415 research outputs found

    Robust interactive cutting based on an adaptive octree simulation mesh

    Get PDF
    We present an adaptive octree based approach for interactive cutting of deformable objects. Our technique relies on efficient refine- and node split-operations. These are sufficient to robustly represent cuts in the mechanical simulation mesh. A high-resolution surface embedded into the octree is employed to represent a cut visually. Model modification is performed in the rest state of the object, which is accomplished by back-transformation of the blade geometry. This results in an improved robustness of our approach. Further, an efficient update of the correspondences between simulation elements and surface vertices is proposed. The robustness and efficiency of our approach is underlined in test examples as well as by integrating it into a prototype surgical simulato

    Real-time Error Control for Surgical Simulation

    Get PDF
    Objective: To present the first real-time a posteriori error-driven adaptive finite element approach for real-time simulation and to demonstrate the method on a needle insertion problem. Methods: We use corotational elasticity and a frictional needle/tissue interaction model. The problem is solved using finite elements within SOFA. The refinement strategy relies upon a hexahedron-based finite element method, combined with a posteriori error estimation driven local hh-refinement, for simulating soft tissue deformation. Results: We control the local and global error level in the mechanical fields (e.g. displacement or stresses) during the simulation. We show the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach. Conclusions: Error control guarantees that a tolerable error level is not exceeded during the simulations. Local mesh refinement accelerates simulations. Significance: Our work provides a first step to discriminate between discretization error and modeling error by providing a robust quantification of discretization error during simulations.Comment: 12 pages, 16 figures, change of the title, submitted to IEEE TBM

    TetSplat: Real-time Rendering and Volume Clipping of Large Unstructured Tetrahedral Meshes

    Get PDF
    We present a novel approach to interactive visualization and exploration of large unstructured tetrahedral meshes. These massive 3D meshes are used in mission-critical CFD and structural mechanics simulations, and typically sample multiple field values on several millions of unstructured grid points. Our method relies on the pre-processing of the tetrahedral mesh to partition it into non-convex boundaries and internal fragments that are subsequently encoded into compressed multi-resolution data representations. These compact hierarchical data structures are then adaptively rendered and probed in real-time on a commodity PC. Our point-based rendering algorithm, which is inspired by QSplat, employs a simple but highly efficient splatting technique that guarantees interactive frame-rates regardless of the size of the input mesh and the available rendering hardware. It furthermore allows for real-time probing of the volumetric data-set through constructive solid geometry operations as well as interactive editing of color transfer functions for an arbitrary number of field values. Thus, the presented visualization technique allows end-users for the first time to interactively render and explore very large unstructured tetrahedral meshes on relatively inexpensive hardware

    Fast Exact Booleans for Iterated CSG using Octree-Embedded BSPs

    Full text link
    We present octree-embedded BSPs, a volumetric mesh data structure suited for performing a sequence of Boolean operations (iterated CSG) efficiently. At its core, our data structure leverages a plane-based geometry representation and integer arithmetics to guarantee unconditionally robust operations. These typically present considerable performance challenges which we overcome by using custom-tailored fixed-precision operations and an efficient algorithm for cutting a convex mesh against a plane. Consequently, BSP Booleans and mesh extraction are formulated in terms of mesh cutting. The octree is used as a global acceleration structure to keep modifications local and bound the BSP complexity. With our optimizations, we can perform up to 2.5 million mesh-plane cuts per second on a single core, which creates roughly 40-50 million output BSP nodes for CSG. We demonstrate our system in two iterated CSG settings: sweep volumes and a milling simulation

    Real-time hybrid cutting with dynamic fluid visualization for virtual surgery

    Get PDF
    It is widely accepted that a reform in medical teaching must be made to meet today's high volume training requirements. Virtual simulation offers a potential method of providing such trainings and some current medical training simulations integrate haptic and visual feedback to enhance procedure learning. The purpose of this project is to explore the capability of Virtual Reality (VR) technology to develop a training simulator for surgical cutting and bleeding in a general surgery

    VISIO-HAPTIC DEFORMABLE MODEL FOR HAPTIC DOMINANT PALPATION SIMULATOR

    Get PDF
    Vision and haptic are two most important modalities in a medical simulation. While visual cues assist one to see his actions when performing a medical procedure, haptic cues enable feeling the object being manipulated during the interaction. Despite their importance in a computer simulation, the combination of both modalities has not been adequately assessed, especially that in a haptic dominant environment. Thus, resulting in poor emphasis in resource allocation management in terms of effort spent in rendering the two modalities for simulators with realistic real-time interactions. Addressing this problem requires an investigation on whether a single modality (haptic) or a combination of both visual and haptic could be better for learning skills in a haptic dominant environment such as in a palpation simulator. However, before such an investigation could take place one main technical implementation issue in visio-haptic rendering needs to be addresse

    A robust algorithm for implicit description of immersed geometries within a background mesh

    Get PDF
    The paper presents a robust algorithm, which allows to implicitly describe and track immersed geometries within a background mesh. The background mesh is assumed to be unstructured and discretized by tetrahedrons. The contained geometry is assumed to be given as triangulated surface. Within the background mesh, the immersed geometry is described implicitly using a discontinuous distance function based on a level-set approach. This distance function allows to consider both, “double-sided” geometries like membrane or shell structures, and “single-sided” objects for which an enclosed volume is univocally defined. For the second case, the discontinuous distance function is complemented by a continuous signed distance function, whereas ray casting is applied to identify the closed volume regions. Furthermore, adaptive mesh refinement is employed to provide the necessary resolution of the background mesh. The proposed algorithm can handle arbitrarily complicated geometries, possibly containing modeling errors (i.e., gaps, overlaps or a non-unique orientation of surface normals). Another important advantage of the algorithm is the embarrassingly parallel nature of its operations. This characteristic allows for a straightforward parallelization using MPI. All developments were implemented within the open source framework “KratosMultiphysics” and are available under the BSD license. The capabilities of the implementation are demonstrated with various application examples involving practice-oriented geometries. The results finally show, that the algorithm is able to describe most complicated geometries within a background mesh, whereas the approximation quality may be directly controlled by mesh refinement.Peer ReviewedPostprint (published version

    Meshless Mechanics and Point-Based Visualization Methods for Surgical Simulations

    Get PDF
    Computer-based modeling and simulation practices have become an integral part of the medical education field. For surgical simulation applications, realistic constitutive modeling of soft tissue is considered to be one of the most challenging aspects of the problem, because biomechanical soft-tissue models need to reflect the correct elastic response, have to be efficient in order to run at interactive simulation rates, and be able to support operations such as cuts and sutures. Mesh-based solutions, where the connections between the individual degrees of freedom (DoF) are defined explicitly, have been the traditional choice to approach these problems. However, when the problem under investigation contains a discontinuity that disrupts the connectivity between the DoFs, the underlying mesh structure has to be reconfigured in order to handle the newly introduced discontinuity correctly. This reconfiguration for mesh-based techniques is typically called dynamic remeshing, and most of the time it causes the performance bottleneck in the simulation. In this dissertation, the efficiency of point-based meshless methods is investigated for both constitutive modeling of elastic soft tissues and visualization of simulation objects, where arbitrary discontinuities/cuts are applied to the objects in the context of surgical simulation. The point-based deformable object modeling problem is examined in three functional aspects: modeling continuous elastic deformations with, handling discontinuities in, and visualizing a point-based object. Algorithmic and implementation details of the presented techniques are discussed in the dissertation. The presented point-based techniques are implemented as separate components and integrated into the open-source software framework SOFA. The presented meshless continuum mechanics model of elastic tissue were verified by comparing it to the Hertzian non-adhesive frictionless contact theory. Virtual experiments were setup with a point-based deformable block and a rigid indenter, and force-displacement curves obtained from the virtual experiments were compared to the theoretical solutions. The meshless mechanics model of soft tissue and the integrated novel discontinuity treatment technique discussed in this dissertation allows handling cuts of arbitrary shape. The implemented enrichment technique not only modifies the internal mechanics of the soft tissue model, but also updates the point-based visual representation in an efficient way preventing the use of costly dynamic remeshing operations
    • …
    corecore