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ABSTRACT 

The problem of finding mathematical tools to represent rigid body motions in space 

has long been on the agenda of physicists and mathematicians and is considered to be 

a well-researched and well-understood problem. Robotics, computer vision, graphics, 

and other engineering disciplines require concise and efficient means of representing 

and applying generalized coordinate transformations in three dimensions. Robotics 

requires systematic ways to represent the relative position or orientation of a 

manipulator rigid links and objects. However, with the advent of high-speed 

computers and their application to the generation of animated graphical images and 

control of robot manipulators, new interest arose in identifying compact and 

computationally efficient representations of spatial transformations. 

 
The traditional methods for representing forward kinematics of manipulators have 

been the homogeneous matrix in line with the D-H algorithm. In robotics, this matrix 

is used to describe one coordinate system with respect to another one. However for 

online operation and manipulation of the robotic manipulator in a flexible manner the 

computational time plays an important role. Although this method is used extensively 

in kinematic analysis but it is relatively neglected in practical robotic systems due to 

some complications in dealing with the problem of orientation representation.  On the 

other hand, such matrices are highly redundant to represent six independent degrees of 

freedom. This redundancy can introduce numerical problems in calculations, wastes 

storage, and often increases the computational cost of algorithms. Keeping these 

drawbacks in mind, alternative methods are being sought by various researchers for 

representing the same and reducing the computational time to make the system fast 

responsive in a flexible environment. Researchers in robot kinematics tried alternative 

methods in order to represent rigid body transformations based on concepts 

introduced by mathematicians and physicists such as Euler angle or Epsilon algebra. 

In the present work alternative representations, using quaternion algebra and lie 

algebra are proposed, tried and compared.  
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In chapter 1, a brief introduction on robots, their development, classification is 

presented. The general configurations of robots are illustrated and their advantages 

and disadvantages are discussed along with some of the application.   They have 

found applications in many areas of geometric analysis and modeling. The problems of 

forward and inverse kinematics are discussed and solution to forward kinematics 

problem through traditional homogeneous matrix method is introduced. In order to 

achieve the objectives of the research work and arrive at the desired result a 

systematic study of the basic theories of representing the transformation has been 

done. 

 
 In chapter 2, the study and analysis of some of the important literatures in the area of 

the robot manipulator kinematics was done. The study prompted to carry out further 

research work in this area with an objective to understand and analyze systematically 

the geometrical significance and develop new algorithms which will be efficient and 

easily understood by robotics community. This study comes out with broad objectives 

of finding alternative representations of robot manipulator’s forward kinematics with 

the help of higher mathematical theories such as lie algebra and quaternion algebra 

and to test the capabilities of the developed representations for higher DOF 

manipulators. 

 
In chapter 3, homogeneous transformation matrix, quaternion algebra and lie algebra 

are extensively discussed along with their history, development and application.  The 

mathematical models are developed and equations are presented for kinematic 

representation of the robot arm. An example problem of 6-dof revolute robot is taken 

and solved by using aforementioned methods.  

 
Chapter 4 presents the results of the proposed methods as described in Chapter 3 

followed by a vivid discussion on the same. The comparisons are made in terms of 

computational cost and efficiency for all the methods. Finally conclusion and future 

scope of the work have been presented in chapter 5. 
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CHAPTER 1 
 
 

Introduction 
 
 
 
1.1 Introduction 
 
Robotics is a relatively young field of modern technology that crosses traditional 

engineering boundaries. Understanding the complexity of robots and their applications 

requires knowledge of electrical engineering, mechanical engineering, systems and 

industrial engineering, computer science, economics, and mathematics. New 

disciplines of engineering, such as manufacturing engineering, applications 

engineering, and knowledge engineering have emerged to deal with the complexity of 

the field of robotics. The science of robotics has grown tremendously over the past 

twenty years, fueled by rapid advances in computer and sensor technology as well as 

theoretical advances in control and computer vision. At the present time, the vast 

majority of robot applications deal with industrial robot arms operating in structured 

factory environments so that a first introduction to the subject of robotics must include 

a rigorous treatment of the topics in this text. 

 
The industrial robot manipulator can be considered as an open chain mechanism 

consisting of rigid links and joints. The problem of finding mathematical tools to 

represent rigid body motions in space has long been on the agenda of physicists and 

mathematicians and is considered to be a well-researched and well-understood 

problem. Robotics, computer vision, graphics, and other engineering disciplines 

require concise and efficient means of representing and applying generalized 

coordinate transformations in three dimensions. Robotics requires systematic ways to 

represent the relative position or orientation of a manipulator rigid links and objects. A 
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number of different representations have been developed. However, with the advent of 

high-speed computers and their application to the generation of animated graphical 

images and control of robot manipulators, new interest arose in identifying compact 

and computationally efficient representations of spatial transformations. 

 
1.2 Robots: Evolution and Present Status 
 
The term ‘robot’  was first introduced by the Czech play wright Karel Capek in his 

1920 play Rossum's Universal Robots, the word ‘robota’ being the Czech word for 

work. Since then the term has been applied to a great variety of mechanical devices, 

such as teleoperators, underwater vehicles, autonomous land rovers, etc. Virtually 

anything that operates with some degree of autonomy, usually under computer control, 

has at some point been called a robot. Such devices, though far from the robots of 

science fiction, are nevertheless extremely complex electro-mechanical systems whose 

analytical description requires advanced methods, and which present many 

challenging and interesting research problems. An official definition of such a robot 

comes from the Robot Institute of America (RIA): A robot is a reprogrammable 

multifunctional manipulator designed to move material, parts, tools, or specialized 

devices through variable programmed motions for the performance of a variety of 

tasks. The key element in the above definition is the re-programmability of robots. It is 

the computer brain that gives the robot its utility and adaptability. The so-called 

robotics revolution is, in fact, part of the larger computer revolution. Even this 

restricted version of a robot has several features that make it attractive in an industrial 

environment. Among the advantages often cited in favor of the introduction of robots 

are decreased labor costs, increased precision and productivity, increased flexibility 

compared with specialized machines, and more humane working conditions as dull, 

repetitive, or hazardous jobs are performed by robots. The first successful applications 

of robot manipulators generally involved some sort of material transfer, such as 

injection molding or stamping where the robot merely attended a press to unload and 

either transfer or stack the finished part. These first robots were capable of being 

programmed to execute a sequence of movements, such as moving to a location A, 
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closing a gripper, moving to a location B, etc., but had no external sensor capability. 

More complex applications, such as welding, grinding, deburring, and assembly 

require not only more complex motion but also some form of external sensing such as 

vision, tactile, or force-sensing, due to the increased interaction of the robot with its 

environment. 

 
It should be pointed out that the important applications of robots are by no means 

limited to those industrial jobs where the robot is directly replacing a human worker. 

There are many other applications of robotics in areas where the use of humans is 

impractical or undesirable. Among these are undersea and planetary exploration, 

satellite retrieval and repair, the defusing of explosive devices, and work in radioactive 

environments. Finally artificial limbs are themselves robotic devices requiring 

methods of analysis and design similar to those of industrial manipulators.  

 
1.3 Classification of Robots 

 
The robots are typically classified according to various criteria such as their  

a) Degree of freedom and kinematic characteristics 

b) Kinematic structure 

c) Drive technology 

d) Workspace geometry, and 

e) Motion characteristics. 

1.3.1 Classification by degree of freedom and kinematic characteristics 

Degrees of freedom are specific, defined mode in which a mechanical device or a 

system can move. The number of degree of freedom is equal to the total number of 

independent displacement or aspect of motion. A manipulator possesses 6 degrees of 

freedom in order to manipulate an object freely in three dimensional space. From this 

point of view robots are classified as follows: 
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a) General purpose robot 

A robot is called general purpose robot if it possesses six degree of freedom. Fanuc S-

900W robot is an example of general purpose type of robot. 

b) Redundant robot 

The major problem with definitions of redundancy is that it is a term used for quite 

disparate, but related, situations. This note looks at a number of widely used 

definitions with a view to identifying the key features and proposing some workable 

definitions. Starting at the highest level, redundancy concerning robotic manipulators 

can be categorized as sensor redundancy and mechanical redundancy. Sensor 

redundancy occurs when there are more sensors than theoretically necessary, usually 

when high reliability is required. Although sensory redundancy is important, it is not 

considered in this work. Mechanical redundancy can be further divided into kinematic 

and actuation redundancy. The term redundancy used here means kinematic 

redundancy. Redundancy is described as ‘When a manipulator can reach a specified 

position with more than one configuration of the linkages, the manipulator is said to be 

redundant. ’ According to this, redundancy means more than one solution to the 

inverse kinematic transform.  From a general point of view, any robotic system in 

which the way of achieving a given task is not unique may be called redundant. 

c) Flexible robot 

The assumption that robot arms are rigid bodies is not valid when considering faster, 

lighter and more precise robots handling relatively heavy payloads accurately. The 

flexible motions influence both the dynamics and kinematics of such robots to such an 

extent that their exclusion from the analysis may lead to substantial errors in motion 

control. This is the case of space robots with very long light arms that usually need 

some settling time to damp elastic deformations and of manipulators like the next 

generation of industrial robots foreseen by developers which will have lower ratio of 

arm weight to payload weight and better energy efficiency. It would also be very 

useful for tele-operated arms working in areas such as medical surgery or nuclear 

installations, where safety factors such as very light arms should prevent the robots 

from causing any undesired damage to the working environment due to human error. 
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The ever increasing utilization of robotic manipulators for various applications in 

recent years has been motivated by the requirements and demands of industrial 

automation. Among these, attention is focused more towards flexible manipulators, 

due to various advantages they offer compared to their rigid counterparts. Flexural 

dynamics have constituted the main research challenge in modeling and control of 

such systems; research activities have accordingly concentrated on the development of 

methodologies to cope with this. 

d) Deficient robot 

A robot is called deficient robot if it posses less than six degrees of freedom. Adept-

one is an example of deficient robot. 

1.3.2 Classification by kinematic structure 

According to kinematic structure, the robots are classified as 

a) Serial robot 

A robot is said to be a serial robot if its kinematic structure takes the form of an open-

loop chain. Adept-one is an example of this type robot. 

b) Parallel robot 

A robot is said to be parallel robot if its kinematic structure takes the form of closed-

loop chain. Generally this type of robot has the advantages of the higher stiffness, 

payload capacity and lower inertia than the serial robot at the price of smaller 

workspace and more complex mechanism. Pac Drive Robot D2 manufactured by 

ELAU Company is an example of this type robot.  

c) Hybrid robot 

A robot said to be hybrid robot if its kinematic structure takes the form of both open 

and closed loop chain. Fanuc S-9000W is an example of this type robot. Many 

industrial robots employ this type structure because it allows the third motor to be 

mounted on the waist so that it reduces inertia of the manipulator. 
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1.3.3 Classification by drive technology 

Manipulators are classified by their drive technology such as; 

a) Electric drive 

It is the most popular drive so that most manipulators use either electric dc motor or 

stepper motor because they are clean and easy to control. 

b) Hydraulic drive  

When high speed and high load carrying capacity are needed then hydraulic drive is 

used. But disadvantages of this type are the leaking of liquids. 

c) Pneumatic drive 

When high speed and high load carrying capacity are needed then pneumatic drive is 

used. Though it is clean and fast, but it is difficult to control because air is 

compressible fluid. 

1.3.4 Classification by workspace 

The workspace of a manipulator is defined as the aggregate of all possible position of 

a point attached to the free end of the manipulator. Two different types of workspace 

is used. A reachable workspace is the volume of space within which every point can 

be reached by the end-effector in at least one orientation. According to the workspace 

the robots are classified as: 

a) Cartesian robot  

The kinematic structure of this type robot arm is made of three mutually perpendicular 

prismatic joints. The wrist centre position of a Cartesian robot can be conveniently 

described by the three Cartesian co-ordinates associated with the three prismatic 

joints. The shape of the workspace of the Cartesian robot is rectangular box. 

b) Cylindrical robot  

A robot is called a cylindrical robot if either the first or second joint is replaced by a 

revolute robot. The wrist centre position of a cylindrical robot can be described by the 

set of cylindrical co-ordinates associated with the three joint variables. The workspace 

of the cylindrical robot is confined by two concentric cylinder of finite length. 
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c) Spherical robot  

A robot is said to be a spherical robot if the first two joints are made up of two 

intersecting revolute joints and the third is prismatic joints. The wrist centre position 

of a spherical robot can be described by the set of spherical co-ordinates associated 

with three joint variables. The workspace of spherical robot is confined by two 

concentric spheres. 

d) Articulated robot 

A robot arm articulated if all three joints are revolute. The workspace of articulated 

robot is very complex, typically crescent-shaped cross-section. Example of this type 

robot is PUMA robot. 

e) SCARA robot  

SCARA (Selective Compliance Assembly Robot Arm) robot is a special type of robot. 

It consists of three revolute joint followed by a prismatic joint. In addition all three 

joint axes are parallel to each other and point along the direction of gravity. This type 

of robot is used for assembling parts on the plane. Adept One belongs to this category 

of robot. 

f) Revolute robot 

The robot in which all the joints are revolute joint, it is known as revolute robot. The 

revolute joint is that which permits the relative rotation about a unique pair axes and 

has a single degree of freedom. Revolute robot has six degrees of freedom. Three are 

in X, Y and Z axes. The other three are pitch, yaw and roll. Pitch is when the wrist 

moves up and down. When the hand moves left and right it is known as yaw. When 

the forearm entirely rotates, it is known as roll. PUMA series, Fanuc robot (model S-

215) and Staubli robot (model RX-130) robots are example of this type robot. The 

revolute robots are classified as 3R, 4R, 5R, 6R etc robots. The 6R robot is classified 

as type A1, A2, B1, B2, C and D. The structures of the types of robots are shown in 

the figure 1.1. Examples of different types of robot, 

1. Type A1 robot: Nordson robot, ASEA IRS6 robot. 

2. Type A2 robot: ABB robot. 

3. Type B1 robot: Cincinnati Milacron T3 robot, Polar 6000 robot. 
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4. Type B2 robot: EPSON robot, MITSUBISHI Electric robot. 

5. Type C robot: MA23 robot, Unimation Puma250. 

6. Type D robot: Denso robot. 

 

 
Figure 1.1: Different types of 6R robot structure 

1.3.5 Classification by motion characteristics  

Robot manipulators can also be classified according to their nature of motion such as; 

a) Planar manipulator  

A manipulator is said to be a planar manipulator if its mechanism is planar 

mechanism. The planar mechanism is that all the moving links in the mechanism 

perform planar motion that is all parallel to one another. Planar mechanism that 

utilizes only lower pair joints called planar linkage. Revolute and prismatic joints are 

Regional  
structure

Orientatinal 
structure 

A1 A2

B1 B2

C

D
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only permissible lower pairs for planar linkages. In planar linkage, the axes of all 

revolute joints must be normal to plane of motion, while the direction of translation of 

a prismatic joint must be parallel to the plane of motion. Planar manipulators are 

useful for manipulating an object on a plane. 

b) Spherical manipulator 

 A manipulator is called spherical manipulator if it is made up of a spherical 

mechanism. In spherical mechanism all the moving links perform spherical motion 

about a common stationary point and the motion of all particles can be described by 

the radial projection on the surface of unit sphere. A revolute joint is only possible 

lower pair for construction for all spherical linkage. A spherical manipulator is used as 

a pointing device. 

c) Spatial manipulator 

 A rigid body is said to be perform spatial motion if its motion cannot be characterized 

as a planar or spherical motion. A manipulator is said to be a spatial manipulator if at 

least one of the moving links in the mechanism posses several co-ordinates system, a 

leading superscript is used to indicate the co-ordinate system to which vector is 

referred. 

In view of the growing trend of application of robots in the present day’s industry and 

the prospect of robotics in the future industries, the present study is focused on 

industrial robots only. 

 
1.4 General Configuration of Industrial Robots 

 

1.4.1 Cartesian robot 
In this type of robot all the joints are prismatic joints as shown in figure 1.2. The work 

envelope of a rectangular robot is a cube or rectangle, so that any work performed by 

robot must only involve motions inside the space. The robot configuration has three 

linear axes of motion: the first one represents left and right motion along X-direction. 

The second one describes forward and backward motion along Y-direction. The third 

one depicts up-and-down motion along Z direction. 
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Figure 1.2: Cartesian robot 

 
The main advantages of Cartesian robot are they can obtain large work envelope and 

their linear movement allows for simpler controls. They have high degree of 

mechanical rigidity, accuracy, and repeatability due to their structure and they can 

carry heavy loads because the weight-lifting capacity does not vary at different 

locations within the work envelope. The disadvantages of these robots are they make 

maintenance more difficult and access to the volume region by overhead crane or 

other material-handling equipment may be impaired by the robot-supporting structure. 

Further their movement is limited to one direction at a time.  

1.4.2 Cylindrical robot 
The cylindrical co-ordinate robot in figure 1.3 is a variation of the Cartesian robot. 

This robot consists of a base and a column, but the column is able to rotate i.e. it has 

two linear motions and one rotary motion. The first coordinate describe the angle theta 

of base rotation about the up-down axis. The second coordinate correspond to a radical 

or y in out motion at whatever angle the robot is positioned. It also carries an 

extending arm that can move up and down on the column to provide more freedom of 

movement. The cylindrical co-ordinate robot is designed for handling machine tools 

and assembly. Rotational ability gives the advantage of moving rapidly to the point in 

z -plane of rotation. It results in a larger work envelope than a rectangular robot 

manipulator and Suited for pick-and-place operations. 

The advantage of this configuration is their vertical structure conserves floor space 

and their deep horizontal reach is useful for far-reaching operations. They are capable 

of carrying large payloads. The main demerit is their overall mechanical rigidity is 
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lower than that of the rectilinear robots because their rotary axis must overcome 

inertia. The repeatability and accuracy are also lower in the direction of rotary motion. 

This configuration requires a more sophisticated control system than the rectangular 

robots. 

 
Figure 1.3: Cylindrical robot 

 

1.4.3 Polar or spherical robot 
In the spherical co-ordinate configuration, shown in figure 1.4, the robot has one linear 

motion and two rotary or angular motions. The linear motion corresponds to a radial in 

or out translation; the first angular motion corresponds to base rotation about a vertical 

axis. The second angular motion corresponds to an elbow rotation. The work volume 

is like a section of sphere. A spherical-coordinated robot provides a larger work 

envelope than the rectilinear or cylindrical robot. The two rotation s along with the in 

or out motion enable the robot to reach any specified point in the space bounded by an 

outer and inner hemisphere. Design gives weight lifting capabilities. Advantages and 

disadvantages same as cylindrical-coordinated design. 
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Figure 1.4: Spherical robot 

 

The robot in which all the joints are revolute joint, it is known as revolute robot. The 

revolute robot is also called anthropomorphic or jointed arm configuration and uses 

three rotations. The anthropomorphic design corresponds to the design of human arm 

having waist, shoulder and elbow joints. The link of the arm mounted on the base joint 

can rotate around the base about the z-axis and the two links, shoulder and elbow. The 

shoulder can rotate about a horizontal axis and the elbow motion may either be a 

rotation about a horizontal axis or may be at any location in space depending on the 

rotational motion of the base and the shoulder. The anthropomorphic robot can move 

in space bounded between a spherical outer surface having scallops due to the 

constraints of the joints. 

1.4.4 Revolute robot 

This robot resembles the human arm.  In figure 1.5, all the joints are revolute. It has 

six degrees of freedom. Three are in X, Y and Z axes. The other three are pitch, yaw 

and roll. Pitch is when the wrist moves up and down. Yaw is when the hand moves left 

and right. Roll is when the forearm entirely rotates. PUMA series robots are example 

of this type robot. The revolute robot can move in a space bounded between a 

spherical outer surface and inner surface having scallops due to the constraint joints. 
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Figure 1.5: Revolute robot 

1.4.5 SCARA robot 
SCARA stands for Selective Compliance Assembly Robot Arm, figure 1.6. As may be 

known from the name, the robot has compliance only in specific directions (X and Y 

directions) and has high rigidity in other direction (Z direction), and thus, has been 

designed mainly for automation of assembling works.  

 

Figure 1.6: SCARA robot 
 

At present, it is used in various production sites as a robot that is very effective not 

only in assembling works but also in component carrying works (pick & place works) 

because of its outstanding speed. Although SCARA robot is examined by comparing 

with Cartesian coordinate robot in many cases owing to its operating range, it can be 

said that SCARA robot is suitable for works requiring speeds on three axes or four 

axes motions because of its excellent cost-performance ratio. The features of this robot 
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include its small installation area that provides higher degree of freedom in design of a 

system, and in addition, provides an advantage that, in case the system is disused in 

the future, the robot can be installed easily on other system. 

The above mentioned configurations and their corresponding workspaces are given in 

figure 1.7 in a tabular form. 

 

Types of robot Structure Joint type Shape of the workspace 
 
Cartesian robot 

 

P-P-P 
 

 
Cylindrical robot 

 

R-P-P  

 
Spherical robot 

 

R-R-P 
 

 
Revolute robot 

R-R-R 
 

 
Figure 1.7: Shape of the workspace of different robots 
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1.5 Robot Kinematics 
 

Before going into details of kinematics, some basic terms used in the robotics are 

explained in this introductory part of the thesis. Kinematic Chain consists of nearly 

rigid links which are connected with joints or kinematics pair allowing relative motion 

of the neighboring links. 

 
Links and Joints: An industrial robot can be thought as a chain of N+l bodies (links) 

interconnected by N rotary and/or prismatic joints. Each joint can be controlled by a 

motor. The torque delivered by the motors, which constitute the inputs to the system, 

are to be designed so that the end body follows the desired trajectory. The trajectories 

are usually programmed depending on the environment and according to optimality 

criteria on task performances. Links are the solid structural members of a robot, and 

joints are the movable couplings between them. Closed Loop Chain consists of every 

link in the kinematic chain connected to any other link by at least two distinct paths. 

 
Open loop chain is the manipulator in which every link in the kinematic chain is 

connected to any other link by one and only one distinct path. A serial chain 

manipulator consists of serial chain of rigid links, connected by generally revolute 

joints, forming a "shoulder", an "elbow", and a "wrist". Their main advantage is their 

large workspace with respect to their own volume and occupied floor space. 

 
A parallel manipulator consists of a fixed "base" platform, connected to an end- 

effector platform by means of a number of "legs". These legs often consist of an 

actuated prismatic joint, connected to the platforms through passive spherical and/or 

universal joints. Hence, the links feel only traction or compression, not bending, which 

increases their position accuracy and allows a lighter construction. The actuators for 

the prismatic joints can be placed in the motionless base platform, so that their mass 

does not have to be moved, which makes the construction lighter. Parallel 

manipulators have high structural stiffness, since the end effector is supported in 

several places at the same time. All these features result in manipulators with a high 
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bandwidth motion capability. The major drawback is their limited workspace, because 

the legs may collide and, in addition, each leg has five passive joints that each has its 

own mechanical limits. Another drawback is that they lose stiffness in singular 

positions completely. 

 
Flexible mechanism: A mechanical system such as a serial manipulator in which there 

is more independent joints than are necessary to define the desired output i. e. end 

effector position and orientation it can be labeled a redundantly actuated system or 

kinematically redundant system.  

 
Degree of Freedom (dof): Each joint on the robot introduces a degree of freedom. 

Each dof can be a slider, rotary, or other type of actuator.  Robots typically have five 

or six degrees of freedom. Out of these three of the degrees of freedom allow 

positioning in 3D space, while the other two or three are used for orientation of the 

end effecter. Six degrees of freedom are enough to allow the robot to reach all 

positions and orientations in 3D space.  

 
Orientation Axes: Roll, pitch and yaw are the common orientation axes used. 

Basically, if the tool is held at a fixed position, the orientation determines which 

direction it can be pointed in. Looking at the figure 1.8, it can be understood that the 

tool can be positioned at any orientation in space. This can be understood as rolling in 

a plane would turn down an object upside down. The pitch changes for takeoff and 

landing and when flying in a crosswind the plane will yaw. 

 

 
 
 
 
 
 
 
 
 

Figure 1.8: Roll, pitch and yaw of robot 

roll 

roll 

yaw

forward front

top 

pitch

pitch right 

yaw
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Position Axes: The tool, regardless of orientation, can be moved to a number of 

positions in space. Various robot geometries are suited to different work geometries. 

Tool Centre Point (TCP): The tool centre point is located either on the robot, or the 

tool. TCP is shown for a robot arm in figure 1.9. Typically the TCP is used when 

referring to the robots position, as well as the focal point of the tool (e.g. the TCP 

could be at the tip of a welding torch). The TCP can be specified in cartesian, 

cylindrical, spherical, etc. coordinates depending on the robot. As tools are changed 

the robot is often reprogrammed for the TCP.  

 
Figure 1.9: Tool centre point (TCP) 

 

Work envelope/workspace: The robot tends to have a fixed and limited geometry. The 

work envelope as understood from figure 1.10 is the boundary of positions in space 

that the robot can reach.  

TCP 
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Figure 1.10: Work envelop 

 

For a cartesian robot (like an overhead crane) the workspace might be a square, for 

more sophisticated robots the workspace might be a shape that looks like a `clump of 

intersecting bubbles'. There are two different types workspace used, one is reachable 

workspace and other is dexterous workspace. A reachable workspace is the volume of 

space within which every point can be reached by the end effector in at least one 

orientation. The dexterous workspace is the volume of the space within which every 

point can be reached by the end effector in all possible orientation. The dexterous 

workspace is the subset of reachable workspace.  

 
Although it is not a necessary condition, but many serial robots are designed with their 

first three moving links longer than the remaining link. Thus the first three links are 

used primarily for manipulating the position and the remaining links for controlling 

the orientation of the end effector. For this reason the subassembly associated with the 

first three link called arm and last is called wrist. Except redundant manipulator, the 

arm usually possesses three degree of freedom while the wrist may have 1 to 3 degree 

of freedom. Further wrist assembly is often designed with its joints axes intersecting at 

a common point called wrist centre. The arm assembly can assume various kinematic 

structures and therefore generate different work-envelopes called workspace. The 

workspace supplied by robot manufacturing usually shows regional workspace. There 

Workspace 
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are different types of workspace for different types of robot. The shape of workspace 

of Cartesian robot is rectangular box type due to its wrist centre can be described by 

three Cartesian coordinate associated with the three prismatic joints. The shape of the 

workspace of cylindrical robot is confined by two concentric cylinder of finite length. 

It is due to the wrist centre position of the cylinder robot can be described by a set of 

cylindrical coordinate system associated with the three joint variable. The workspace 

of spherical robot is confined by two concentric spheres. It is due to   the wrist centre 

position of the spherical robot is described by a set of spherical coordinates associated 

with three joint variable. The workspace of revolute robot is very complex, typically 

crescent-shaped cross-section.  The SCARA robot is a special type of robot. It consists 

of two revolute joints followed by prismatic joints. In addition, all three joints axes are 

parallel to each other and usually a point along the direction of gravity. Thus the first 

two actuators do not have to work against the gravitational force of the links and the 

payload. The workspace is formed by the kinematic synthesis of robot manipulator.  

 

Types of coordinates: The robot can move, therefore it is necessary to define positions. 

Different coordinate frames are shown in figure 1.11. 

 

 
Figure 1.11: Coordinate frames in robotic system 
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The coordinates are a combination of both the position of the origin and orientation of 

the axes. They are of following types. 

World coordinate: This is the position of the tool measured relative to the base and the 

orientation of the tool is assumed to be the same as the base.  

Tool coordinate: Here the tool orientation is considered and the coordinates are 

measured against a frame attached to the tool. 

Joint coordinate: The position of each joint are used to describe the position of the 

robot. 

 
A robot manipulator is composed of a set of links connected together by various joints. 

The joints can either be very simple, such as a revolute joint or a prismatic joint, or 

else they can be more complex, such as a ball and socket joint. The forward kinematics 

problem is concerned with the relationship between the individual joints of the robot 

manipulator and the position and orientation of the tool or end-effector.  The forward 

kinematics problem is to determine the position and orientation of the end-effector, 

given the values for the joint variables of the robot. The joint variables are the angles 

between the links in the case of revolute or rotational joints, and the link extension in 

the case of prismatic or sliding joints. The inverse kinematic problem deals with 

finding the joint variables like joint angles in terms of the end-effector position and 

orientation which is given. This is the problem of inverse kinematics, and it is, in 

general, more difficult than the forward kinematics problem. 

 
The first problem encountered is to describe both the position of the tool and the 

locations with respect to a common coordinate system. Vectors and matrix algebra are 

utilized to develop systematic and generalized approach to describe and represent the 

location of the links of a robot arm with respect to a fixed reference frame. Since the 

links of the robot arm may rotate and or translate with respect to a reference coordinate 

frame, a body-attached coordinate frame will be established along the joint axis for 

each link. A 3x3 rotation matrix is used to describe the rotational operation nof the 

body attached frame with respect to the reference frame. The homogeneous 
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coordinates are then used to represent position vectors in the three- dimensional space.  

And the rotation matrices will be expanded to 4x4 homogeneous transformation 

matrices to include the translational operations of the body-attached frame. This matrix 

representation of a rigid mechanical link to describe the spatial geometry of a robot 

arm was first used by Denavit-Hartenberg. 

 
The second problem of robot arm kinematics is the inverse kinematics solution which 

is just reverse of the forward kinematic equation. In order to control the position and 

orientation of the end effector of a robot to reach its object the inverse kinematics 

solution is more important. In other words, given the position and orientation of the 

end effector and its joints and link parameters the corresponding joint angles are 

obtained so that end effector can be positioned as desired. The above discussion can be 

summarized as there are two types kinematics, i.e. forward kinematics and reverse 

kinematics. If the position and orientation of the end effector are derived from the 

given joint angle and link parameters, the scheme is called forward kinematics. If the 

joint angle and the different configuration of the manipulator are derived from the 

position and orientation of end effector, the scheme is called reverse kinematic.  

 
1.6 Method of Representation 
 
Homogeneous matrix method is the classical method to describe the relationship 

between two adjacent rigid mechanical links. To use homogeneous matrix method for 

displacement analysis of a spatial linkage we need to attach a coordinate frame to each 

link. These coordinate systems are established in a systematic manner following 

Denavit-Hartenberg’s algorithm.  The concept of homogeneous-coordinate 

representation of points in a three –dimensional euclidean space is useful in 

developing matrix transformations that include rotation, translation, scaling and 

perspective transformation. In general the representation of an N-component position 

vector by an (N+1) component vector is called homogeneous coordinate 

representation. There is no unique homogeneous coordinate representation for 

apposition vector in three-dimensional space. The fourth component of the 
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homogeneous coordinate can be viewed as a scale factor. If this coordinate is unity 

than the transformed homogeneous coordinates of a position vector are same as the 

physical coordinate of the vector. In robotics application the csale factor is always 

taken as unity. The homogeneous transformation matrix is a 4X4 matrix which maps 

apposition vector expressed in homogeneous coordinates from from one coordinate to 

another coordinate system. The other methods of representation like epsilon algebra, 

lie algebra, quaternion algebra, and Euler angle methods are also applied in robot 

kinematics to describe motion and orientation. 

 
1.7 Objective of the Research  
 
The study and analysis of some of the important literatures in the area of the robot 

manipulator kinematics suggest that there is a need to refine the kinematic solution of 

higher DOF manipulators to a higher degree than the traditional methods to obtain 

greater accuracy of motion.  It is also desirable to compute the kinematics in lesser 

time to make the online control and monitoring of the manipulator more efficient.  

Therefore, the present work is envisaged with the following broad objectives. 

• To find out alternative representations of robot manipulator’s forward 

kinematics with the help of higher mathematical theories such as lie algebra 

and quaternion algebra. 

• To test the capabilities of the developed representations for higher DOF 

manipulators. 

• To carry out a comprehensive study of the developed methods with the existing 

one in terms of representation convenience and computational convenience. 
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1.8 Methodology  
 
In order to achieve the aforementioned objectives of the research work and arrive at 

the desired result a systematic study of the basic theories of representing the 

transformation has to be done. The steps that have been planed for the present work as 

follows: 

 
• Exploring the existing method of representation and identifying the bottler-

necks so far as higher DOF robot manipulators are concerned. 

• Studying the specific area of mathematical theories having greater capabilities 

for handling transformation of rigid body frames in space and utilizing these 

theories for developing forward kinematics of higher DOF robot manipulators. 

• Implementing the developed kinematics representation as higher DOF 

industrial robotic manipulators 

• Testing the correctness and capability of the developed methods in terms of 

computational convenience and faster communication. 

• Making a comparative study of the methods for the benefit of robot users. 

 
1.9 Organization of Thesis 
 
The thesis describing the present research work is divided into five chapters. The 

subject of the topic its contextual relevance and the related matters including the 

objectives of the work and the methodology to be adopted are presented in Chapter 1. 

The reviews on several diverse streams of literature on different issues of the topic 

such as epsilon algebra, quaternion theory and their algebra, lie group and lie algebra 

along with their applications are presented in Chapter 2.  In Chapter 3, selected 

methods are explained and applied on the six DOF revolute robots. In Chapter 4, the 

pros and cons of different methods have been discussed and their comparative study is 

made in connection with the kinematic synthesis of robot arm. Finally, Chapter 5 

presents the conclusion and future scope of the research work. 
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1.10 Summary 
 
In this chapter a brief introduction on robots, their development, classification is 

presented. The general configurations of robots are illustrated and their advantages and 

disadvantages are discussed along with some of the application.  A brief introduction 

on robot kinematics is given with definitions of serial chain, open and closed loop 

manipulator, parallel and flexible robots. The problems of forward and inverse 

kinematics were discussed and solution to forward kinematics problem through 

traditional homogeneous matrix method was introduced. 

 

 

 

 

 

 

 

 



            
 

LITERATURE SURVEY 
 

 

 

 

 

 

 



25 
 

CHAPTER 2 
 
 

Literature Survey 
 
 
 
2.1 Overview 
 
Robotics requires systematic ways to represent the relative position or orientation of a 

manipulator rigid links and objects. So a number of different representations have been 

developed. However, with the advent of high-speed computers and their application to 

the generation of animated graphical images and control of robot manipulators, new 

interest arose in identifying compact and computationally efficient representations of 

spatial transformations. A lot of literature survey has been done regarding this area, 

some of which are discussed as follows. 

 
2.2 Manipulator Kinematics and Homogeneous Transforms 
 
Yutaka and Gary [1] proposed a new “heterogeneous” two-dimensional (2-D) 

transformation group to solve motion analysis/planning problems in robotics. In the 

new method they used a 3X1 matrix to represent a transformation which is as capable 

as the homogeneous theory. This requires less memory space and less computation 

time as opposed to a 3X3 matrix in the homogeneous formulation and it does not have 

the rotational matrix inconsistency problem. This heterogeneous formulation has been 

successfully implemented in the MML software system for the autonomous mobile 

robot Yamabico-11. Bhaumik and Ray [2] developed kinematics for a new mobile 

robot using traditional method. 

 
Low and Dubey [3] studied two different approaches to the inverse- kinematics 

problem for a six-degree-of-freedom robot manipulator having three revolute joint 
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axes intersecting at the wrist. In the first method three rotational generalized 

coordinates are used to describe the orientation of the body. The second method uses 

equivalent Euler parameters with one constraint equation. These two approaches have 

been incorporated into two different computer algorithms, and the results from each 

are compared on the basis of computational complexity, time simulation, and 

singularity. It was found that Euler parameters were less efficient than three rotational 

angles for solving the inverse-kinematics problem of the robot considered, and that the 

physical singularities caused by the robot mechanism could not be eliminated by using 

either of the two approaches. Tiwari et.al [4], used forward kinematics principle in a 

machine loading problem in Flexible Manufacturing System. 

 
Michael W. Walker [5] presented the position of a manipulator expressed as either in 

joint coordinates or in Cartesian coordinates. Manipulator tasks are more easily 

specified by Cartesian coordinates. A new algebra has been defined for the use in 

solving the forward and inverse kinematics problem of manipulators. The properties of 

the algebra are investigated and functions of an epsilon numbers are defined. The Ada 

language was used for illustration because of the ease in implementing the algebra and 

it is being used to solve the forward and inverse kinematics problems. However, the 

program actually used epsilon numbers and used the overloading feature of the Ada 

language to implement the epsilon algebra. By simply changing the order of the 

algebra, the resulting program can compute a time derivative of the end-effector’s 

position when used-to solve the forward kinematics problem and any time derivative 

of joint positions when used to solve the inverse kinematics problem. 

 
Nicholas and Dimitros [6] presented three methods for the formulation of the 

kinematic equations of robots with rigid links. The first and most common method in 

the robotics community is based on homogeneous matrix transformation, the second 

one is based on Lie algebra, and the third one on screw theory expressed via dual 

quaternion algebra. These three methods are compared in this paper for their use in the 

kinematic analysis of robot arms. Three analytic algorithms are presented for the 
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solution of the direct kinematic problem corresponding to each method. Finally, a 

comparative study on the computation and storage requirements for the three methods 

is worked out. However the application has not been done in higher DOF manipulators 

and it is applied to five DOF robots only. 

 
Kinsey and Whitcomb [7] report a novel stable adaptive identifier on the group of rigid 

body rotations, and its application to a sensor calibration problem arising in 

underwater vehicle navigation. The problem addressed is the identification of a rigid-

body rotation map from input-output data. General least-square and adaptive 

identification techniques are commonly employed to identify general linear maps from 

input-output data, but do not guarantee that the resulting identified map is a rigid body 

rotation. At present, a least square singular value decomposition approach is the 

standard method for identification constrained to the group of rigid body rotations. 

This paper reports the first exact adaptive identifier on the group of rigid body 

rotations, together with a proof of stability. The performance of this adaptive identifier 

is evaluated on actual experimental data and found to compare favorably with results 

obtained via previously reported least-squares techniques. The methodology reported 

herein is of broader interest because of its applicability to general problems in the 

identification, dynamics, and control on the group of rigid body motions. 

 
Tiwari et.al.[8] formulated the operation allocation problem in FMS considering the 

homogeneous matrices of the mechanism within the system. Dai [9] contributed 

towards the displacement and transformation of a rigid body, and on their 

mathematical formulation and its progress. He studied some contemporary 

developments of the finite screw displacement and the finite twist representation in the 

late 20th century. 

 
Eric Lee and Merlet [10] solved the geometric design problem of serial-link robot 

manipulators with three revolute (R) joints using an interval analysis method. In this 

problem, five spatial positions and orientations are defined and the dimensions of the 

geometric parameters of the 3-R manipulator are computed so that the manipulator will 
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be able to place its end-effector at these pre-specified locations. Denavit and 

Hartenberg parameters and 4X4 homogeneous matrices are used to formulate the 

problem and obtain the design equations and an interval method is used to search for 

design solutions within a predetermined domain. This is an important new result for a 

very difficult problem related to the exact synthesis of spatial manipulators that has not 

been solved before. It is useful as it can give insight on both the number and the nature 

of design solutions for the synthesis of the 3R. 

 
2.2. Kinematic Representation and Quaternion Algebra 
 
Funda, Taylor and Paul [11] implemented three-dimensional modeling of rotations and 

translations in robot kinematics that are most commonly performed using 

homogeneous transforms. In their work an alternate approach, employing quater-

nion/vector pairs as spatial operators, is compared with homogeneous transforms in 

terms of computational efficiency and storage economy. The conclusion drawn is that 

quaternion/vector pairs are efficient, more compact, and more elegant than their matrix 

counterparts. A robust algorithm for converting rotational matrices into equivalent unit 

quaternion is described, and an efficient quaternion-based inverse kinematics solution 

for the Puma 560 robot arm is presented. 

 
Funda and Paul [12] proposed a computational analysis and comparison of line-

oriented representations of rotational and translational spatial displacements of rigid 

bodies. Four mathematical formalisms for effecting a general spatial screw 

displacement are discussed and analyzed in terms of computational efficiency in 

performing common operations needed in kinematic analysis of multilinked spatial 

mechanisms. The corresponding algorithms are analyzed in terms of both sequential 

and parallel execution. They concluded that the dual-unit quaternion representation 

offers the most compact and most efficient screw transformation formalism but that 

line-oriented methods are not well suited for efficient kinematic computations in real-

time control applications. However, the mathematical redundancy inherent in Plucker 
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coordinate space representation makes them computationally less attractive than the 

corresponding point-oriented formalisms. 

 
Perrier et al. [13] suggested a mobile manipulator, composed of a manipulator 

mounted on a vehicle, is a very useful system to achieve tasks in dangerous 

environments. The use of a wheeled vehicle generally introduces non-holonomic 

constraints, and the combination of a vehicle and a manipulator introduces some 

kinematic redundancy. The aim of this paper is to investigate the use of dual 

quaternions for the motion generation of a mobile manipulator with a non-holonomic 

vehicle. In this preliminary work, only planar cases are considered. The description of 

the system in the planar quaternion space is developed and then simulation results are 

presented. 

 
Aissaoui et al. [14] presented a study to investigate the accuracy of a new algorithm 

based on dual quaternion algebra for the estimation of the finite screw axis. The 

advantages of using finite screw axis to describe the kinematics of the knee cadaver 

specimens is that is rotation and translation around the screw axis are independent 

from the coordinate system. However, the orientation and the position of the finite 

screw axis depend on the coordinate system. In this study they used the geometric 

center of the femoral for the establishment of reference system. However, this is the 

first study that compares the use of different techniques to assess the finite screw axis. 

The Dual Quaternion algorithm is safe from any singularities and incorporate a way to 

deal with noisy data since it enable the simultaneous matrix of rotation and translation.  

 

Pennestri and Stefanelli [15] presented the dual version of some classical linear algebra 

algorithms. These algorithms had been tested for the position analysis of the spatial 

mechanism and computational improvements over existing methods obtained basically 

of solution of a redundant system of nonlinear equations. Harry H. Cheng [16] 

introduced the dual plane along with dual meta numbers. The dual arithmetical and 

relational operations and dual functions are defined in the syntax of the C (H) 
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programming language. With this algorithm numerical computations are handled in a 

more integrated way. Kavan and Zara [17] established techniques for blending of 

rotations to include all rigid transformations. It was shown that algorithms based on 

dual quaternion are computationally more efficient than previous solutions and have 

better properties like constant speed, shortest path and coordinate invariance. 

 
Johan E. Mebius [18] proved the classical quaternion representation theorem for 

rotations in 4D Euclidean spaces which states that an arbitrary 4D rotation matrix is 

the product of a matrix representing left–multiplication by a unit quaternion and a 

matrix representing right–multiplication by a unit quaternion. This decomposition is 

unique up to sign of the pair of component matrices he also studied the behavior of its 

matrix formulation under a predetermined class of similarity transformations. 

 
Ricardo and Paolo [19] defined the quaternion skew-field, algebraic properties of 

quaternion polynomials and investigated divisibility and coprimeness properties of 

these systems.  Finally the tool developed was used to analyze stability of quaternionic 

linear systems in a behavioral framework. 

 
Horn [20] presented a closed form solution of the least square problem by three or 

more points and derivation of the problem is simplified by using unit quaternion 

representing rotation. It provides the best rigid body transformation between two 

coordinate systems given measurements of the coordinates of a set of points that are 

not collinear. However the solution simplifies when there are only three points and it 

seems to be complex in nature. 

 
Pernas [21] defined new operators in differential forms on quaternion manifold. He 

enlightened on the future holomorphic function theory. This theory led to acceptable 

results but failed to contain simple algebraic functions and the identity is not regular. 

Persa et al. [22] proposed a novel technique for the determination of the pose and the 

twist of rigid bodies using point-acceleration data. These data are collected from an 

accelerometer array, which is a kinematically redundant set of triaxial accelerometers.  
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The formulation developed is then utilized in the simulation analysis of two sample 

motions. The new algorithm can also be useful for estimation of the deflections of a 

structurally flexible robot from its end-effector pose and twist data and it can be used 

in real time applications. 

 
Zhuang et al. [23] presented a linear solution that allows a simultaneous computation 

of the transformations from robot world to robot base and from robot tool to robot 

flange coordinate frames. The solution was applied to accurately locating a robot with 

respect to a reference frame and a robot sensor with respect to a robot end-effector. 

Quaternion algebra is applied to derive explicit linear solutions given three robot pose 

measurements. They found that the rewlting solution algorithm is computationally, 

non-iterative, fast and robust. 

 
Perez and McCarthy [24] presented a dual quaternion methodology for the kinematic 

synthesis of constrained robotic systems from one or more serial chains such that each 

chain imposes at least one constraint on the movement of the work piece. The 

kinematics equations of the chain were transformed to successive screw displacements, 

and then written in dual quaternion form. These dual quaternion kinematics equations 

are evaluated at a finite set of task positions to yield design equations for the chain. 

 
Dam et al. [25] studied the mathematical properties of quaternion and implemented 

quaternion as better choice than the well known matrix. They developed alternative 

interpolation method that is based on a set of objective constraints for an optimal 

interpolation curve and compared it with methods like Slerp and Squad. However the 

differential equations cannot be solved analytically. As an alternative, they proposed a 

numerical solution for the differential equations. The different interpolation methods 

are visualized and commented. A comprehensive treatment of quaternions, rotation 

with quaternion for series of rotations is also provided in their work. 

 
Wheeler and Ikeuchi [26] derived a simple form for the gradient and Jacobian of 

rotation with respect to the quaternion. The new forms were used to predict numerical 
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problems in gradient and Jacobian searches. They studied that normalizing or 

transforming the data or gradient to a canonical reference frame can ensure that the 

algorithm performs properly independent of the scale of the data. The relative scale of 

parameters greatly affects the convergence characteristics and computational expense 

of gradient based searches. However the data need to be appropriately scaled before 

applying search algorithm. 

 
Perez and McCarthy [27] presented a dual quaternion methodology for the kinematic 

synthesis of constrained robotic systems from one or more serial chains. The 

workspace of a constrained serial robot was represented as the group of spatial 

transformations which in turn was represented by a subset of dual quaternion. The 

methodology is an extension of the kinematic synthesis of linkages which is based on 

finding the geometric constraints of the serial chain. They simplified the structure of 

the design equations for the spatial 2TPR robot by using dual quaternion. However it is 

applicable to robots having less than 6-DOFs. 

 
Haetinger et al. [28] developed an articulate mechanical arm type robot, built from low 

cost materials, as a supporting tool for learning of Mathematics. The authors 

represented another form of the quaternions, simplifying the formulas of the control 

system for the direct and inverse kinematic models. This modeling proved to be simple 

and allows to the student a more dynamic and practical learning of the concepts 

developed in Linear Algebra, Numerical Methods, Computer Graphics and 

Programming Languages.  

 
Agrawal [29] defined Hamilton operators and the algebra of dual-number-quatemions 

is developed by using these operators. Properties of Hamilton operators are then used 

to find some mathematical expressions for screw motion of a line and a point. The 

formulation presented establishes a relationship between dual-number-quaternions and 

its equivalent matrix algebra.  The present formulation provides a singularity free set 

of kinematic relations. 
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2.3 Kinematic Representation and Lie Algebra 
 
Liang Gu [30] reviewed a number of conventional methods and an analysis based on 

lie algebra has been presented for exploring possible definition of three dimensional 

orientation vectors and unifying representations between position and orientation. 

Based on the study a particular angle is suggested for definition of orientation vector, 

but it has got a mathematical singularity. 

 
Mladenova [31] discussed manipulator modeling and control through a nonstandard 

parameterization of rotation motions. The advantage of the method is the 

computational facilities arising at the kinematical level, provided with a Lie group 

structure. An idea of a group approach using Lie groups for describing a rigid body 

and an open loop rigid body’s chain is suggested. A new method for kinematical and 

dynamical analysis and synthesis, as for the trajectory planning of MS, is developed. 

He proposed an approach for kinematical and dynamical description of manipulators 

through vector parameterization of the group SO(3). Evaluations of the computational 

cost of the suggested algorithms are done and found the new method to be efficient 

and feasible in real-time application. 

 
Mladenova [32] derived basic important kinematical consequences by using vector-

parameterization of the SO (3) Lie group with a composition law. The vector and 

matrix transformations are given in terms of the dual algebra and the screw geometry. 

The author treated the kinematical and dynamical problems in describing the 

Euclidean motions of rigid body systems and the rotation is expressed by defining its 

action on a vector, and the Lie group SO (3) is parameterized by vector parameters 

making a Lie group with a clear geometrical sense and a simple composition law. The 

paper proposed a useful interplay of screw geometry, dual algebra and vector and 

matrix transformations.  The geometrical and kinematical models of a manipulator are 

expressed in a closed form using dual orthogonal matrices and dual vector-parameters.  
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Mladenova [33] reviewed problems concerning the modeling and control of rigid and 

elastic joint multibody mechanical systems, including some investigations into 

nonholonomic systems.  The properties of the parameterization more or less influence 

the efficiency of the dynamics model. The vector parameter is used for parallel 

considerations of rigid body motion and of rigid and elastic joint multibody 

mechanical systems.  It was found that the vector-parameter approach is efficient in its 

computational aspect and quite convenient for real time simulation and control.  

 
Mladenova [34] presented that the simple composition law of vector parameters as 

well others of their nice properties reduce the computational burden  in solving direct 

and inverse kinematic problems, both in dynamic modelling and full simulation of the 

motion of a manipulator system. He proved that the standard configurational space 

approach becomes stronger over the group manifold where all kinematical equations 

are pure algebraic and the differential equations of motion 'feel' the group structure. 

The suggested approach gives the opportunities for the powerful methods of Lie group 

theory to be involved in controllability and observability of the treatment of 

manipulator systems. The introduction of a dual vector parameter provides an 

interesting interplay of special geometrical considerations and special algebraic 

structures in this important area of the application of linear algebra. 

 
Wayne [35] examined mathematical representations commonly used in modeling 

flexible arms and arms with flexible drives. He presented the design considerations 

directly arising from the flexible nature of the arm and discussed controls of joints for 

general and tip motion. 

 
Martinez and Duffy [36] expressed the acceleration of a point in the end effector of the 

serial chain in terms of the direction and moments parts of the same screw coordinates. 

Their work is an extension of the screw theory into the acceleration analysis of 

linkages. The acceleration is written as relatively simple expression involving screw 

coordinates and lie products. 
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Fumiki Tanaka et al. [37] formulated the constraints involved in assembly model as 

groups of rigid body transformations and proposed a constraint reduction procedure 

based on Lie algebra. This approach is then applied to the constraint representation 

and reduction in an assembly model. The reduced kinematic model of assembly was 

derived by the proposed method for kinematic analysis. 

 
Dai [38] demonstrated the development of the finite twist or the finite screw 

displacement in the field of theoretical kinematics and the proposed q-pitch with the 

tangent of half the rotation angle studied the rigid body displacements.  He reviewed 

the work from Chasles motion to Cayley’s formula and then to Hamilton’s quaternions 

and Rodriguez parameterization and relates the work to Clifford biquaternions and to 

Study dual angle proposed in the late 19th century. The review of the work from these 

mathematicians concentrates on the description and the representation of the 

displacement and transformation of a rigid body, and on the mathematical formulation 

and its progress.  

 
Paulo and Urbano [39] illustrated the use of Lie algebra to control nonlinear systems, 

essentially in the framework of mobile robot control. The study of path following 

control of a mobile robot using an input-output feedback linearization controller is 

performed. The effectiveness of the nonlinear controller is illustrated with simulation 

examples. 

 
Milos and Vijay Kumar [40] investigated methods for computing a smooth motion 

that interpolates a given set of positions and orientations. The position and orientation 

of a rigid body can be described with an element of the group of spatial rigid body 

displacements. They interpolated the orientations and the positions separately and then 

combined the resulting interpolating curves. They investigated several properties of 

the trajectories and systematically analyze the invariance of the interpolating curves 

with respect to the choice of the inertial and the body fixed frames and the smoothness 

properties of the trajectories. 
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Ozgoren [41] reviewed the mathematical properties associated with the exponential 

rotation matrices. By means of two typical mechanism examples, it is demonstrated 

that these properties constitute a versatile analytical tool, which can be used 

effectively in kinematic studies on spatial mechanical systems involving position, 

velocity, acceleration, and singularity analyses using lie algebra. The mechanism in 

the first example allows analytical solution for its joint variables, whereas the joint 

variables of the mechanism in the second example can be obtained only by a semi 

analytical solution. However the scope of these examples is limited with the position, 

velocity, acceleration, and singularity analyses. But the symbolic manipulation power 

of the exponential rotation matrices demonstrated by these examples can be used with 

equal benefit in the area of kinematic synthesis. 

 
Nielsen and Roth [42] reviewed and summarized the three most useful solution 

techniques by studying the kinematic geometry of some systems. The solution 

techniques are polynomial continuation, Gröbner bases, and elimination. Then they 

discussed the results with these techniques in the solution of two basic problems, 

namely, the inverse kinematics for serial-chain manipulators, and the direct kinematics 

of in-parallel platform devices. It was pointed out that specialized series chains can 

have the advantage of being modeled by relatively low-degree characteristic 

polynomials, and yet they can have a relatively large number of possible 

configurations with the same endeffector pose. For the in-parallel platform 

mechanism, it was shown that the specializations due to merging spherical joint 

centers can cause large variations in the degree of the characteristic polynomial, and 

hence in the number of poses corresponding to a set of leg lengths. Specializations 

making the platforms planar, in general, cause surprisingly little change. They do 

halve the degree of the characteristic polynomial, due to symmetry, but they leave the 

number of configurations unchanged from the spatial case. 

 
Karger [43] developed a theory which allows describing higher order singularities by 

using lie algebra properties of the screw space. He developed an algorithm, which 



37 
 

determines the degree of a singularity from the knowledge of the actual configuration 

of axes of the robot-manipulator. For serial robot-manipulators with the number of 

degrees of freedom different from six he showed that up to certain exceptions singular 

configurations can be avoided by a small change of the motion of the end-effecter. The 

new algorithm allows determining equations of the singular set for any serial robot-

manipulator.  

 
From the above study it is clear that quaternion algebra and lie algebra has been used 

efficiently in many kinematic synthesis, dynamics and control to represent translation 

and rotation. However the mathematical concept has not been clearly understood and 

it has been not applied effectively for higher degree of freedom robots. The study 

promts us to carry out further research work in this area with an objective to 

understand and analyze systematically the geometrical significance and develop new 

algorithms which will be efficient and easily understood by robotics community. 

 
2.4 Objectives of Present Work 
 
The study and analysis of some of the important literatures in the area of the robot 

manipulator kinematics make the present work spell out the following precise 

objectives. 

• To find out alternative representations of robot manipulator’s forward 

kinematics with the help of higher mathematical theories such as lie algebra 

and quaternion algebra. 

• To test the capabilities of the developed representations for higher DOF 

manipulators. 

• To carry out a comprehensive study of the developed methods with the existing 

one in terms of representation convenience and computational convenience. 
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2.5 Summary 

 
The geometric design of a robot manipulator defines the topology and dimensions of 

the articulated system that provides the end-effector position and velocity performance 

needed for a specified set of applications.  This chapter presents the survey of the 

related work using three distinct types of approach viz. (i) homogeneous 

transformation, (ii) Quaternion algebra and (iii) Lie Algebra.  The study of various 

work resulted in defining the objective of the present work in a precise manner and the 

same is presented at the end of the chapter.  

 



          
 

DESCRIPTION OF METHODS 
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CHAPTER 3 
 
 

Description of Methods 
 
 
 
3.1 Overview 
 
The numerical solution of kinematics for revolute robot is important in many areas of 

modern technology, ranging from computer animated film making to the development 

of aircraft and spacecraft simulators. For the various applications in robotics there is 

need to describe both position and orientation of the end effector of the robot 

manipulator. The most common method in the robotics community is based on 

homogeneous matrix transformation. This matrix is used to describe one coordinate 

system with respect to another one. This has been the basis of tracking the position of 

the end-of-arm tool since ages. On the other hand, such matrix method is highly 

redundant to represent six independent degrees of freedom. This redundancy can 

introduce numerical problems in storage space, and often increase the computational 

cost of algorithms. In parallel implementations, the extra data required to fetch the 

operands can also be a significant factor. As a result, alternative methods for relating 

non-inertial coordinates to inertial coordinates have been developed. Such methods 

should be compact and computationally more efficient for representations of spatial 

transformations.  

 
Keeping these in mind, alternative methods such as Euler angle, Epsilon algebra, unit 

and dual quaternion algebra, lie algebra, screw transformation are being sought by 

various researchers [44, 45, 46] for representing the same and reducing the 

computational time to make the system fast responsive in a flexible environment. Low 

and Dubey [3] used rotational generalized coordinates and equivalent Euler 
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parameters to the inverse- kinematics problem for a six-degree-of-freedom robot 

manipulator. Michael W. Walker [5] presented   the position of a manipulator 

expressed as either in joint coordinates or in Cartesian coordinates. General least-

square and adaptive identification techniques are commonly employed by Kinsey and 

Whitcomb to identify general linear maps from input-output data. Lee and Merlet [10] 

solved the geometric design problem of serial-link robot manipulators using an 

interval analysis method. Funda, Taylor and Paul [11] implemented three-dimensional 

modeling of rotations and translations in robot kinematics employing quater-

nion/vector pairs as spatial operators. Nielsen and Roth [42] reviewed and 

summarized the three most useful solution techniques: polynomial continuation, 

Grobbner bases, and elimination. Mladenova [32] derived basic important kinematical 

consequences by using vector parameterization of the SO(3) Lie group, dual algebra 

and the screw geometry. Liang Gu [30] presented lie algebra for exploring possible 

definition of three dimensional orientation vectors.  

 
From the above discussion it is clear that homogeneous matrix method is the 

established traditional method for representation of position and orientation of the end 

effector. This can be used as a bench mark for comparing other methods and their 

efficiency with homogeneous matrix method. From the aforementioned methods and 

the previous literature survey the quaternion algebra and lie algebra are the two 

methods extensively used in kinematic analysis of revolute robots. But the detail 

analysis and the theory behind application of these methods are still not clear in 

robotics community. So further study of quaternion algebra and lie algebra is required 

for detail understanding and analysis and implementation has to be done to prove its 

effectiveness over other methods.  
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3.2 Robot Kinematics and their Representation 
 
Kinematics is the study of motion without considering the forces and moment that 

causes the motion. Robot kinematics deals with the analytic study of the   motion of a 

robot arm with respect to a fixed reference coordinate system as a function of time. 

3.2.1 Euclidean space  
The space of rigid body motion has different properties than the well-known three-

dimensional Euclidean space we live in. A Euclidean space is a continuous set of 

points together with an extra structure which is able to describe orthogonality and to 

measure length. This extra structure is the scalar product.  It is important to realize that 

since a point can be fixed or moving with respect to an observer, for a given Euclidean 

space we need to specify an observer which does not move within it. We suppose that 

there exists an inertial observer we consider as reference in which the points belonging 

to the Euclidean space are not moving.  Isometry means that the motion does not 

change the distance between points and orientation preserving implies that the motion 

does not map a right-handed coordinate frame onto a left-handed frame. 

3.2.2 Description of geometric parameters 
The D-H representation of a rigid link depends on four geometric parameters 

associated with each link. These four parameters completely describe any revolute or 

prismatic joints. These four parameters are as follows: 

i) joint angle (θ) 

ii) joint distance (d) 

iii) link length (a) 

iv) link twist angle (α) 

The first two parameters are known as joint parameters and last two parameters are 

known as link parameters. The joint angle (θ) is the rotation about z t-1 needed to make 

axis xt-1 parallel with axis xt shown in fig. 3.1. The second joint parameter joint 

distance (d) is the translation along zt-1 needed to make axis xt-1 intersect with the axis 

xt. The link parameters are link length and link twist angle as shown in fig. 3.2. Link 
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length (a) is the translation along xt needed to make axis zt-1 intersect with axis zt. Link 

twist angle (α) is the rotation about xt needed to make axis zt-1 parallel with axis zt. 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

For a revolute robot  d, a, α are the joint parameters and these parameters remain 

constant  whereas θ is the joint variable that changes with link t moving with respect 

to link t-1. Out of the four parameters, two link parameters always remain constant 

and are specified as a part of mechanical design. The list of kinematic parameters are 

given in table 3.1. 

 

Table 3.1: kinematic parameters 

Parameters Symbol Revolute joint Prismatic joint 

Joint angle θ  Variable Fixed 

Joint distance D Fixed Variable 

Link length a Fixed Fixed 

Twist angle α Fixed Fixed 

 
 

Figure 3.1:  Joint angle ‘θ’ and   
                  joint distance ‘d’ 

Figure 3.2:  Link length ‘a’ and link     
                  twist angle ‘α’ 
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The transformation matrix t
t A1− in equation 3.7 is obtained for each t such that, 1 < t < 

m. To find t
t A1−  , the following four operations are performed in succession:  

1. Translate by td along the tz -axis.  

2. Rotate tθ counterclockwise by about the tz -axis.  

3. Translate by 1−ta along the 1−tx -axis.  

4. Rotate counterclockwise by 1−tα about the 1−tx -axis.  

 
To represent any position and orientation of A1, it could be defined as a general rigid-

body homogeneous transformation matrix in equation 3.7. If the first body is only 

capable of rotation via a revolute joint, then a simple convention is usually followed.  

3.2.3 Denavit-Hartenberg representation  
The position and orientation of the end effector of a serial chain are defined in terms 

of its joint parameters and physical dimensions by the kinematics equations. The 

Denavit–Hartenberg formulation is used to assign the local joint coordinate frames. 

Homogeneous transformation method is based on the traditional Denavit-Hartenberg’s 

algorithm. In order to describe the translational and rotational relationship between 

adjacent links homogeneous matrix method was developed by Denavit and Hartenberg 

in 1955 [47]. In this system a coordinate system is established systematically by 

attaching a coordinate frame to each joint of the revolute robot with respect to certain 

rules as described below. 

 
The following algorithm assigns an orthonormal coordinate system to each link of the 

robot arm according to the arm configurations. The labeling of the coordinate system 

begins from the supporting base to the end effector of the robot arm. The relation 

between the adjacent links can be represented by a 4X4 homogeneous transformation 

matrix. 
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D-H algorithm 

1) Number the joints from 1 to n starting with the base and ending with the tool. 

2) Assign a right handed orthonormal coordinate frame (x0, y0, z0) to the base, so that 

z0 aligns with axis of the joint 1, set t=1. 

3) Align zt with the axis of the joint t+1. 

4) Locate the origin of frame (xt, yt, zt) at the intersection of zt and zt-1 axes. If they do 

not intersect, the intersection of zt is used with a common normal between zt and zt-1. 

5) Select xt to be orthogonal to both zt and zt-1. If zt and zt-1 are parallel, point xt away 

from zt-1. 

6) Select yt to form a right handed orthonormal coordinate frame (xt, yt, zt). 

7) Set t=t+1. If t<n, go to step3; else continue. 

8) Set the origin of (xn, yn, zn) at the tool tip. Align zn with the approach vectoryn with 

the sliding vector, and xn with the normal vector of the tool. Set k=1. 

9) Locate point bt at the intersection of the xt and zt-1 axes.If they don’t intersect, use 

the intersection of xt with a common normal between xt and z t-1. 

10) Compute θt as the angle of rotation from xt-1 to xt measured about zt-1. 

11) Compute dt
 as the distance from the origin of frame (xt-1, yt-1, zt-1) to point bt 

measured along xt. 

12) Compute αt as the distance from point bt to the origin of frame (xt, yt, zt) measured 

along xt. 

13) Compute αt as the angle of rotation from zt-1 to zt measured about xt. 

14) Set t = t+1. If t < n, go to step 9; else stop. 

 
Thus each link at the joint is expressed with respect to the previous joint coordinate 

system in terms of transformation matrix. Finally the end effector which is expressed 

in ‘hand coordinates’ can be transformed and expressed in the ‘base coordinates’ 

through sequential transformation. For a six dof revolute robot, as shown in figure 3.3, 

an orthonormal Cartesian coordinate frame (xt, yt, zt) is established for each link at its 

joint axis, where i=1, 2, 3, where i=number of degree of freedom plus the base 

coordinate frame.  
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Figure 3.3: 6 dof revolute robot 

Since a revolute joint has only one degree of freedom each (xt, yt, zt) coordinate frame 

of a robot arm corresponds to joint t+1 and it is fixed in link t. When joint actuator 

activates joint t, link t will move with respect to link t-1. The base coordinates are 

defined as the 0th coordinate frame (x0, y0, z0) which is the initial coordinate frame of 

the robot arm. Thus, for a six axis PUMA robot arm, there are seven coordinate frames 

beginning from (x0, y0, z0), (x1, y1, z1)… (x6, y6, z6). The location of the coordinate 

frame 0 is chosen anywhere in the supporting base such that z0 axis lies along the axis 

of motion of the first joint. After establishing the D-H coordinate system for each link 

a homogeneous transformation matrix is developed relating to the t th coordinate frame 

to the (t-1) th coordinate frame. 

 
3.3 Homogeneous Matrix Method 

 
Homogeneous matrix method is the classical method to describe the relationship 

between two adjacent rigid mechanical links [48, 49]. These coordinate systems are 

established in a systematic manner following Denavit-Hartenberg’s (D-H) algorithm.  
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Homogeneous matrices have the following advantages:  

•  Simple explicit expressions exist for many familiar transformations including 

rotation . 

•  These expressions are n-dimensional.  

•  There is no need for auxiliary transformations, as in vector methods for 

rotation.  

•  More general transformations can be represented (e.g. projections, 

translations).  

•  Directions (ideal points) can be used as parameters of the transformation, or as 

inputs.  

• Many homogeneous transformation matrices display the duality between 

invariant axes and centers. 

Mathematical representation 
The first method based on homogeneous transformation is formulated by using D-H 

algorithm which depends upon already derived transformation operators such as 

matrices or vector. In most robotic application; spatial description of the end-effector 

of the manipulator with respect to a fixed reference coordinate system is required. To 

use homogeneous matrix method for displacement analysis of a spatial linkage we 

need to attach a coordinate frame to each link. These coordinate systems are 

established in a systematic manner following Denavit-Hartenberg’s algorithm as 

explained in paragraph 3.3(c).  

The basic rotation around x-axis is represented by  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

θθ
θθ

cossin0
sincos0

001

xR                   (3.1) 

 
where, θ = angle of rotation 

           xR = rotation matrix about ox axis. 
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The resultant   rotation   matrix is given by multiplying the three basic rotation 

matrices. 

 
αθφ ,,, xzy RRRR =                    (3.2) 

 
where, 

,yR φ = rotation about y-axis with an angleφ  

,zR θ = rotation about z-axis with an angleθ  

,xR α = rotation about x-axis with an angleα  

This can be written in short as; 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−
−

+−
=

αθφαφαθφθφ
αθαθθ

αφαθφαθφαφθφ

ssscccsscs
scccs

sscsccscsscc
R

              

(3.3) 

 

The matrix representation for rotation of a rigid body simplifies many operations but it 

needs nine elements to completely specify the orientation of a rotating rigid body it 

does not lead directly to a complete set of generalized coordinates, such a set of 

generalized coordinate can describe the orientation of a rotating rigid body with 

respect to a reference coordinate frame. The 3X3 matrix does not give any provision 

for translation and scaling, so a fourth coordinate or component is introduced to a 

position vector p where, 

),,( zyx pppp =
                   (3.4) 
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Alternatively the orientation matrix can be represented through Euler angles. There are 

different sequences of Euler angle representation. Here the sequence of Euler angle 

followed is  

ψθφψθφ ,,,,, xyz RRRR =

   
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−+
+−

=
ψθψθθ

ψφψθφψφψθφθφ
ψφψθφψφψθφθφ

ccscs
sccssccssscs
sscsccsssccc

   

(3.5) 

More complicated joints can be modeled as a sequence of degenerate joints. For 

example, a spherical joint can be considered as a sequence of three zero-length 

revolute joints; the joints perform a roll, a pitch, and a yaw. Another option for more 

complicated joints is to abandon the D-H representation and directly develop the 

homogeneous transformation matrix. This might be needed to preserve topological 

properties that become important in this chapter. 

 

Figure 3.4: The Puma 560 is shown along with the DH parameters and body frames for 
each link in the chain.  
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The transformation Tt  for  t > 1 gives the relationship between the body frame of A 

and the body frame of A i-1. The position of a point (x,y,z) on An is given by  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⋅⋅⋅

1

21 z
y
x

TTT n                   (3.6) 

For each revolute joint, tθ is treated as the only variable in Tt. Prismatic joints can be 

modeled by allowing ta  to vary. For PUMA 560 robot the parameters are shown in 
table 3.2. 
 

Table 3.2: The DH parameters are shown for substitution into each homogeneous     
transformation matrix   

Matrix 
1−tα   1−ta   tθ   td  

)( 11 θT   0  0  1θ   0 

)( 22 θT   2/π−   0  2θ   2d  

)( 33 θT   0 
2a   3θ   3d  

)( 44 θT   2/π  
3a   4θ   4d  

)( 55 θT   2/π−   0 
5θ   0 

)( 66 θT   2/π   0 
6θ   0 

 

Let the 00 ,αa  parameters of T1 be assigned as 000 == αa  (there is no z0-axis).  

Here 3a and 3d are negative in this example, they are signed displacements, not as 

distances. This example demonstrates the 3D chain kinematics on a classic robot 

manipulator, the PUMA 560, shown in Figure 3.4. The procedure is to determine 

appropriate body frames to represent each of the links. The first three links allow the 

hand (called an end-effector) to make large movements in W, and the last three enable 

the hand to achieve a desired orientation. There are six degrees of freedom, each of 
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which arises from a revolute joint. The parameters from Figure 3.4 may be substituted 

into the homogeneous transformation matrices to obtain equation 3.7. 

 
The homogeneous transformation matrix is a 4X4 matrix which maps a position vector 

expressed in homogeneous coordinates from one coordinate system to another 

coordinate system. The basic homogeneous matrix is represented by 

 

t
t A1− =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛
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−

1000
cossin0

sincossincossin
cossinsinsincoscos

ttt

ttttt

ttttttt

d

a

αα
θθααθ

θθαθαθ

 

              (3.7) 

 

The body frames are shown in Figure 3.3, and the corresponding DH parameters are 

given in Table 3.2. Each transformation matrix can also be written as Tt  for 

simplification  and it is a function of tθ ; hence, it is written )( ttT θ . The other 

parameters are fixed for this example. Only,  1θ  ,  2θ , 3θ  , are allowed to vary 

and transformation matrices can be derived  from equation 3.7 as follows. 
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and 
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In a kinematic chain the transformation matrix t
t A1−  describes the local coordinate 

frame for t th  link of the manipulator with respect to the local frame of the previous 

link 1−t .The forward kinematic equation of the manipulator can be developed by 

multiplying the above matrix t
t A1−  calculated sequentially for each link. Using the 

 

t
t A1−

  matrix one can relate a point tp  at rest in link t  and expressed in 

homogeneous coordinates with respect to the coordinate system 1−t  established at 

link 1−t  by 1−tp =   t
t A1−

tp . The orientation of a body in three dimensions is 

difficult to visualize and describe, so alternative methods have been tried. In the 
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orientation matrix nine parameters are used to represent three degrees of freedom to 

specify the orientation of a body.  

An algorithm is presented for the derivation of kinematic equation of a n-link robot 

which is based on homogeneous transformation. 

i) Assignment of a local coordinate system to every link and a global one to the base 

of the robot. 

ii) Determination of the kinematic parameters for the links 1 to n. 

iii) Determination of the transformation matrices t
t T1−

for t =1 to n , describing 

each local coordinate system with respect to its previous one by 
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          (3.14) 

 

iv) Calculation of the final transformation matrix nT0 of the end effector coordinate 

system with respect to the base frame is done using following equation. 
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In general the homogeneous method of representation is highly redundant since it 

requires 12 numbers to completely represent six degree of freedom. The basic 

homogeneous matrix in equation 3.15 can be represented as  

⎟⎟
⎟
⎟
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⎝

⎛

=

1000
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yyyy

xxxx

pasn
pasn
pasn

T                (3.16)  

 

where,  n=normal vector of the hand 

s=sliding vector of the hand 

a=approach vector of the hand 
p=position vector of the hand  

 
The position of the end effector is given by the last column of the matrix and 

orientation is given by upper left 3 X 3 sub matrix. Thus the position and orientation 

can be computed by using equation 3.1 to equation 3.9. The foundation of this 

algorithm is formulation of the combined homogeneous matrix. Once this matrix is 

obtained subsequent matrices are calculated sequentially for higher order links. The 

final matrices are formulated by multiplying the transformation matrices representing 

simple rotation about the principal axis and translations along the principal direction 

of the local coordinate system of the links. Homogeneous matrix method thus provides 

a systematic way to understand and implement the algorithm step by step. 
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3.4 Quaternion Algebra Method  

 
Quaternion algebra  enunciated by Hamilton, has played a significant role recently in 

several areas of the physical science; namely, in differential geometry, in analysis and 

synthesis of mechanisms and machines, simulation of particle motion in molecular 

physics and quaternion formulation of equation of motion in theory of 

relativity[50,51]. In mathematics, a quaternion algebra over a field, F, is a particular 

kind of central simple algebra, A, over F, namely such an algebra that has dimension 

4, and therefore becomes the 2×2 matrix algebra over some field extension of F, by 

extending scalars (i.e., tensoring with a field extension). The classical Hamilton 

quaternions are the case of F the real number field, and A is uniquely defined up to 

isomorphism by the condition that it is such a quaternion algebra that is not the 2×2 

real matrix algebra. 

 
Quaternion algebra therefore means something more general than the algebra of 

Hamilton's quaternions. When the coefficient field F does not have characteristic 2, 

any quaternion algebra over F is a slightly twisted form of the familiar quaternions 

with coefficients in F. It has a basis 1, i, j, and k such that 

i2 = a  

j2 = b  

ij = k, ji = −k  

where a and b are any nonzero elements of F, and a short calculation shows k2 = −ab. 

(The Hamilton quaternions are the case when a and b both equal −1.) When F has 

characteristic 2, a different explicit description in terms of a basis of 4 elements is also 

possible, but in any event the definition of quaternion algebra over F as a 4-

dimensional central simple algebra over F applies uniformly in all characteristics. 

Quaternion algebras are applied in number theory, particularly to quadratic forms.  

3.4.1 Application of quaternion algebra 

Recently new development has been made regarding some identities associated with 

dual-number-quaternion for analysis of mechanisms and machines. After Hamilton, 
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Clifford [52] found it very important to develop the concept of dual numbers and dual 

quaternion for his geometrical investigations. It appears that Blaschke was the first to 

recognize the importance of the concept of quatemions in kinematics. More recently, a 

unified presentation of spatial displacements in terms of a generalized screw 

displacement pair and its relation with different representations of spherical motion is 

done. The investigation includes applications of dual-number quaternions to screw 

motion of a line and a point. One of the major advantages of quaternion is that the 

equations governing the physical systems written in terms of quaternion are singularity 

free. Thus, it provides a numerically stable set of equations. From the above 

discussion and the references therein, it is clear that there are numerous application of 

quaternion in the area of physical science that employ quaternion as an analytical tool. 

However, the quaternion have not received wide publicity in the area of kinematics 

and dynamics of mechanisms because the algebra underlying the quaternions are quite 

involved and they are quite difficult to interpret in a three dimensional space. 

Observing the above fact, Wehage proceeded to present the quaternion treatments of 

real numbers using matrices and linear algebra. In this method two operators, which 

are related to the real quaternion, are defined and its properties are developed. These 

operators allow one to directly translate the language of quaternion into the matrices. 

This not only provides an elegant tool for matrix treatment of quaternion but also 

provides a compact formulation that can be translated easily into computer programs 

for numerical computations. The present investigation of dual quaternion algebra and 

Hamilton matrix operators associated with it reveal several new properties and 

identities of the matrices involved which otherwise cannot be visualized easily. It is 

also shown how these properties can be utilized to develop some kinematic relations 

for spatial motion of a body. 

 
The second method in general is a line transformation method where step by step 

calculation of the transformation operator is done along with line vectors. Quaternions 

are a natural extension of complex numbers. Like complex numbers they have a real 

part, however, they have three imaginary parts, i, j, & k, with some special rules. Once 
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again, quaternions have uses concerning fractals. Due to the fact that they have four 

components, these fractals are four dimensional. 

3.4.2 Mathematical representation 

In this section quaternion algebra is presented and its use to formulate the forward 

kinematic problem of the robot arm is discussed. Rotation quaternion can be used to 

calculate the rotated point from the original position of the point; this allows 

translation of points without using matrices [53, 54, 55]. Quaternion plays a vital role 

in the representation of rotations in computer graphics, primarily for animation. 

Interpolating the quaternion representation of a sequence of rotations is more natural 

than doing so for the familiar Euler angles, such as yaw, pitch, and roll. The 

quaternion occupies a smooth, seamless, isotropic space which is a generalization of 

the surface of a sphere. 

 
A brief summary of dual numbers and dual quaternion is presented in this section for 

an ease of reference and to provide the necessary background for the mathematical 

formulations to be developed further. A dual number has the form q and εq’ where q 

and εq’ are real numbers and ε is the dual symbol subjected to the rules 
2ε =0, 0ε=0, ε0=0, ε1=1ε= ε.  Before going into detail analysis of quaternion and steps 

of formulation of kinematic equation for robot arm some properties of quaternion 

algebra is presented. Quaternion can be represented as;  

 

kzjyixwq +++=              (3.17) 

 
Where w, x, y, z are real numbers, and i, j, k, are quaternionic units which satisfy the 

non-commutative multiplication rules. Here w is the real part and x, y, z are imaginary 

parts. Each of these imaginary dimensions has a unit value of square root -1, all are 

mutually perpendicular to each other known as i, j, k. 

If a quaternion q has length 1, we say that q is a unit quaternion. One of the major 

properties of quaternion is that they are anti commutative. Quaternion algebra can be 
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understood as an extension of complex number. As we know complex number consist 

of one real part and one imaginary part similarly quaternion has four dimensions i.e. 

one real part and three imaginary part.  

i) Conjugate of quaternion: 

The conjugate of a quaternion number is a quaternion with the same magnitudes but 

with the sign of the imaginary parts changed. So conjugate of kzjyixwq +++=  is 

 
kzjyixwq −−−=′                  (3.18)  

 
ii) Magnitude: 

The magnitude of a quaternion kzjyixwq +++=  is )zyxw( 2222 +++           (3.19) 

 
iii) Norm: 

Norm of a quaternion is defined by  

 || q  || = square root of ( q*conj( q )) 

 

= )zyxw( 2222 +++                  (3.20) 

 
iv) Inverse: 

The inverse of a quaternion refers to the multiplicative inverse q
1

and can be 

computed by  

 

)qq(qq 1 ′∗′=−

                  (3.21) 

 
 If a quaternion q has length 1, we say that q is a unit quaternion. The inverse of a unit 

quaternion is its conjugate, i.e. qq ′=−1 1−q . One of the major properties of quaternion 

is that they are anti commutative. Quaternion algebra can be understood as an 

extension of complex number. As we know complex number consist of one real part 
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and one imaginary part similarly quaternion has four dimensions i.e. one real part and 

three imaginary part. From equation 3.17 to equation 3.21 basic quaternions and their 

properties are represented in mathematical form. 

  
A dual number is shown in equation 3.22 and it can be defined as   

 
0qq ε+                   (3.22) 

 

where, q  and 0q are real numbers with  ‘ε ’ as a dual unit having definite property.  

The above definitions need the following comments:  

i) The norm of a dual-number-quaternion is, in general, not a real number but a dual 

number.  

ii) The reciprocal of a dual quaternion‘q’ exists if and only if norm of that quaternion  

is not zero, although conjugate of the norm may be zero.  

iii) For a unit quaternion the scalar product of q and q' must be zero. The third 

requirement is very similar to the requirement of a unit dual vector. The quaternion 

multiplication is, in general, not commutative. If quaternion can be used to represent 

rotation and quaternion multiplication can be used to get the result of subsequent 

rotation. 

3.4.3 Rotation representation 

Let 1q and 2q  are unit quaternion representing two rotations. Then subsequent 

rotation can be done by, rotating first 1q  and then 2q . The composite rotation is 

represented by the quaternion 12 qq ∗ . 
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Let 1p = vector representing the initial position of a point being transformed. 

 2p =vector representing the final position of the point after translation. 

1
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qqPqqP

           (3.23) 

 
The quaternion can represent 3D reflections, rotations and scaling, however a single 

quaternion operation cannot include translations with rotation. So for rotation, 

reflection or scaling around a point other than the origin, we would have to handle the 

translation part separately.  

3.4.4 Representation of pure translation 

The translation in quaternion algebra is done by using a quaternion operator and it is 

defined by 

 
εεε kzjyixq )2()2()2(1 111 +++=            (3.24) 

 
where, 111 ,, zyx are the translation carried out along x,y,z direction respectively. 

Quaternion transformation is represented as 

 
qpqp ′∗∗= 12                  (3.25) 

where, 

1p  and 2p   are initial and final position of a point 

q =dual quaternion operator representing transform 

q′ =conjugate of q . 

The rotation and translation representation in quaternion algebra is carried out using 

equation 3.23 to equation 3.25. 
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3.4.5 Mathematical formulation for 6-DOF revolute robot 

Multiplication of quaternion numbers together behaves similarly to cross product of 

the unit basis vectors. Unit line vector is a vector which is constrained to lie on a 

definite line in figure 3.5, u is a unit vector and uru ×=0 is the moment vector, 

where r is the position vector of an arbitrary point P  on the line. The vectors 0, uu  

are often called plucker vectors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5: A unit line vector 
 
A unit line vector in its dual form can be represented as;   
 

 0ˆ uuu ε+=                   (3.26) 

 
where, u and u0, respectively are real and dual quaternion components. The 

multiplication of quaternionic units with dual symbol is commutative; i.e. iε=εi and so 

on. Owing to the properties of the eight units that are four real quaternion and four 

dual part of the quaternion, equality, addition, and subtraction of dual-number 

quaternions are governed by the rules of ordinary algebra.  

 

x1, y1, z1 

z 

x 

u 

P 

r 

x2,y2, z2 

• 
1 

2 
(u, u 0 ) 

  • 



61 
 

From the geometrical point of view a quaternion can also be represented as;  

2
sin

2
cos θθ uq +=                  (3.27) 

 

where, 
2

cos θ
, the first part of the equation is the real part and the second part 

2
sin θ

 

is the complex part. Quaternion can be thought of as an axis angle u  along which 

rotation is considered. It is quite difficult to give physical meaning to a quaternion but 

it forms an interesting mathematical system. A quaternion can also be written as 

 
kqjqiqqq zyx +++= 0                                        (3.28) 

 
which is  a combination of a scalar 0q , and kqjqiq zyx ++   represents the vector 

component along three mutually perpendicular directions. A dual quaternion may be 

written as 

 
k)qq(j)qq(i)qq(1)qq(Q 0

zz
0
yy

0
xx

0
00 εεεε +++++++=             (3.29) 

 
In this equation the first part is a real part and the second part associated with ε  is 

dual part. The combined rotation and translation can be represented by quaternion 

operator. The relationship between two non parallel and non intersecting unit line 

vector can be obtained as follows.  

Let, 

=û A unit line vector. 

=v̂ Unit line vector obtain by translation of û  by a distance d , followed by 

rotation of a dual angle dεϕϕ += . 

The transformation of û  into v̂  is given by 

 
uQv ˆˆˆ =                (3.30) 
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The transformation operator is defined as 

 
ϕϕ ˆsinˆˆcosˆ eQ +=                (3.31) 

 
which is also a dual quaternion. So by multiplying a unit line vector by the 

transformation operator Q̂  , the image of that line is obtained in a new location 

defined by the parameters of this transformation operator. 

A dual quaternion is the set of four dual numbers in a definite manner. Just like we 

extend 3 X 3 matrices to 4 X 4 matrices to allow them to translation in addition to 

rotation we extend quaternion to dual quaternion to allow them to represent 

translations in addition to rotation. The dual of a quaternion can model the movement 

of a solid object in 3 dimensions which can rotate and translate without changing the 

shape. 

 
To formulate forward kinematic equation: first assignment of coordinate system to 

every link and to the base as in traditional method is done. The kinematic parameters 

for the links 1   to n are determined. Calculation of unit line vector is done which is 

coincident with the common normal between t th and )1( +t  th axis and ts  as the 

unit line vector along z axis of the t  th joint. The mathematical equations used to 

obtain kinematic equation are as follows. 

 
The two unit line vectors are  

 

ttttt aQa ,11, ˆˆ
−=+                  (3.32) 

      
and tttt sQs ˆˆˆ 1,1 ++ =                  (3.34) 
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For base frame unit vectors 

ia =1,0  and ks =1 .                 (3.35) 

The transformation operators are  

 

 tttt sQ θθ ˆsinˆcosˆ += and               (3.36) 

 

1,1,1,1, ˆsinˆˆcosˆ
++++ += tttttttt aQ αα                         (3.37) 

 

where 1,ˆ +ttα  the dual angle between tŝ    and 1ˆ +ts is defined as   

 
tttt Lεαα +=+ ˆˆ 1,                    (3.38) 

 

and  tθˆ , the dual angle between tta ,1ˆ
− and 1,ˆ

+tta is defined as 

 

ttt dεθθ +=ˆ                   (3.39) 

in terms of four D-H kinematic parameters. 

 
The position vector of the end effector is given by 

 

)( 1,
1

+
=

+= ∑ ttt
n

t
ttn aLsdP                 (3.40) 

 
The orientation matrix R of the end effector coordinate system by the three vectors 

1, += nnn an  

1,1 ++ ×= nnnn aso  

1+= nn sa .                  (3.41) 
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Following the steps of the given algorithm and using equation 3.26  to equation 3.41 

the kinematic equation of any spatial manipulator can be evaluated. The unit line 

vector ts  defines the axis of the joint t and 1,ˆ +tta  defines the common 

perpendicular to the axes of the t   and 1+t   joints. The dual quaternion transforms 

the unit line vector tta ,1ˆ −  to 1,ˆ +tta . In other words, the operator translates the x-

axis of the frame 1−t  along the axis of the joint t  by an angle tθ . The dual 

quaternion 1,
ˆ

+ttQ is similar. It translates and rotates the joint axis along and about 

the common perpendicular to this joint axis and the next one.  The vectors s and a  

are the unit vectors defining the orientation of the z and x axis respectively. The unit 

vector of the Y axis of the last coordinate system is calculated by the vector product of 

the s  and a  vectors. 
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3.5 Lie Algebra Method  

 
In mathematics, a Lie algebra is an algebraic structure whose main use is in studying 

geometric objects such as Lie groups and differentiable manifolds. Lie algebras were 

introduced to study the concept of infinitesimal transformations. The term "Lie 

algebra" (was introduced by Hermann Weyl in the 1930s. Although Lie algebras are 

often studied in their own right, historically they arose as a means to study Lie groups. 

Given a Lie group, a Lie algebra can be associated to it either by endowing the tangent 

space to the identity with the differential of the adjoint map, or by considering the left-

invariant vector fields as mentioned in the examples[56]. This association is functorial, 

meaning that homomorphism of Lie groups lift to homomorphism of Lie algebras, and 

various properties are satisfied by this lifting: it commutes with composition, it maps 

Lie subgroups, kernels, quotients and cokernels of Lie groups to sub algebras, kernels, 

quotients and cokernels of Lie algebras, respectively. 

 
The functor which takes each Lie group to its Lie algebra and each homomorphism to 

its differential is a full and faithful exact functor. This functor is not invertible; 

different Lie groups may have the same Lie algebra, for example SO(3) and SU(2) 

have isomorphic Lie algebras. Even worse, some Lie algebras need not have any 

associated Lie group. Nevertheless, when the Lie algebra is finite-dimensional, there is 

always at least one Lie group whose Lie algebra is the one under discussion, and a 

preferred Lie group can be chosen. Any finite-dimensional connected Lie group has a 

universal cover. This group can be constructed as the image of the Lie algebra under 

the exponential map. More generally, we have that the Lie algebra is homomorphic to 

a neighborhood of the identity. But globally, if the Lie group is compact, the 

exponential will not be injective, and if the Lie group is not connected, simply 

connected or compact, the exponential map need not be surjective. 

 
If the Lie algebra is infinite-dimensional, the issue is more subtle. In many instances, 

the exponential map is not even locally a homeomorphism. (for example, in Diff (S1), 

one may find diffeomorphisms arbitrarily close to the identity which are not in the 
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image of exp)[57, 58]. Furthermore, some infinite-dimensional Lie algebras are not 

the Lie algebra of any group. 

 
The correspondence between Lie algebras and Lie groups is used in several ways, 

including in the classification of Lie groups and the related matter of the 

representation theory of Lie groups. Every representation of a Lie algebra lifts 

uniquely to a representation of the corresponding connected, simply connected Lie 

group, and conversely every representation of any Lie group induces a representation 

of the group's Lie algebra; the representations are in one to one correspondence. 

Therefore, knowing the representations of a Lie algebra settles the question of 

representations of the group. As for classification, it can be shown that any connected 

Lie group with a given Lie algebra is isomorphic to the universal cover mod a discrete 

central subgroup. So classifying Lie groups becomes simply a matter of counting the 

discrete subgroups of the center, once the classification of Lie algebras is known. 

A Lie Group G is a set of elements embodying simultaneously the properties of a 

group and a smooth manifold. By the group property, (1) composition of any two 

elements g1, g2 є G is defined, yielding a composite element g that also belong to G; 

(2) identity: there exist a element e in G such that composition of e with any other 

element g yields the element g itself, and (3) for any element g in G there exist an 

inverse g-1 such that the composition of g and g-1 yields the identity e. By the manifold 

property, any two points in G can be connected by a smooth trajectory, and at any 

point g one can define a differential dg that is tangent to G. The inter relation between 

the lie group and its composition is shown in figure 3.6. 

 

 

 

 

 

 

Figure 3.6: Lie group 
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The differential at the neutral element (identity) is particularly important. This tangent 

space at the identity is called the Lie algebra for that group. The Lie algebra along 

with a bilinear map called Lie bracket, forms a vector space.  

The lie bracket [:; :], satisfies ; 

1) Skew symmetry: [x; y] = -[x; y]:  

2) Jacobi identity: [x; [y; z]] + [z; [x; y]] + [y; [z; x]] = 0  

for every x,y,z in the associated Lie algebra. The primary connection between a Lie 

group and its Lie algebra is the exponential mapping. On matrix groups the 

exponential mapping corresponds to the ordinary matrix exponential, i.e., if A is an 

element of the Lie algebra, then exp(A) is an element of the Lie group. 

3.5.1 History and application  
A group that is a differentiable manifold is called a Lie group, which is a differentiable 

manifold. The name comes after the famous mathematician Sophus Lie. A lot of 

geometrical and analytical methods have been developed over the last three centuries 

to describe the changes of configuration of rigid bodies. The previously mentioned 

methods are all global, geometrical, well-defined methods. These methods are 

different from Euler angles which are only valid locally and they are not as powerful 

as the methods described in the following sections. As the complexity of multibody 

system increases, the need for more elegant formulation of the equations of motion 

becomes an issue of paramount importance. For example, it is desirable to have an 

explicit representation of the equations of motion that can be manipulated at a high-

level and in which the kinematic and dynamic parameters of the system appear in a 

transparent manner. Moreover, many applications in robot control and planning 

require a set of dynamic equations that can be defined explicitly with respect to 

parameter of interest. It is also desirable to have the equations of motion in a form 

which can be implemented effectively using a computer for the purpose of simulation. 

In this work, the techniques of Lie group are used to derive kinematic synthesis of 

robot. These equations of motion can be arranged in a recursive form for serial link 
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manipulators. The resulting recursive formulation is particularly suitable for computer 

implementation.  

3.5.2 Mathematical representation  

In this part translation and rotation are represented with Special Orthogonal and 

Euclidean groups, SO (3) and SE (3). Transformations on orientation in Euclidian 

space are accomplished by the use of the rotation matrix θ, which is an element of the 

special Orthogonal group, SO (3), within Lie group since it satisfies the properties of 

group and manifold mentioned above. SO (3) is a schematic of the group of rotations 

in three dimensions. Any rotation can be specified by a vector pointing along the axis 

of rotation, with a length equal to the amount of rotation; using this correspondence. 

The group is drawn as a sphere with a wedge removed to reveal the interior but the 

true topology identifies opposite points on the surface, which represent rotations of 

180° around opposite axes. The overall effect is equivalent to moving the centre of the 

sphere around the group in a constant direction; the sphere always encompasses the 

entire group, but the particular element lying at the centre changes. 

The rigid body transformation, cast in 4x4 homogeneous form, is also a Lie group 

referred as the special Euclidian group or SE (3) given in equation 3.34. Given the 

rotation θ є SO (3) and translation b є R3, the SE (3) is giving as 

 

⎥
⎦

⎤
⎢
⎣

⎡
10
bθ

                  (3.42) 

 
The Lie algebra associated with the Lie group SO(3), denoted by so(3), can be 

determined by evaluating the tangent vector to a smooth curve θ(t) on SO(3) where θ 

(0) = I , the identity. Differentiating both sides of θ (t) θ (t) T = I with respect to t and 

evaluating at t = 0 results in θ (0) + θ (0)T = 0. 
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Therefore the Lie algebra of SO (3), denoted by so (3), given in equation 3.43. It 

consists of a set of skew symmetric matrices on R3x3 of the form;  
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where ω= (ωx, ωy, ωz ) є R3 and [.] is a cross operator which change the three 

dimensional vector into the associated skew symmetric matrix.  

In a similar fashion, it can be shown in equation 3.44 that the Lie algebra associated 

with SE (3), denoted se (3), and consists of 4x4 matrix of the form; 

 

⎥
⎦

⎤
⎢
⎣

⎡
10
vω

                  (3.44) 

where ω є R3 and v є R3.  

3.5.3 Euclidean group 

The displacement of a rigid body B can be described in reference frame {A}, by 

establishing a reference frame {B} on B and describing the position and orientation of 

{B} in {A} via a homogeneous transformation matrix:  
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                 (3.45)
 

where ArO’ is the position vector of the origin O’ of {B} in the reference frame {A}, 

and   ARB is a rotation matrix that transforms the components of vectors in {B} into 

components in {A}. As the composition of two displacements, from {A} to {B}, and 

from {B} {C}, is achieved by by  matrix multiplication of AAB and BAC. The set of all 

displacements or the set of all such matrices in Equation 3.45 with the composition 

rule is called SE (3), the special Euclidean group of rigid body displacements in three 

dimensions: 
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Figure 3.7: The rigid body displacement 

 
In figure 3.7, the rigid body displacement from an initial position and orientation to a 

final position and orientation is shown. Here the body fixed reference frame is 

coincident with {A} in the initial position and orientation, and with {B} in its final 

position and orientation. The point P attached to the rigid body moves from P to P’. If 

we consider this set of matrices with the binary operation defined by matrix 

multiplication, it is easy to see that SE (3) satisfies the four axioms that must be 

satisfied by the elements of an algebraic group: 

i) The set is closed under the binary operation. In other words, if A and B are any two 

matrices in SE(3), AB є SE(3).  

ii) The binary operation is associative. In other words, if A, B, and C are any three 

matrices є SE(3), then (AB) C = A (BC). 

iii) For every element A є SE (3), there is an identity element given by the 4X4 

identity matrix, 

I є SE (3), such that AI = A. 

iv) For every element A є SE (3) there is an identity inverse, A-1 є  SE (3), such that A 

A-1 = I. 
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Table 3.3: The important subgroups of SE (3) 
Subgroup Notation Definition Significance 

The group of 

rotations in 

three dimensions 

SO(3) The set of all proper orthogonal matrices. 

SO(3) = {R R ∈R3×3, RTR = RRT = I} 

All spherical 
displacements or the set 
of all displacements that 
can be generated by a 
spherical joint (S-pair). 

Special 
Euclidean group 
in two 

dimensions 

SE(2) The set of all 3×3 matrices with the 

Structure 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

100
cossin
sincos

y

x

r
r

θθ
θθ

 

where θ, rx, and ry are real numbers 

All planar displacements 
or the set of 
displacements that can be 
generated by a planar pair 
(E pair). 

The group of 

rotations in two 

dimensions 

SO(2) The set of all 2×2 proper orthogonal 

matrices. They have the structure 

⎥
⎦

⎤
⎢
⎣

⎡
− θθ

θθ
cossin
sincos

 

where θ is a real number. 

All rotations in the plane, 
or the set of all 
displacements that 
can be generated by a 
single revolute joint (R-
pair). 

The group of 

translations in 

n dimensions. 

T(n) The set of all nX1 real vectors with vector 
addition as the binary operation. 

All translations in n 
Dimensions, n = 2 
indicates planar, n = 3 
indicates spatial 
displacements. 

The group of 

translations in 

one dimension. 

T(1) The set of all real numbers with 

addition as the binary operation. 

All translations parallel to 
oneaxis, or the set of all
displacements that can be
generated by a single 
prismatic joint (P-pair). 

The group of 

cylindrical 

displacements 

SO(2)XT(1) The Cartesian product of SO(2) and T(1) All rotations in the plane 
and translations along an 
axis perpendicular to the 
plane, or the set of all 
displacements that can be 
generated by a cylindrical 
joint(C-pair). 

The group of 

Screw 
displacement 

H(1) A one-parameter subgroup of SE(3) All displacements that 
can be generated by a 
helical joint (H-pair). 
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The product of any two elements in SE (3) is a continuous function of the two 

elements and the inverse of any element in SE (3) is a continuous function of that 

element. Thus SE (3) is a continuous group and any open set of elements of SE (3) has 

a 1-1 map onto an open set of R6. Since SE (3) is a Lie group, it has many interesting 

properties that are of interest in screw system theory. In addition to the special 

Euclidean group in three dimensions, there are many other groups that are of interest 

in rigid body kinematics. They are all subgroups of SE (3).  

 A subgroup of a group consists of a collection of elements of the group which 

themselves form a group with the same binary operation. Some important subgroups 

are listed in table 3.3 and their significance in kinematics along with  their properties 

are described  below. 

3.5.4 The group of rotations 
A rigid body B is said to rotate relative to another rigid body A, when a point of B is 

always fixed in {A}. Let the frame {B} is attached so that its origin O’ is at the fixed 

point. The vector ArO’
 is equal to zero in the homogeneous transformation in equation 

3.7. The set of all such displacements, also called spherical displacements, can be 

easily seen to form a subgroup of SE (3). Only the 3×3 sub matrix of the homogeneous 

transformation matrix plays a role in describing rotations. Further, the binary operation 

of multiplying 4×4 homogeneous transformation matrices reduces to the binary 

operation of multiplying the corresponding 3×3 sub matrices. Thus 3×3 rotation 

matrices can be used to represent spherical displacements as in equation 3.47. This sub 

group, is called the special orthogonal group in three dimensions represented as  

SO(3) = {R R ∈R3×3, RTR = RRT = I}               (3.47)  

The orthogonal matrices whose determinants are negative are excluded. It is well 

known that any rotation can be decomposed into three finite successive rotations, each 

about a different axis than the preceding rotation. The three rotation angles, called 

Euler angles, completely describe the given rotation. The basic idea is as follows. If 
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we consider any two reference frames {A} and {B}, and the rotation matrix ARB, we 

can construct two intermediate reference frames {M} and {N}, so that 

1. The rotation from {A} to {M} is a rotation about the x axis (of {A}) through ψ; 

2. The rotation from {M} to {N} is a rotation about the y axis (of {M}) through φ; and 

3. The rotation from {N} to {B} is a rotation about the z axis (of {N}) through θ. 

Thus any rotation can be viewed as a composition of these three elemental rotations 

except for rotations at which the Euler angle representation is singular. These 

singularities are easily found out explicitly and identifying points at which the Euler 

angles are not unique. Note that we have chosen the so-called x-y-z representation for 

Euler angles, in which the first rotation is about the x-axis, the second about the y-axis 

and third about the z-axis. There are eleven other choices of Euler angle 

representations which can be derived by choosing different axes for the three 

elemental rotations. For any rotation, it is always possible to find a suitable non 

singular Euler angle representation. 

 
This in turn means all rotations in an open neighborhood in SO(3) can be described by 

three real numbers.  It can be shown that there is a 1-1, continuous map from SO (3) 

onto an open set in R3. This gives SO (3) the structure of a three-dimensional 

differentiable manifold, and therefore a Lie group. The rotations in the plane, or more 

precisely rotations about axes that are perpendicular to a plane, form a subgroup of 

SO(3), and therefore sub group of SE(3). For the evidence let us take an example. In 

figure 3.7, the rigid bodies A and B are connected with a revolute joint whose axis is 

along the z axis. The homogeneous transformation matrix has the form: 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

1000
0100
00cossin
00sincos

θθ
θθ

B
A A                (3.48) 

where θ is the angle of rotation. The equation 3.40 is composed of two such rotations, 
AAB  and BAC,  through θ1 and θ2 respectively, the product is given by: 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=×

1000
0100
00cossin
00sincos

1000
0100
00cossin
00sincos

22

22

11

11

θθ
θθ

θθ
θθ

C
B

B
A AA

 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
++−
++

=

1000
0100
00)cos()sin(
00)sin()cos(

2121

2121

θθθθ
θθθθ

              (3.49) 

 

All matrices in the equation 3.49  are the same periodic function of one real variable 

‘θ’ given by: 

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
=

100
0cossin
0sincos

)( θθ
θθ

θR

               (3.50) 

 

The equation 3.50 is similar as basic rotation matrix as discussed earlier. This 

subgroup is called SO (2). Further, since R (θ1) × R(θ2) = R(θ1 + θ2), we can think of 

the subgroup as being locally isomorphic to R1
 with the binary operation being 

addition. 

3.5.5 The group of translations 

A rigid body B is to translated relative to another rigid body A by attaching reference 

frames to A and to B that are always parallel. The rotation matrix ARB equals the 

identity in the homogeneous transformation in Equation 3.45.  
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The translation in group theory is represented as 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

×

×

10 31

33
'oA

B
A rIA

                 (3.51) 

 
The set of all such homogeneous transformation matrices is the group of translations 

in three dimensions and is denoted by T(3) . The composition of two translations AAB 

and BAC, the product is given by: 

 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
×

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=×

×

×

×

×

1010 31

33

31

33

''' OBOA

C
B

B
A rIrIAA  

 

⎥
⎦

⎤
⎢
⎣

⎡ +
=

×

×

10 31

'''
33

OBOA rrI
                 (3.52) 

 
Equation 3.51 and equation 3.52 represent the group of rotations in lie algebra. Only 

the 3×1 vector part of the homogeneous transformation matrix plays a role in 

describing translations. Thus a element of T(3) is considered as a simple  3×1 vector, 
ArO’. Since the composition of two translations is captured by simply adding the two 

corresponding 3×1 vectors, ArO’ and BrO’’, we can define the subgroup T(3), as the real 

vector space R3
 with the binary operation being vector addition. Similarly, we can 

describe the two subgroups of T(3), T(1) and T(2), the group of translations in one and 

two dimensions respectively. Because they are subgroups of T(3), they are also 

subgroups of T(3). It is worth noting that T(1) consists of all translations along an axis 

and this is exactly the set of displacements that can be generated by connecting A and 

B with a single prismatic joint.  

 
In figure 3.8, the rigid bodies A and B are connected by a revolute joint with the axis l 

and u is a unit vector along the axis and P is a point on the axis. O-x-y-z is the 
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reference frame {A}. Thus the velocity of any point attached to B in frame {A} can be 

calculated by using the velocity operator. It consists of the angular velocity matrix of 

{B} and the velocity of the point o, both as seen in frame {A}.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
Figure 3.8: The rigid bodies A and B are connected by a revolute joint with the axis l.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9: The rigid bodies A and B are connected by a prismatic joint with the axis l.  
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In Figure 3.9,  the two rigid bodies A and B, are connected by a prismatic joint with an 

axis parallel to the line l. u is a unit vector along the axis and P is a point on the axis. 

O-xy- z is the reference frame {A}.  

3.5.6 Lie algebra formulation for 6-DOF revolute robot 

The Lie algebra of the SO (3) of the orientation matrices is the vector space of skew -

symmetric 3X3 matrices. By using Lie algebra and group theory, a 3-D orientation 

vector can be represented satisfying the following criteria. 

i) It has a one-to-one correspondence relation with the orthogonal orientation matrix ; 

ii) It requires finite computations in all related transformations. 

The orientation vector also known as the Rodriguez parameters   is given by 

 

ns
2

tanψ
=                   (3.53) 

 
where ‘n’ is the unit vector of the rotation axis and Ψ is the rotation angle. This 

orientation vector offers an almost full range of angle using quite simple 

computations. The vector is on the line which does not change when the orientation 

operates to a body in 3-D space, in other words the vector is an invariant under the 

change of orientation by so it is the unit eigenvector of the matrix R. The cross-

product operator of a vector s= [a, b, c]T is the skew-symmetric matrix S given by 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
==

0
0

0

ab
ac

bc
sS r

                

(3.54) 

 
 All 3X3 skew-symmetric matrices over the real field span a linear space, so a Lie 

algebra can be defined in such a set and is referred as sk(3).  
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The Lie algebra of all real 3X3 skew-symmetric matrices can be transformed onto the 

group SO(3) and vice-versa, by 

 

trR
RRS

T

+
−

=
1  

 
and 
 

( )( ) 1−−+= SISIR                  (3.55) 
 

( ) ( )
2

2

1
2.21

s
sssIssR r

rrrr
r

+
++−

=
 

 
Being orthogonal, the matrix R satisfies the following relations: 
 

21
41
s

trR r
+

=+
                 (3.56)

 

 

21
4

s
sRR T
r

r

+
=−

                 (3.57)
 

 
 The set of orientation vectors form a Lie group defined by a product ‘o ’ which is 
given by 
 

21

2121
21 .1 ss

sssssss
−

×++
== o

r

               (3.58)        
 
The calculation of the orientation vector of the end-effector with respect to the base 

coordinate system is presented as following. The above formula will be used to 

transform the position vector, which points to the origin of a link frame with respect to 

its previous frame, to the base frame in order to determine the position of the end-

effector.  
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The orientation of the frame‘t’ with respect to the frame (t-1) is composed by two 

simple rotations: 

 
i) One rotation around the z-axis of the frame‘t’ by an angle θt is given by the equation 

 

2
tan

1
0
0

ts
θ

θ

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=                       (3.59) 

 
ii) One rotation around the x-axis of the frame t-1 by an angle α (t-1) is given by the 

equation 

 

2
tan

0
0
1

1−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= ts

α
α                      (3.60) 

  
In Lie algebra representation formulation of the kinematic equations of a n-link robot 

is based on assignment of a local coordinate system to every link and to the base of the 

robot  identical with the afore mentioned homogeneous matrix method. After 

determination of kinematic parameters for the links 1 to n the vectors representing the 

orientation of the tth frame with respect to the t-1th frame is obtained using the group 

composition law which is given as follows.  

 

θαssst
t =−1       

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= −

−

−

2
tan

2
tan

2
tan

2
tan

1

1

1

t

tt

t

t
t s

θ

αθ

α

                (3.61)
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Computation of the orientation vector  ts0  can be done for ‘t’ = 1to n of every link 

coordinate system to the base system, using the relation  

 

t
t

t sssss 1
3

2
2

1
1

00 ....−= ooo                 (3.62) 

 
Where ‘o ’ lie group product operator defined in equation 3.58. 

Transformation of the position vector 1+t
t P  representing the position of the frame t+1 

with respect to frame t , for t=1 to t-1 into the base coordinate system, given by 

 
1

0 )( +t
t

t PsR                  (3.63) 

 
The position vector of the gripper rt is computed by following relation  
 

)( 1

1

1

0
1

0
+

−

=
∑+= t

t
t

n

t
t PsRPr

                (3.64) 
 
where,  1+t

t P is the fourth column of the homogeneous matrix given by equation 3.8 if 

the index t is  replaced t+1. By using equation 3.53 to equation 3.64we can compute 

the position and orientation of any serial chain manipulator.  The core of this lie 

algebra method is the determination of the vector given by equation 3.61 which plays 

an important role in kinematic synthesis of serial chain robots.  The method offers a 

compact way to represent the orientation of the end-effector of a manipulator with 

respect to the base frame. However, the position of the end-effector has to be 

calculated through above formula given by equation 3.64, borrowing the 

determination of the position vector from the first method based on the homogeneous 

transformation. 
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3.6 Application of the New Methods in a 6-DOF Puma Robot 

 
To illustrate the application of the algorithms and for better understanding of the 

physical significance of the transformation parameters, the kinematic equations for a 

6-DOF revolute robot have been formulated. The local coordinate system and the 

parameters of each link have been defined according to D–H notation. The algorithms 

explained in above methods are implemented to a 6-DOF Puma robot. The schematic 

diagram with of the Puma robot with its joints is shown in figure.3.4 having joint 

parameters as given in table 3.4. 

 

Table 3.4: Kinematic parameters of 6 DOF robot 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

Kinematic parameters of 6 DOF robot 

t
 

tθ  1, +ttα  
1, −ttL  td  

1 90 -90 0 0 

2 0 0 431.8mm 149.09mm 

3 90 90 -20.32 0 

4 0 -90 0 433.07 

5 0 90 0 0 

6 0 0 0 56.25 
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Applying homogeneous matrix transformation matrix, the forward kinematic equation 

for the transformation of the frame 0 to 1 is given by; 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
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⎢
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⎣

⎡
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⎣
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Similarly for frames 4,5 and 6 transformation matrices can be calculated. The position 

and the orientation of the 6DOF Puma robot can be given as 

6
5

5
4

4
3

3
2

2
1

1
0 TTTTTTT ×××××=  

       

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−−

=

1000
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12.921100
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In quaternion algebra method the calculation can be made by using equation 3.26 to 

equation 3.40, as follows. 

For base coordinate, 

 
0=t  

ia =01  

kst =  

i) For joint 1 i.e. t=1 

kSCQ 111 +=  

jSiCa 112,1 +=  

2,12,1 aQ −=  

jCiSs 112 +−=  

02,11111 =+= aLsdP  

jan == 2,11  

kaso −=×= 2,121  

isa −== 21  

ii) For joint 2 i.e t=2, 

Position of the end-effector is calculated by using equation 3.41.  

jiP 8.43109.1492 +−=  

jan == 3,22  

kaso −== 3,232  

isa −== 32  

iii) For joint 3 i.e. t=3, 
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The position of the end effecter is calculated as 

kjiP 32.208.43109.1493 ++−=   

Similarly the position of the end-effector is calculated for 4th, 5th and 6th joint as 

follows. 

 

kjiP

kjiP

kjiP

32.2012.92109.149

32.2087.86409.149

32.2087.86409.149

6

5

4

++−=

++−=

++−=

 

 
Here it is observed that the position of the end effector is represented as last column of 

the homogeneous matrix for 6-DOF Puma robot is exactly same with that obtained in 

quaternion algebra method. 

 
Following the third method that is the lie algebra , the formulation of the kinematic 

equations of the six degree of freedom robot starts by the calculation of the t
t s1−  

vectors by replacing the link parameters from table 3.4 in equation 61. Since the first 

axis is rotational the vector t
t s1− is calculated for joints t=1 to 6. 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

=
1
1
1

1
0s  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
0

2
1s  

 



85 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
1
1

3
2s  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡−
=

0
0
1

4
3s  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
1

5
4s  

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
0

6
5s  

 
Using the Lie group product defined in equation 58, the orientation vector of the end-

effector with respect to the base frame is calculated as follows. 

 

6
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5
4

4
3
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5
0 sssssss ooooo=  
 
The orientation matrix of the end-effector frame with respect to the base frame is 

obtained by equation 3.55. 
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In order to determine the position of the end effector, first the position vectors for t=1 

to 6, are determined by replacing the link characteristics from table 3.4 as given 

below. 
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Then by using equation 3.64, the coordinates of the origin of the end effector frame 

are determined. 

 
3.7 Summary 

 
In this chapter homogeneous algebra, quaternion algebra and lie algebra are 

extensively discussed along with their history, development and application.  The 

mathematical models were developed and equations are presented for kinematic 

representation of the robot arm. An example problem of 6-DOF revolute robot was 

considered and solved by using aforementioned methods. The results were calculated 

and presented for each method by manually as well as using MATLAB software. 



          
 

RESULTS AND DISCUSSIONS  
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CHAPTER 4 
 
 

Results and Discussions 
 
 
 
4.1 General 
 
The formulation of the problem using the three different methods viz. i) homogeneous 

transform, ii) quaternion algebra, and iii) lie algebra were made as described in 

Chapter  3. The solutions to the problems were made through programs developed in 

MATLAB and the programs are listed in Appendix. The results in terms of figures for 

the position and orientation of the robot manipulator are noted and the computation 

time   along with the storage requirement for the computational operations is observed.  

 
4.2 Results of Homogeneous Transformation Method 

 
The following comments on the storage and computational time requirements may 

help to choose the most appropriate method for his or her problem. A comparative 

study of the presented methods is done and illustrated in this section. The position and 

orientations were computed by using all the three methods and results were presented.  

From section 3.7, the final position and orientation of 6-dof puma robot is obtained as; 
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In the homogeneous transformation method, four trigonometric function calls and six 

multiplications are required for calculation of the transformation matrix t-1 T t. The 

multiplication of two 4 X 4 transformation matrices needs 48 multiplications and 36 

additions and subtraction, since the elements of the last row of the matrix are 

constants. In n-link robot arm the number of transformation matrices is n, so n-1 

number of matrix products is required in order to determine the total transformation 

matrix. 

 
4.3 Results of Quaternion Algebra Method 

 
From section 3.7, by using quaternion algebra formulation the final position of 6 dof 

puma robot is obtained as; 

kjiP 32.2012.92109.1496 ++−=

 The orientation is obtained from equation 3.41 as;  -1,1,-1 which exactly matches with 

the homogeneous method.  

 
4.4 Results of Lie Algebra Method 

 
The results derived by using lie algebra method from equation 3.64 is  

x = -149.09 

y = 921.12 

z = 20.32 and orientation is also same with the above two methods. 

 
4.5 Discussion 

 
In both homogeneous transformation and Lie algebra algorithms, there is a need for 

storing the transformation matrix or the orientation vector of every coordinate system 

with respect to its previous one from the beginning. In screw theory via the dual 

quaternions method, the storage cost is minimum because it is not necessary to store 

all the transformation quaternions from the beginning. Quaternions are calculated from 

the unit line vectors in an iterative way (see chapter 3). The dual quaternion requires 

eight memory locations, while the orientation vector requires three and the 
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homogeneous matrix twelve memory locations. However, there is an inherent 

redundancy in line transformation methods since the Plucker coordinates of a line are 

six, while the independent coordinates for a line definition are four. The storage 

requirement affects the computational time because the cost of fetching an operand 

from memory exceeds the cost of performing a basic arithmetic operation. The 

complexity of the geometric design problem increases with the number of structural 

parameters. Four independent parameters define the axis of a revolute joint and two 

define a prismatic joint.  

 
In the homogeneous transformation method for the determination of the end effector 

position and orientation needs (48(n-1) + 6n) multiplications and 36(n-1) additions 

and subtractions, while only the orientation needs 31(n-1) multiplications and 18(n-1) 

additions and subtractions, where ‘n’ is the number of degree of freedom.  In 

quaternion representation the total number of addition and subtraction required is 

22n+3 and the total number of multiplication and division required is 39n-12.  

 
Table 4.1: Computational operations for addition 

DOF No of additions 

Homogeneous 

matrix 

Quaternion 

algebra 

Lie 

algebra 

3 72 69 81 

4 108 91 114 

5 144 113 147 

6 180 135 180 

7 216 157 213 

8 252 179 246 

9 288 201 378 

10 324 223 312 

 



90 
 

Table 4.1 presents the number of addition operations required in the three methods 

considered for computation of the desired parameters. This can be used to make an 

analysis for the computational cost of all the three methods with respect to addition 

and/or subtraction. The above data are shown in figure 4.1 which clearly speaks about 

the efficiency of each method. 

 

 
 

Figure 4.1: Comparison of addition 
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Table 4.2: Computation cost for multiplication  

 
DOF Number of multiplication 

Homogeneous 

matrix 

Quaternion 

algebra 

Lie 

algebra 

3 114 105 126 

4 168 144 162 

5 222 183 198 

6 276 222 234 

7 330 261 270 

8 384 300 306 

9 438 339 342 

10 492 378 378 

 

 
Table 4.2 presents the number of multiplication operations required in the three 

methods considered for computation of the desired parameters. For the case of 6DOF 

robot (n=6), 276 multiplications and 180 additions and subtractions are necessary for 

homogeneous matrix method.  In summary, (22n + 3) additions and subtractions and 

(36n + 6) multiplications are required in order to determine the position and 

orientation of the end-effector by the quaternion method. For the case of 6-DOF 

manipulator 222 multiplications and 135 additions and subtractions are necessary. 
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Figure 4.2: Comparison of multiplication 
 
This speaks about the number of mathematical operations required for computing the 

homogeneous matrix and hence the time needed for the same.  In lie algebra 

representation the number of addition and subtraction is 33n-18 and number of 

multiplication and division is 36n+18. For 6 DOF (n=6), 234 (table 4.1) number of 

equivalent multiplications and 180 additions and subtractions are necessary. So no of 

addition is same in homogeneous and lie algebra methods. This is evident in the figure 

4.2, but again when the degree of freedom increases lie algebra method requires less 

no of additional computation as seen in the downward deviation of the line from the 

homogeneous line in the graph. 

 
The observation made from the models and the subsequent solution prompt a 

comparison of the three methods. From the algorithm, mentioned in section 3.5, it 

can be seen that all the necessary unit vectors 1, +tta  and ts  are determined 

successively in a loop with t = 1 to n. In every step of this loop two main operations 

are performed. The first one is the determination of the transformation quaternion tQ̂  

and 1tQ̂ +  using equation 3.36 and equation 3.37 respectively. For determination of 

each of these 3 multiplications are needed. The second operation is the quaternion 
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product used to determine the unit line vectors 1, +tta and ts  from equation 3.34 

and equation 3.38. Here the vector s and a are known as quaternions with zero scalar 

part. The quaternion product needs 8 additions and subtractions and 12 

multiplications.  After the ending of this loop, the position vector of the end-effector 

is determined by adding the n position vectors of every joint in the open kinematic 

chain of the robot as represented in equation 3.37. To determine the position vector of 

every joint and to add it to the previous one, 6 additions and subtractions and 6 

multiplications are needed. The first and last column of the orientation matrix of the 

end-effector is known from the unit vectors 1t,ta +   and 1ts + . The determination of the 

second column of the orientation matrix, which is the cross product of the other two 

columns, needs 3 additions and subtractions and 6 multiplications.  

 
To facilitate the comparison, it is supposed that the computational time to perform 

an addition is half of the time required for one multiplication. A comparison of 

the number of mathematical operations required for computation of end-effector 

position using the two methods is presented. It is clear from the above comparison 

along with the graphical illustration, that the number of operations is almost same with 

manipulators having less DOF. As the number of DOF goes on increasing and the 

complicacies of computations increase, the quaternion method scores significantly 

better than the homogeneous matrix method and lie algebra method as is evident in the 

graph presented in Figure 4.2. It is obvious that for manipulators with more than 

three degrees of freedom, the quaternion theory based algorithm requires less 

computational time than the traditional homogeneous algorithms. Quaternions 

require eight memory locations for the representation of position while three memory 

locations for orientation. But the homogeneous method requires 16 memory locations 

for both position and orientation. The storage requirement affects the computational 

time as the cost of fetching an operand from memory exceeds the cost of performing a 

basic arithmetic operation. Therefore, it can be concluded that for manipulators with 

higher number of DOF the dual quaternion theory method is more cost effective than 
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the homogeneous transformation and lie algebra method. Further, in dual quaternion 

method the storage cost is low because it is not necessary to store all the 

transformation quaternions from the beginning. 

The majority of applications of quaternions involve pure rotations, for this we restrict 

the quaternions to those with unit magnitude and we use only multiplications and not 

addition to represent a combination of different rotations. When quaternions are 

normalised in this way, together with the multiplication operation to combine 

rotations, form a mathematical group, in this case SU(2).One can use this to do lots of 

operations which are required in practical applications such as, combining subsequent 

rotations (and equivalently orientations), interpolating between them, etc.  

When quaternions are used in this way one can think of them as being similar to axis-

angle except that real part is equal to cos(angle/2) and the complex part is made up of 

the axis vector times sin(angle/2). It is quite difficult to give a physical meaning to a 

quaternion, and many people find this similarity to axis-angle as the most intuitive 

way to think about it, others may just prefer to think of quaternions as an interesting 

mathematical system which has the same properties as 3D rotations. 

Given a tiny rotation one can represent it as three Euler angles a, b, c, all of which are 

tiny. Considering a, b and c as forming a vector [a,b,c], apart from an even smaller 

error, multiplication of rotations becomes ordinary addition of vectors and the order of 

rotations isn't significant. But if one chooses not to ignore this small error it is seen 

that a rotation represented by u and a rotation represented by v don't quite commute 

and the order does matter. The size of this error is measured by the cross product of u 

and v. This is intuitively plausible, one would expect that rotations defined by vectors 

in a similar direction would be closer to commuting, and this is reflected in the fact 

that the cross product is zero for parallel vectors. 
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4.6 Summary 

 
The vector parameterization through the Lie algebra facilitates the definition the robot 

tool orientation in a task-oriented manner. The Euler angles parameterization is not 

convenient, since the definition of the orientation is sequential, so it is very difficult to 

define the orientation or more difficult to interpolate between two successive 

orientations of the robot end-effector. Since quaternion represents explicitly the axis of 

rotation, by using quaternions the axis of rotation is constant and the angle of rotation 

interpolated in a linear mode. Among the difficulties in representation of the 

orientation of a body is the one due to the fact that the angular velocity is not the time 

derivative of some vector representing the orientation of the body, as happens in the 

case of position definition. The vector parameter representation of the orientation 

proved very convenient for the definition of the error and time derivative of the 

orientation of a robot end-effector. In some tasks such as painting or arc welding, it 

seems natural and geometrically easy to define the desired orientation and position of 

the axis of the robot tool with respect to the spatial path, by simply defining a line. 

Therefore, the line transformation methods have to be investigated for trajectory 

generation in such cases. Generally speaking, despite the fact that a line presentation 

needs an extra degree of freedom compared to the point presentation, it is often useful 

to analyze spatial manipulators in terms of lines since lines present physically 

rotational axis of robot tools. Using screw theory, the position/velocity of the end-

effector can be defined by a motor and the determination of the Jacobean matrix is 

straightforward. 

 
Despite the advantages of the line-oriented methods are not well-suited for efficient 

kinematic computations or real-time control applications mainly because of the fact 

that computational cost advantages and important details of key algorithms are too 

complex to be well understood by the robotics community. One of the aims of the 

present work is to contribute in the clarification of these methods, in order to help in 

wider utilization of these methods in the robotics community. 



          
 

 CONCLUSION AND FUTURE SCOPE 
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CHAPTER 5 
 
 

Conclusion and Future Scope 

 
 
 
5.1 General  

 
In the present work homogeneous transformation, quaternion algebra, lie algebra and 

their geometrical significance has been studied. The mathematical formulations for the 

forward kinematic solution of open link revolute robot having six joints are done 

corresponding to all the methods. This work introduces a new formulation for the 

kinematic synthesis of open link robots having six joints. The standard kinematic 

equations of the chain are transformed into successive quaternion transformation and 

then expressed using dual quaternion. It is evident from the results that a matrix 

product requires many more operations compared to quaternion product. A lot of time 

can be saved and at the same time more numerical accuracy can be preserved with 

quaternion than with matrices. From the example mentioned, it is clear that quaternion 

algebra provides a very effective and efficient method over other two methods for 

representation of forward kinematics equation. Further, the method is cost effective as 

compared to matrix method and lie algebra method as it requires less computer 

memory and saves lot of time by reducing the number of mathematical calculations.  

 
Further, the method is cost effective as it requires less computer memory and saves lot 

of time by reducing the number of mathematical calculations. Comparing the quality 

of results obtained from the two methods, it is observed that the quaternion method 

gives exactly same result as that of homogeneous method. This is a general method 
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applied specifically to robot manipulator in the present work. However this can also be 

extended to any other open kinematic chain for the purpose of kinematic analysis. 

Therefore this can be used as a powerful tool in the solution of kinematic problems in 

general.  

 
The screw theory and Lie algebra-based methods offer a more compact and consistent 

way for the definition of the end-effector than the homogeneous transformation one. 

The explanation of the physical meaning of the parameters and operations in screw 

theory and Lie algebra shows that the intuitive understanding of the orientation 

definition it is not a hard task. Therefore, the wider use of these methods into the 

robotics community has to be considered. 

 
It is worth to perform, in the future, a comparative study of these methods in the 

velocity and dynamic analysis of the robot manipulators. In addition, the advantages 

of the trajectory generation based on screw theory have to be investigated. 

 
5.2 Remarks on Formulation, Convenience and Applicability 

 
The homogeneous matrix method is widely used and accepted for robotics application. 

But quaternion algebra becomes an effective method for robots having DOF more than 

four. The efficiency of Lie algebra is midway between homogeneous matrix method 

and quaternion algebra method and again the mathematical formulation is difficult 

than the quaternion algebra method. In summary it can be concluded that quaternion 

algebra method can be used as most effectively way for higher DOF robots. Presently 

there are many quaternion applications in the area of aerospace sequence, spherical 

trigonometry, calculus for kinematics and dynamics, rotation in phase space etc.  
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5.3 Scope for Future Work 

 
The formulation done in this work is limited to robot kinematics only but it can be also 

extended into robot dynamics involving computation of velocity, acceleration and 

force related to joints. This can be also applicable for the kinematics of simple 

mechanisms. The methods discussed in this work can be compared with other standard 

methods like neural network, genetic algorithm for suitability of application. 
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Appendix 
 
 
 
A) Computer Program for representation of position and orientation of 6-dof 
revolute robot, using homogeneous matrix method 
 
 
A=[-160 -54.4 160;-225 135 45;-45 45 225;-110 -16.7 170;-100 -33.34 100;-266 -88.7 266]; 
[m,n]=size(A); 
C=[]; 
S=[]; 
a=[0 431.8 -20.32 0 0 0]; 
d=[0 149.09 0 433.07 0 56.25]; 
for i=1:n 
    A1=A(:,i); 
    for j=1:m 
        c1(j)=cos(A1(j)); 
        s1(j)=sin(A1(j)); 
        a1=A1(2); 
        a2=A1(3); 
        C23(i)=cos(a1+a2); 
        S23(i)=sin(a1+a2);             
    end 
    C=[C;c1]; 
    S=[S;s1]; 
end 
T=[]; 
for i=1:n 
    c=C(i,:); 
    c23=C23(i); 
    s23=S23(i); 
    s=S(i,:); 
    nx(i)=c(1)*[c23*(c(4)*c(5)*c(6)-s(4)*s(6))-s23*s(5)*c(6)]-s(1)*((s(4)*c(5)*c(6)+c(4)*s(6))); 
    ny(i)=s(1)*[c23*(c(4)*c(5)*c(6)-s(4)*s(6))-s23*s(5)*c(6)]+c(1)*(s(4)*c(5)*c(6)+c(4)*s(6)); 
    nz(i)=-s23*[c(4)*c(5)*c(6)-s(4)*s(6)]-c23*s(5)*c(6); 
    sx(i)=c(1)*[-c23*(c(4)*c(5)*c(6)+s(4)*c(6))+s23*s(5)*s(6)]-s(1)*(-s(4)*c(5)*s(6)+c(4)*c(6)); 
    sy(i)=s(1)*[-c23*(c(4)*c(5)*s(6)+s(4)*c(6))+s23*s(5)*s(6)]+c(1)*(-s(4)*c(5)*s(6)+c(4)*c(6)); 
    sz(i)=s23*(c(4)*c(5)*s(6)+s(4)*c(6))+c23*s(5)*s(6); 
    ax(i)=c(1)*(c23*c(4)*s(5)+s23*c(5))-s(1)*s(4)*s(5); 
    ay(i)=s(1)*(c23*c(4)*s(5)+s23*c(5))+c(1)*s(4)*s(5); 
    az(i)=-s23*c(4)*s(5)+c23*c(5); 
    px(i)=c(1)*[d(6)*(c23*c(4)*s(5)+s23*c(5))+s23*d(4)+a(3)*c23+a(2)*c(2)]-
s(1)*(d(6)*s(4)*s(5)+d(2)); 
    
py(i)=s(1)*[d(6)*(c23*c(4)*s(5)+s23*c(5))+s23*d(4)+a(3)*c23+a(2)*c(2)]+c(1)*(d(6)*s(4)*s(5)+d(2))
; 
    pz(i)=d(6)*(c23*c(5)-s23*c(4)*s(5))+c23*d(4)-a(3)*s23-a(2)*s(2); 
    T_1=[nx(i) sx(i) ax(i) px(i);ny(i) sy(i) ay(i) py(i);nz(i) sz(i) az(i) pz(i);0 0 0 1];  
    T=[T T_1]; 
end 
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    T1=T(:,1:4); 
    T2=T(:,5:8); 
    T3=T(:,9:end); 
 
 
B) Computer Program for representation of position and orientation of 6-dof 
revolute robot, using quaternion algebra method 
 
%%%%%%% position vector%%%% 
clc 
clear all 
close all 
d = [0 149.09 0 433.07 0 56.25]; 
for n = 1:6 
    theta(n) = input('Enter the joint angle between in radian:'); 
end 
twistangle = [-90 0 90 -90 90 0]*pi/180; 
link_length = [0 431.8 -20.32 0 0 0]; 
a = cell(1,7); 
q = cell(1,6); 
p = cell(1,6); 
a{1} = [1 0 0]; 
s{1} = [0 0 1]; 
q{1} = [0 0 1]; 
for m = 1:6 
    if abs(cos(theta(m))) < 0.01 
        theta1 = round(cos(theta(m))); 
    else 
        theta1 = cos(theta(m)); 
    end 
    if abs(sin(theta(m))) < 0.01 
        theta2 = round((sin(theta(m)))); 
    else 
        theta2= sin(theta(m)); 
    end 
    if abs(cos(twistangle(m)))< 0.01 
        twist1 = round(cos(twistangle(m))); 
    else 
        twist1 = cos(twistangle(m)); 
    end 
    if abs(sin(twistangle(m)))< 0.01 
        twist2 = round(sin(twistangle(m))); 
    else 
        twist2 = sin(twistangle(m)); 
    end 
    a{m+1} = theta1*a{m}+ theta2*cross(s{m},a{m}); 
    s{m+1} = twist1*s{m}+twist2*cross(a{m+1},s{m}); 
    p{m} = d(m)*s{m}+ link_length(m)*a{m+1}; 
    if m>1 
%         iter = m; 
%         while iter > 1 
            p{m} = p{m}+p{m-1}; 
%             iter = iter -1; 
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%         end 
    end 
end 
 
%%% finding orientation vector pn% 
 Pn = p{1}+p{2}+p{3}+p{4}+p{5}+p{6}; 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 




