrangian (A.5) for every

rk ∈ ∆k. The inequality constraint of rk ∈ ∆k defined as (4.22) is affine of rk, cT (Xk)rk is affine

of rk, and problem (A.4) is convex. Hence Slater’s condition is satisfied and strong duality holds

for problem (A.4). An equivalent form of (4.11) under uncertainty set (4.22) is defined as (5.13).

Proof of Theorem 3

Proof 12 With uncertain set defined as (4.24), the domain of each rk is compact and Lemma 1

holds. We consider the equivalent problem (4.21) of problem (4.11), and first derive the Lagrangian

of the maximum part of the objective function (4.21) with constraint λ ≥ 0, vk ≥ 0

L(Xk, rk, λ, vk)

=bTλ−
τ∑
k=1

((ATk λ− c(Xk)− vk)T rk − JD(Xk)),
(A.6)
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Similarly as the proof of Theorem 2, we take the partial derivative of (A.6) over each rk, the

objective function of the dual problem is

g(Xk, Lk, λ, rk) = sup
rk∈∆k

L(Xk, rk, λ, vk)

=


∞ if ∃k s.t. ATk λ− c(Xk)− vk 6= 0,

τ∑
k=1

JD(Xk) + bTλ o.w.

Since Slater’s condition is satisfied and strong duality holds, problem (4.25) is a equivalent to the

computationally tractable convex optimization form (4.11) under uncertain set (4.24).

A.1.4. Proof of Theorem 4

Proof 13 Under the definition of uncertainty set (4.19) for concatenated rk, the domain of each

rk is compact, and problem (4.11) is equivalent to (4.21). We now consider the dual form for the

objective function
τ∑
k=1

JE(Xk, rk) that relates to rk. By the definition of inner product, we have

τ∑
k=1

cT (Xk)rk = cTl (X)rc, cl(X) = [cT (X1) . . . cT (Xτ )]T .

When the uncertainty set of rc is an SOC defined as (4.19), problem (4.21) is equivalent to

min.
Xk,Lk

max
rc>0

cTl (X)rc +
τ∑
k=1

∑
i

∑
j

Xk
ijWij


subject to rc = r̂c + y + CTw,

‖y‖2 6 ΓB1 , ‖w‖2 6

√
1

ε
− 1,

constraints of (4.11).

(A.7)
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We first consider the following minimax problem related to the uncertainty set

max
rc>0

cTl (X)rc

subject to rc = r̂c + y + CTw,

‖y‖2 6 ΓB1 , ‖w‖2 6

√
1

ε
− 1.

(A.8)

The constraints of problem (A.8) has a feasible solution rc = r̂c such that ‖y‖2 < ΓB1 , ‖w‖2 <√
1
ε − 1, and cTl (X)rc is affine of rc, hence, Slater’s condition is satisfied and strong duality holds.

To get the dual form of problem (A.8), we start from the following Lagrangian with v > 0

L(X, rc, z, v) = cTl (X)rc + zT (r̂c + y + CTw − rc) + vT rc.

By taking the partial derivative of the above Lagrangian over rc, we get the supreme value of the

Lagrangian as

sup
rc
L(X, rc, z, v) =


zT (r̂c + y + CTw) if cl(X) 6 z

∞ o.w.

Then with the norm bound of y and w, we have

sup

‖y‖26ΓB1 ,‖w‖26
√

1
ε
−1

(zT (r̂c + y + CTw))

=r̂Tc z + ΓB1 ‖z‖2 +

√
1

ε
− 1‖Cz‖2.
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Hence, the objective function of the dual problem for (A.8) is

g(X, rc, z) = sup
rc∈UCSε

L(X, rc, z)

=


r̂Tc z + ΓB1 ‖z‖2 +

√
1
ε − 1‖Cz‖2, if cl(X) 6 z

∞ o.w..

Together with the objective function JD(Xk) and other constraints that do not directly involve rc,

an equivalent convex form of (4.11) given the uncertainty set (4.19) is shown as (4.26).
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