477 research outputs found

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators

    Smooth real-time motion planning based on a cascade dual-quaternion screw-geometry MPC

    Full text link
    This paper investigates the tracking problem of a smooth coordinate-invariant trajectory using dual quaternion algebra. The proposed architecture consists of a cascade structure in which the outer-loop MPC performs real-time smoothing of the manipulator's end-effector twist while an inner-loop kinematic controller ensures tracking of the instantaneous desired end-effector pose. Experiments on a 77-DoF Franka Emika Panda robotic manipulator validate the proposed method demonstrating its application to constraint the robot twists, accelerations and jerks within prescribed bounds

    Passivity-Based adaptive bilateral teleoperation control for uncertain manipulators without jerk measurements

    Get PDF
    In this work, we consider the bilateral teleoperation problem of cooperative robotic systems in a Single-Master Multi-Slave (SM/MS) configuration, which is able to perform load transportation tasks in the presence of parametric uncertainty in the robot kinematic and dynamic models. The teleoperation architecture is based on the two-layer approach placed in a hierarchical structure, whose top and bottom layers are responsible for ensuring the transparency and stability properties respectively. The load transportation problem is tackled by using the formation control approach wherein the desired translational velocity and interaction force are provided to the master robot by the user, while the object is manipulated with a bounded constant force by the slave robots. Firstly, we develop an adaptive kinematic-based control scheme based on a composite adaptation law to solve the cooperative control problem for robots with uncertain kinematics. Secondly, the dynamic adaptive control for cooperative robots is implemented by means of a cascade control strategy, which does not require the measurement of the time derivative of force (which requires jerk measurements). The combination of the Lyapunov stability theory and the passivity formalism are used to establish the stability and convergence property of the closed-loop control system. Simulations and experimental results illustrate the performance and feasibility of the proposed control scheme.No presente trabalho, considera-se o problema de teleoperação bilateral de um sistema robótico cooperativo do tipo single-master e multiple-slaves (SM/MS) capaz de realizar tarefas de transporte de carga na presença de incertezas paramétricas no modelo cinemático e dinâmico dos robôs. A arquitetura de teleoperação está baseada na abordagem de duas camadas em estrutura hierárquica, onde as camadas superior e inferior são responsáveis por assegurar as propriedades de transparência e estabilidade respectivamente. O problema de transporte de carga é formulado usando a abordagem de controle de formação onde a velocidade de translação desejada e a força de interação são fornecidas ao robô mestre pelo operador, enquanto o objeto é manipulado pelos robôs escravos com uma força constante limitada. Primeiramente, desenvolve-se um esquema de controle adaptativo cinemático baseado em uma lei de adaptação composta para solucionar o problema de controle cooperativo de robôs com cinemática incerta. Em seguida, o controle adaptativo dinâmico de robôs cooperativos é implementado por meio de uma estratégia de controle em cascata, que não requer a medição da derivada da força (o qual requer a derivada da aceleração ou jerk). A teoria de estabilidade de Lyapunov e o formalismo de passividade são usados para estabelecer as propriedades de estabilidade e a convergência do sistema de controle em malha-fechada. Resultados de simulações numéricas ilustram o desempenho e viabilidade da estratégia de controle proposta

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    Development of Alternative Methods for Robot Kinematics

    Get PDF
    The problem of finding mathematical tools to represent rigid body motions in space has long been on the agenda of physicists and mathematicians and is considered to be a well-researched and well-understood problem. Robotics, computer vision, graphics, and other engineering disciplines require concise and efficient means of representing and applying generalized coordinate transformations in three dimensions. Robotics requires systematic ways to represent the relative position or orientation of a manipulator rigid links and objects. However, with the advent of high-speed computers and their application to the generation of animated graphical images and control of robot manipulators, new interest arose in identifying compact and computationally efficient representations of spatial transformations. The traditional methods for representing forward kinematics of manipulators have been the homogeneous matrix in line with the D-H algorithm. In robotics, this matrix is used to describe one coordinate system with respect to another one. However for online operation and manipulation of the robotic manipulator in a flexible manner the computational time plays an important role. Although this method is used extensively in kinematic analysis but it is relatively neglected in practical robotic systems due to some complications in dealing with the problem of orientation representation. On the other hand, such matrices are highly redundant to represent six independent degrees of freedom. This redundancy can introduce numerical problems in calculations, wastes storage, and often increases the computational cost of algorithms. Keeping these drawbacks in mind, alternative methods are being sought by various researchers for representing the same and reducing the computational time to make the system fast responsive in a flexible environment. Researchers in robot kinematics tried alternative methods in order to represent rigid body transformations based on concepts introduced by mathematicians and physicists such as Euler angle or Epsilon algebra. In the present work alternative representations, using quaternion algebra and lie algebra are proposed, tried and compared
    corecore