
Old Dominion University
ODU Digital Commons
Modeling, Simulation & Visualization Engineering
Theses & Dissertations Modeling, Simulation & Visualization Engineering

Summer 2014

Meshless Mechanics and Point-Based Visualization
Methods for Surgical Simulations
Rifat Aras
Old Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/msve_etds

Part of the Applied Mechanics Commons, Computer Sciences Commons, and the Surgery
Commons

This Dissertation is brought to you for free and open access by the Modeling, Simulation & Visualization Engineering at ODU Digital Commons. It has
been accepted for inclusion in Modeling, Simulation & Visualization Engineering Theses & Dissertations by an authorized administrator of ODU
Digital Commons. For more information, please contact digitalcommons@odu.edu.

Recommended Citation
Aras, Rifat. "Meshless Mechanics and Point-Based Visualization Methods for Surgical Simulations" (2014). Doctor of Philosophy
(PhD), dissertation, Modeling Simul & Visual Engineering, Old Dominion University, DOI: 10.25777/8kcm-ky51
https://digitalcommons.odu.edu/msve_etds/32

https://digitalcommons.odu.edu?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/706?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/706?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.odu.edu/msve_etds/32?utm_source=digitalcommons.odu.edu%2Fmsve_etds%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@odu.edu

MESHLESS MECHANICS AND POINT-BASED VISUALIZATION METHODS

FOR SURGICAL SIMULATIONS

by

Rifat Aras
B.S. May 2005, Bilkent University, Turkey

M.Sc. December 2008, Bilkent University, Turkey

A Dissertation Submitted to the Faculty of
Old Dominion University in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

MODELING AND SIMULATION

OLD DOMINION UNIVERSITY
August 2014

Approved by:

Yuzhong ShenTDicectoi

ichel Audette (Member)

Frederic McKenzie (Member)

Due T. Nguyen (Member)

UMI Number: 3581585

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation PiiblishMiQ

UMI 3581585
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

ABSTRACT

MESHLESS MECHANICS AND POINT-BASED VISUALIZATION METHODS

FOR SURGICAL SIMULATIONS

Rifat Aras
Old Dominion University, 2014

Director: Yuzhong Shen

Computer-based modeling and simulation practices have become an integral part

of the medical education field. For surgical simulation applications, realistic constitutive

modeling of soft tissue is considered to be one of the most challenging aspects o f the

problem, because biomechanical soft-tissue models need to reflect the correct elastic

response, have to be efficient in order to run at interactive simulation rates, and be able to

support operations such as cuts and sutures.

Mesh-based solutions, where the connections between the individual degrees of

freedom (DoF) are defined explicitly, have been the traditional choice to approach these

problems. However, when the problem under investigation contains a discontinuity that

disrupts the connectivity between the DoFs, the underlying mesh structure has to be

reconfigured in order to handle the newly introduced discontinuity correctly. This

reconfiguration for mesh-based techniques is typically called dynamic remeshing, and

most of the time it causes the performance bottleneck in the simulation.

In this dissertation, the efficiency of point-based meshless methods is investigated

for both constitutive modeling of elastic soft tissues and visualization of simulation

objects, where arbitrary discontinuities/cuts are applied to the objects in the context o f

surgical simulation. The point-based deformable object modeling problem is examined in

three functional aspects: modeling continuous elastic deformations with, handling

discontinuities in, and visualizing a point-based object. Algorithmic and implementation

details of the presented techniques are discussed in the dissertation. The presented point-

based techniques are implemented as separate components and integrated into the open-

source software framework SOFA.

The presented meshless continuum mechanics model o f elastic tissue were

verified by comparing it to the Hertzian non-adhesive ffictionless contact theory. Virtual

experiments were setup with a point-based deformable block and a rigid indenter, and

force-displacement curves obtained from the virtual experiments were compared to the

theoretical solutions.

The meshless mechanics model of soft tissue and the integrated novel

discontinuity treatment technique discussed in this dissertation allows handling cuts o f

arbitrary shape. The implemented enrichment technique not only modifies the internal

mechanics of the soft tissue model, but also updates the point-based visual representation

in an efficient way preventing the use of costly dynamic remeshing operations.

Copyright, 2014, by Rifat Aras, All Rights Reserved.

V

This dissertation is dedicated to my family
for their endless support and their faith in me.

ACKNOWLEDGMENTS

Over the course o f my doctoral studies, I have received support and encouragement from

a great number of individuals. Dr. Yuzhong Shen has been a mentor and a guide. His guidance

helped me a lot in this journey. Another individual I would like to give credit is Dr. Ahmed

Noor, as he was an inspiration both intellectually and spiritually. I would like to express my

gratitude to my committee of Dr. Michel Audette, Dr. Frederic McKenzie, and Dr. Due T.

Nguyen for their support and helpful feedback over the years.

In addition, I would like to thank my friends and colleagues, who were with me

throughout my curricular and extra-curricular activities.

Finally, I would like to give my deepest thanks to my family and my soon-to-be family

for their endless support and their faith. You are the real MVPs!

TABLE OF CONTENTS

Page

LIST OF TABLES.. ix

LIST OF FIGURES...x

1. INTRODUCTION... 1
1.1 Problem Statement...2
1.2 Aims and Objectives... 5
1.3 Dissertation Outline.. 6

2. POINT-BASED MESHLESS MECHANICS FOR DEFORMABLE OBJECT
MODELING...7
2.1 Overview...7
2.2 Continuum Elasticity Theory... 12
2.3 Point-Based Discretization.. 17
2.4 Moving Least Squares Approximation.. 30
2.5 Computation of Forces via Strain Energy...35
2.6 Summary...36

3. HANDLING DISCONTINUITIES IN MESHLESS METHODS...................................37
3.1 Overview...37
3.2 Modeling Discontinuities in 2D.. 39
3.3 Modeling Discontinuities in 3D.. 48
3.4 Summary...56

4. VISUALIZATION OF POINT-BASED MODELS...57
4.1 Overview.. 57
4.2 Surface Reconstruction Techniques...58
4.3 Direct Point Rendering Techniques..63
4.4 Point-Based Visualization with Surface Splatting... 64
4.5 Curvature Adaptive Splat Radius Sampling... 73
4.6 Animation of the Point Splats..80
4.7 Summary.. 81

5. A COMPLETE POINT-BASED SURGICAL SIMULATION FRAMEW ORK 82
5.1 Overview.. 82
5.2 Simulation Open Framework Architecture (SOFA).. 83
5.3 Point-Based Methods Plug-in for SO FA ...85
5.4 Cutting Operation for the Behavior Model..87
5.5 Cutting Operation for the Visual M odel..91
5.6 Spatial Data Structures.. 94
5.7 Code Verification through Hertzian Contact Theory.. 99

viii

Page

5.8 Summary...105

6. RESULTS... 106

7. CONCLUSIONS..113

REFERENCES... 117

APPENDIX... 124

VITA 132

IX

LIST OF TABLES

Table Page

1. Root mean square error values of the approximations are compared for different MLS
configurations.. 33

X

LIST OF FIGURES

Figure Page

1. In free-form deformation techniques, the object is enclosed in a lattice o f control points 8

2. Shape matching methods first match the original shape of the object to its deformed
configuration by defining a rigid-body transformation... 9

3. In the Lagrangian formulation of continuum elasticity, a deformable body is represented in
two configurations... 13

4. Influence of a node to its neighbors in (a) mesh-based techniques, and in (b) meshless
techniques... 18

5. SPH-based approximation fails reconstructing constant fields (plus signs)...............................20

6. Approximation power of the SPH method degrades as the uniformity o f the nodes vanishes.
 21

7. Comparison of different order reconstructions... 22

8. Starting from the surface’s bounding box, each octree cell is refined if it has a part of the
surface until the desired octree depth is reached.. 25

9. Volumetric discretization steps of sample objects... 26

10. The workflow of the point-based discretization pipeline takes node positions from the
vertices of tetrahedral... 27

11. The polynomial weight function (kernel) used in the MLS approximations............................. 28

12. The central (blue) and neighboring (green) particles and the variables that define the
influence of one on another... 28

13. Typically, spatial integration techniques utilize a background grid with multiple integration
points per region (left), in nodal integration techniques (right) spatial derivatives are
calculated only at the node locations..30

14. A continuous function is approximated from random data points at equidistant locations
using the linear basis [1 r] ...31

15. Comparison of weight and shape functions of linear basis reconstruction.................................31

16. A continuous function is approximated from random data points at equidistant locations
using the quadratic basis [1 x x 2 \ ...32

17. Comparison of weight and shape functions o f quadratic basis reconstruction.......................... 32

xi

Figure Page

18. Two examples of weight function-modifying discontinuity treatment techniques in meshless
methods, (a) the visibility criterion and (b) the diffraction method...38

19. The discontinuity caused by a cut segment is defined at the local coordinate frame of the cut
segment...39

20. The function d l + (t) is calculated for a cut segment with t l = 0 and t2 = 1........................40

21. Three dimensional plots of (a) the distance function d2 and (b) the discontinuous function <p.
... 41

22. Contour plot of the discontinuous (p function...42

23. The weight functions of the close meshless nodes are modified incorrectly when consecutive
enrichments are applied by multiplying...43

24. The common coordinate system (s, t) is updated with each propagating cut segment (a-d). 45

25. Cut segments are processed as a series instead of individual processing................................... 46

26. The region values are assigned for individual cut segments with respect to the common
coordinate system, (a-c) are the consecutive segments o f the complete cut.............................. 46

27. For each grid location, the s-coordinates, which essentially represent the signed vertical
distance of a point to the cut, are calculated according to the assigned region value...............47

28. The extended enrichment function for two cases of sequential cut segments............................48

29. The original triangle strip that defines the cut surface (red), and the projected triangle strip
(blue)...49

30. Separator vectors nr' are calculated at the boundaries o f the triangle groups..........................50

31. The regions o f 3D grid points are set by first projecting them onto the common plane and
then testing them against the separator vectors...50

32. The d2 -I- distance function computed for the cut surface.. 51

33. The computed s values for the grid points with respect to their master triangles......... 52

34. The contour plot of the discontinuous function (}) (view 1)...53

35. The contour plot of the discontinuous function cj> (view 2)...53

36. The contour plot of the discontinuous function cf) (view 3)...54

xii

Figure Page

37. The iso-surfaces of the calculated enrichment function for the grid, (a) 1-level-set, (b) 0.5-
level-set, and (c) O-level-set...55

38. The Ball-Pivoting algorithm starts from a seed triangle and a sphere that touches all three
vertices..58

39. The Marching Cubes algorithm finds the intersection points of the surface with the cubes and
stitches a triangular surface out of these intersection points.. 61

40. The Dual Contouring algorithm uses the surface normal information to find a point inside the
cubical volumes that minimizes a given error metric.. 62

41. Direct rendering of points with OpenGL point primitives as screen-aligned squares with
adjustable size, (a) a rectangular block, and (b) a liver model rendered with point primitives.
... 65

42. On supporting graphics hardware, it is possible to render point primitives as screen-aligned
disks..66

43. Oriented point splats can be generated by applying an alpha texture on a polygon................. 67

44. The weight function is encoded as an alpha texture and applied to polygons to create oriented
splats... 68

45. Pixels of multiple splats can land on the same location in the frame buffer.............................. 69

46. The alpha value-based color blending is implemented in several steps......................................70

47. Direct point rendering results with alpha-blended point splats that are oriented according to
the given point normal information..71

48. Comparison of direct point rendering approaches... 73

49. The average distance to ^-nearest neighbors is smaller in denser point samplings (a)
compared to (b) sparse point samplings...74

50. The splat radii distribution with point density-based sampling... 75

51. Local plane fitting for curvature estimation..76

52. Estimating the curvature of the point p i with geometrical equalities... 77

53. The splat radii distribution with curvature-based sampling..78

54. The splat radius distribution with surface variation-based sampling.. 79

55. Original point splat implementation vs. the adaptive implementation..79

xm

Figure Page

56. The surface point splat (disk with normal vector) is controlled by a number o f nearby
meshless nodes.. 80

57. In SOFA, a simulation object has multiple representations (models) each corresponding to a
different functionality... 84

58. All three representations of a deformable liver model are shown together................................ 84

59. Individual SOFA components that are used to model a deformable liver object...................... 86

60. The components that were implemented for the point-based approach are grouped according
to their functionalities...88

61. Processing of the cut points in the enrichment grid... 89

62. New points are sampled uniformly on the cut surface for each pair of triangles. The density
of the sampled points is defined by a density parameter...92

63. The algorithm for sampling uniform points on a cut surface represented as a triangle strip.. 92

64. Each point on the cut surface is input to an inside/outside test, and the ones that are
designated as inside points are used to generate new surface points...93

65. Surface inside/outside tests with respect to two oriented surface points.................................... 94

66. A cut in a deformable body affects a meshless node as it intersects with its spherical domain
of influence.. 97

67. The distance function d3 is calculated for a cut surface in 3D.. 98

68. The iso-surface visualization of the distance function at level-set (a) 0.5 and (b) 1.5............. 99

69. Comparison of the FEBio FEM Code and the theoretical solution of the Hertzian non­
adhesive frictionless contact theory..101

70. Initial setup of the indentation experiment for the SOFA FEM model..................................... 102

71. Error in the L2 norm with respect to the theoretical solution as function of total number of
the degree of freedom for the meshless method... 103

72. Comparison of the SOFA FEM implementation and the point-based approach with close
indentation accuracy and the theoretical solution...104

73. Convergence of the indentation value with increasing number o f meshless nodes.................104

74. The rectangular block, which is discretized by regularly distributed points, deforms under
gravity... 106

XIV

Figure Page

75. The meshless node locations o f the deformable block are obtained through hierarchical
discretization..107

76. The visual model of the simulation object is represented by point primitives.........................107

77. The deformable block is visualized with oriented point splat primitives................................. 108

78. The deformable block is cut, which results in the update of the behavior and visual models.
... 109

79. The deformable block is cut a second time, completely separating a piece........................... 109

80. The deformable block that underwent cut operations is visualized with oriented point splat
primitives..110

81. The meshless node locations o f the liver object are obtained through hierarchical
discretization..110

82. Visual model of the liver object is represented by scaled-down oriented point splats 111

83. The deformable liver model is visualized with oriented point splat primitives..................... 111

84. An introduced cutting operation is visualized by (a) scaled-down point splats, and (b)
regular-sized oriented point splat primitives... 112

CHAPTER 1

INTRODUCTION

Medical education involves the concept of apprenticeship [1], where novices directly

learn from experienced doctors and their interactions with or operations on the patients in

hospitals to increase their level of expertise. Although classical apprenticeship program

constitutes the basis of the medical education field, computer-based modeling and simulation

practices have begun to make an impact as well. Compared to other modeling and simulation

(M&S) domains though, researchers are still facing several challenges in computer-based

medical M&S. For example, flight simulators have reached a point where military and

commercial pilots can be easily trained to fly a new aircraft as flight simulators can provide

experiences that are almost indistinguishable from the reality. For medical simulators however,

we are still far away from this level as stated by Loftin [2] as it is quite difficult to capture and

reflect correct mechanical properties of soft tissue. Measuring the mechanical properties has

several parameters on its own: in vivo vs. ex vivo, tissue temperature, amount o f blood

circulation and storage conditions are some of these. Recently, successful medical simulators that

are targeted for very specialized procedures are seen in the field [3], however a general solution

is yet to be found due to the aforementioned wide array of parameters1.

Medical modeling and simulation features both anatomical models and therapy models,

both of which represent significant challenges. According to Ota et al. [4], the greatest challenge

in building complex therapy models is to capture the accurate response of soft-tissue. For

surgical simulator applications, biomechanical models of human soft-tissues have to be accurate,

efficient enough to be computed in real time, and able to handle topology altering operations

1 IEEE Transactions and Journals Style is used in this dissertation for formatting figures, tables, and references.

2

such as cuts and sutures [5]. These requirements lead to simulation interactivity vs. model

fidelity trade-offs that need to be examined in the context in which they are applied. Some

attempts to address these requirements are using mass-spring networks as an alternative to finite

element methods [6] and incorporating models of linear materials instead of more complex non­

linear materials.

1.1 Problem Statement

Deformable modeling of soft tissue is a continuum elasticity problem, whose numeric

solution involves discretization of the continuous domain into discrete elements. Numerous non­

physical and physically-based models have been utilized in order to approximate this solution.

Free-form deformation lattices, mass-spring networks, and finite element models (FEM) that are

composed of tetrahedral/hexahedral elements are all examples of such models. The discretized

models result in systems with many degrees o f freedom (DoFs) that essentially define the total

kinematic state of the modeled object. The aforementioned model examples have one property in

common, they all define the connectivity information between the DoFs explicitly. When there is

a situation that disrupts this connectivity, such as an introduced discontinuity in the form of a cut,

the discretization of the continuum needs to be redefined to handle the changes in the

connectivity. Various approaches have been proposed to handle these changes caused by cuts.

Courtecuisse et al. [7] presented an FEM-based soft tissue deformation methodology that

also supports real-time virtual cutting. In the presence of a cut, the topology of the finite

elements that build up the simulation object changes along with the simulation-specific matrices.

The topology changes in this work were encoded in three types o f topology operations: element

3

removal, element subdivision, and element addition. This work benefitted from a GPU-based

parallel implementation in order to ensure interactive operation rates.

In the work of Wu et al. [8], the authors discretized the simulation object by using a semi­

regular hexahedral finite element grid. The volume was partitioned using an octree, and the face-

adjacent cells of the octree were linked together. The advantage of this discretization is the

ability to update the topology of the elements in an efficient way, when a cut is being introduced

to the simulation domain by marking the links between the affected elements as disconnected.

The octree was refined dynamically along the cut surface in order to retain fine detailed cuts. The

authors employed several approximations of the deformable model, such as the concept of

Composite Finite Elements (CFEs), in which smaller neighboring hexahedral elements are

grouped together to form larger elements, thus decreasing the number of DoFs significantly.

With this CFE-based approximation and a multi grid implicit solver, the authors were able to

achieve simulation rates o f 15 frames per second during the cutting operation.

Wu et al. [8] visualized the simulation object through a Dual Contouring-based surface

extraction algorithm, where the dual grid was defined by the element-connecting links, and the

optimal surface vertices were placed using the cut information such as the intersection point of

the cut with the link and the normal of the cut surface. The Dual Contouring algorithm is

discussed in detail in Chapter 4.

Steinemann et al. [9] followed a different approach to visualize split deformable objects.

Instead of extracting the iso-surface of the object and triangulating the surface with a grid

structure, the authors proposed to represent the surface of the object explicitly with an

unstructured triangle mesh. When a cut is applied to the deformable object, the topology of the

triangular surface is updated by a series of topological tests and operations. The intersection

points between the cut surface defined by the propagating blade and the triangle surface of the

object being cut were detected and these intersection points were used to triangulate the newly

cut surfaces of the object. With a physical model with fewer DoFs and a coarse triangular

surface, this work was able to achieve simulation rates of about 21 frames per second.

The cuts that modify the elastic response of the deformable objects are called strong

discontinuities in the continuum elasticity mechanics field, and one way to treat them is through

the so-called enrichment functions, which themselves are also discontinuous functions.

Enrichment functions have been introduced to the classical FEM approach by Moes et al. [10]

and incorporated into several studies afterwards. Kaufmann et al. [11] presented a method that

employed harmonic enrichment functions for simulating detailed cutting of thin shells. These

functions were stored in 2D texture elements in higher resolutions than the underlying finite

element discretization, and computed by solving a Laplace equation that is subject to appropriate

boundary conditions. Although being a 2D enrichment technique, the time-consuming solution

of the Laplace equation prevented this work to achieve interactive rates.

In contrast with the previous approach, Barbieri et al. [12] proposed an analytical

enrichment function in 2D that is easy to compute and extend into 3D. Designed for elastic

isotropic deformable bodies modeled with meshless methods, this technique handled multiple cut

segments by simply multiplying their enrichment functions consecutively. Although the

multiplicative application is easy to implement, it can result in incorrect modification of

meshless weight functions, therefore decreasing the stability of the simulation.

5

1.2 Aims and Objectives

The thesis in this dissertation is: Using meshless mechanics fo r representing the elastic

response and point-based visualization methodfor the visual aspect o f a deformable object

facilitates the efficient handling o f cuts in a surgical simulation setting.

In the context of surgical simulations, a deformable object has a minimum of two

representations, one that represents the elastic response of the object, and another that represents

the visual aspect of the object. When these representations are modeled with methods that are

composed of tightly coupled elements, such as finite elements for elastic response and explicit

triangle meshes for the visualization, an introduced discontinuity such as a cut is typically

challenging to handle as it requires first to de-couple the affected elements, followed by

establishing new connections, and updating simulation related values. Therefore, deformable

object models and accompanying visual models that do not define an explicit connectivity

between the DoFs would be more advantageous in terms of efficiency for handling strong

discontinuities such as cuts.

In light of the problems states above, the objectives and contributions o f the work

contained in this dissertation are:

1. To develop a point-based meshless mechanics framework for modeling the

behavior of the deformable objects and investigate the feasibility of such a

framework for interactive operations.

2. To build a point-based visualization approach without the need of explicit

connectivity information of the vertices.

6

3. To create a methodology to implement a cutting simulation that correctly

modifies the tissue topology to update the elastic response as well as the

visualization of the evolving point-based tissue model.

4. To provide a complete suite o f point-based methods that can be integrated into a

flexible software framework and used seamlessly along with the other

components of the framework.

1.3 Dissertation Outline

The work contained in this dissertation is presented in seven chapters. In Chapter 2, the

theoretical foundation for point-based modeling of deformable behavior is presented. Details of

the modeling approach such as point-based discretization of the simulation object and

approximation of simulation variables through Moving Least Squares-based reconstruction are

discussed. Chapter 3, after discussing several previous approaches to treat discontinuities in

point-based/meshless methods, describes the developed approach first in 2D, and then extends it

into 3D. In Chapter 4, previous techniques for rendering objects represented with point

primitives are discussed. This discussion is followed by the detailed description of the adopted

point-based rendering pipeline. This pipeline is constructed from ground-up, where each step and

the resulting improvement on the visual quality are shown in details. Chapter 5 describes the

software environment into which the point-based techniques are being integrated. The

algorithmic and implementation details of the presented techniques along with the Hertzian non­

adhesive contact-based verification methodology are also discussed in this chapter. In Chapter 6,

the results for the point-based object representation with several examples of cutting operation

are shown, which is followed by Chapter 7, where conclusions and future work are presented.

7

CHAPTER 2

POINT-BASED MESHLESS MECHANICS FOR DEFORMABLE OBJECT MODELING

The ability to model and simulate the manipulation of deformable objects is essential to

many application areas. In order to fulfill the requirements o f different use-cases, deformable

object modeling has been studied across a range of paradigms. This chapter will first present

several previous approaches related to this field, then a brief theoretical foundation about

continuum mechanics will be laid, followed by discussions of point-based discretization, Moving

Least Squares-based approximation of field variables, and meshless mechanics-based modeling

of deformable objects.

2.1 Overview

Approaches for modeling object deformation range from non-physical methods to

physically realistic methods based on continuum mechanics. The former category of methods

makes use of one or more control points or shape parameter values. These are typically adjusted

in a user-friendly manner to obtain the desired deformation of the object. Physically-based

methods on the other hand, account for the effects o f external and internal forces, material

properties, and environmental boundary conditions on object deformation.

The early work of Sederberg and Parry [13] presented a technique for deforming solid

geometric models in an intuitive free-form manner. In this work, the deformations were based on

interpolating trivariate Bernstein polynomials, and could be applied either globally or locally

with volume preservation by encapsulating the target object in a lattice of control points. The

control points o f the enclosing lattice were manipulated in an intuitive way to achieve the desired

deformation of the object (Fig. 1).

8

Fig. 1. In free-form deformation techniques, the object is enclosed in a lattice o f control points. These control points

(a) are manipulated freely to apply the desired deformation to the object (b).

Another type of non-physical methods is Shape Matching/Position-Based methods. These

are geometrically motivated, and as opposed to physically-based methods, they resolve the

dynamics of a deformable object through geometric constraints and distances from current to

target positions instead of energies and forces. In the work of Muller et al. [14], an object, which

is composed of individual particles, kept track of two configurations: the original shape and the

current shape. At each time step, target positions for each particle were calculated by matching

the original shape of the object to the current shape. Then, inter-point distances between the

corresponding particle locations o f the matched shape and the current shape were used to pull the

particles towards their target positions (Fig. 2). Position-based methods are not as accurate as

physically-based methods, but they provide visually plausible results, making them a good

choice for virtual reality applications and games. Similarly, the work of Frisken-Gibson [15]

modified the traditional voxel-based representation of the objects and proposed a linked volume

representation that was capable o f handling interactive object manipulations such as carving,

cutting, tearing, and joining, but still unable to produce physically realistic results.

9

Shape
matching

Rot. + Tra.

Fig. 2. Shape matching methods first match the original shape o f the object to its deformed configuration by

defining a rigid-body transformation. Next, the points at deformed configuration are driven towards their homologs

in the rigidly transformed matched shape.

Free-form deformation and the Shape Matching technique are approximating and simple

methods for deforming solid objects. Although they produce plausible results for certain

application areas, the motion of their DoFs are not controlled by constitutive equations, and this

is grounds for excluding them as options for most o f the realistic simulations with medical focus.

An alternative to non-physical approximations is to use mass-spring models [16] and

membrane based approximations that utilize spring networks [17]. A mass-spring network is

composed of vertices and edges, in which each edge is realized as a spring that connects vertices

pair-wise, and each vertex is idealized as a point mass. Although these constructs employ

physical equations like Flooke’s law, it is difficult to reproduce specific elastic material

properties even with very careful distribution of spring stiffness throughout the network.

Moreover, mass-spring networks are stiff systems, meaning the numerical solutions to these

systems fluctuate rapidly after each time step, whereas the exact solutions vary slowly.

Therefore, mass-spring networks are prone to suffer from poor numerical stability, unless they

are simulated with small-enough time steps.

10

A continuum model typically relies on an underlying mesh structure either in 2D or 3D

depending on the nature and the requirements of the problem. A breadth-first classification of

mesh-based continuum models includes mass-spring networks [18], finite element methods [19],

finite volume methods [20], and finite difference methods [21], Among these, the finite element

method has received particular interest in the biomechanical modeling community.

The early work of Bro-Nielsen discussed a fast adaptation o f finite element modeling to

satisfy speed and robustness requirements in a surgical simulation setting [22]. The body part

was modeled as a 3D linear elastic solid that consisted of particles, which were deformed into a

new shape when forces were applied to the elastic solid. In this framework, the author

incorporated a technique called condensation. In the finite element modeling context,

condensation translates into obtaining a more compact version of the system model by

rearranging or eliminating terms of the matrix equations by simplifying a volume into a system

of boundary elements. For example, for a single element, the displacement degrees o f freedom at

a node in the internal region of the element can be condensed out because they are not used in

the inter-element continuity definition [19], At a macro level, for a volumetric finite element

system, masses of the internal nodes can be lumped to the surface nodes, and the equations can

be arranged accordingly to only consider finite element nodes on the surface of the model.

Accuracy of the condensation procedure largely depends on the redistribution quality o f the

masses, in case of a non-optimal distribution, solution accuracy can be adversely affected [19].

Moreover, this type of simplification is generally incompatible with a cutting simulation.

A number of recent techniques have addressed the fidelity versus efficiency trade-off.

One important approach in the area is the finite element model based on Total Lagrangian

Explicit Dynamics (TLED) by Miller et al. [23]. The difference between the TLED based finite

element model and other approaches is the former’s use of the original reference configuration of

the object to calculate the stress and strain tensors during a simulation step. As a result of

expressing computations in the reference coordinates, the authors were able to pre-compute

spatial derivatives. The pre-computation of the spatial derivatives leads to efficiency in terms of

computational resources, while being capable o f handling geometric and material non-linearities.

The authors employed central differences-based explicit integration rather than the implicit

integration scheme. With this choice, they were able to avoid solving the set o f non-linear

algebraic equations that are required by the implicit integration at each time step. However, the

use of explicit integration brings limitation on the time step size in order to ensure the stability of

the system. The authors justified their implementation choice by stating that the relatively lower

stiffness (Young’s modulus) value of the soft tissue relaxes the time step limitation considerably

compared to the typical simulations involving more stiff material like steel or concrete.

Another attempt to increase the computational efficiency o f the elastic model in the

context of interactive simulation was discussed in the method proposed by Marchesseau et al.

[24], The authors presented a new discretization method called Multiplicative Jacobian Energy

Decomposition (MJED), which allows the simulation to assemble the stiffness matrix of the

system faster than the traditional Galerkin FEM formulation. The authors reported computation

accelerations of up to five times for the St. Venant Kirchoff materials.

TLED and MJED methods both rely on pre-computation of simulation variables in order

to achieve faster solutions at each time step. Although being useful for reflecting the elastic

response of the deformable body that does not involve topological changes, these pre-

computations at the initial configuration of the simulation object would be invalidated when a

12

topology-changing cut is introduced to the system. In other words, TLED and MJED are

undermined by interactive cutting requirements.

2.2 Continuum Elasticity Theory

Continuum elasticity theory describes the mechanical behavior of the material that is

modeled as a continuous medium rather than as discrete particles. The matter is assumed to be

continuously distributed and fills the entire region of space that it occupies. Compared to simpler

methods, continuum-based approaches offer a significant advantage, which is the convergence of

the discrete solution to the continuous solution as the granularity of the discretization goes to

zero. In addition to this consideration, the material properties are represented with well-

established rheological properties such as Young's modulus and Poisson's ratio for linear

material models, in contrast to the ad-hoc fine-tuning requirement of stiffness values of the mass-

spring networks.

In continuum elasticity, deformation of a body is analyzed by studying the three major

quantities displacement, strain, and stress. These quantities can be formulated either with the

Lagrangian formulation or the Eulerian formulation. Eulerian formulation is commonly used in

the analysis of fluid mechanics problems, where the attention is mostly focused on the motion of

the material through a regular grid of volume [19]. Lagrangian formulation on the other hand, is

typically used in solid mechanics problems, and describes the position and physical properties of

the particles in terms of reference coordinates. Following the Lagrangian formulation, we can

define configurations as sets containing the positions of all particles of the continuum. When the

object undergoes deformation, the current configuration of the body is changing continuously. It

is natural to keep the original positions of the particles, called the reference configuration, and

13

define the deformation as the transformation of a body from its reference configuration to its

current configuration (Fig. 3). Strain, in the Lagrangian formulation, is a unitless measure of

relative deformation representing the displacement between the particles of the current

configuration and the reference configuration. Any strain o f a solid material generates an internal

elastic stress, which expresses the restoring internal forces that the neighboring particles exert on

each other. The relation between stress and strain quantities is defined by the so-called

constitutive equations as described below. In purely elastic materials the deformation of the

object is recovered to its reference configuration after the stress is removed.

Reference Configuration

Current Configuration

Fig. 3. In the Lagrangian formulation o f continuum elasticity, a deformable body is represented in two

configurations.

In the continuum elasticity modeling scheme, a deformable object is defined in its

reference configuration with additional material parameters that are part of the underlying

constitutive equations. The points inside the domain of the deformable body at its reference

configuration are located by material coordinates X = (X , Y ,Z), whereas the points at the current

configuration are located by world coordinates x = (x ,y , z). The displacement vector field is

therefore defined as

14

ux x - X '
U(X) = U Y = y - Y

Mz. z - Z .
= x — X . (1)

The elastic strain tensor e is computed from the spatial derivatives of the displacement

field u(X). Tensors are generalizations of vectors that describe linear mappings between scalars,

vectors, and other tensors. Tensors are defined by their orders/ranks, which also give the

dimension of the array that represent the tensor. For example, a 0th-rank tensor is a scalar value,

whereas a l st-rank tensor is represented with a vector [25], e is a 2nd-rank tensor in three

dimensions, therefore having 3 x 3 symmetric elements

XX ex y £xz
e = ^ x y € y y €yz (2)

£x z €yz £z z .

The components o f e are computed by using Green’s nonlinear strain tensor equation

under the assumption of small strain

6 = Vu + VuT + VuTVu, (3)

where the gradient of the continuous displacement vector field Vu is essentially the derivatives

of (ux , u Y, u z) with respect to (X, Y, Z) arranged in Jacobian format

[dux dux dux

VuT =
dX dY dZ
duY duY duY
dX dY dZ
duz duz duz
dX dY dZ

(4)

The stress quantity is the directional force per unit area applied to a plane. Like the strain

measurement, stress is also represented by a 3 x 3 tensor, relating the three-dimensional force

vector with the normal of the plane

a =
r^xx °xy ®xz
° x y ° y y °y z
° x z °y z *^zz

(5)

15

The force per area applied to a plane with normal n is then obtained by multiplying the

stress tensor a by n.

Both the strain and stress tensors are symmetric with six independent components each.

For the selection of the stress tensor, the concept o f being work-conjugate is important. A strain

tensor and a stress tensor are said to be work-conjugate when both o f them are either defined

with respect to material coordinates or world coordinates at the previous point in time. Work-

conjugate property is a requirement for stability and correct solutions for certain types of

problems [26]. For the Green-Lagrangian strain tensor, an appropriate stress tensor is the second

Piola-Kirchoff stress tensor [19]. For an isotropic linear-elastic material, the strain tensor is

mapped to the stress tensor by the 6 x 6 C matrix that approximates the material properties with

elements that are composed of two independent coefficients, Young’s Modulus (E) and

Poisson’s Ratio (v)

^x x ’ 1 — V 17 17 0 0

CTyy V 1 — 17 17 0 0
o zz E V V 1 — 17 0 0
®xy (1+10(1—2p) 0 0 0 1 - 217 0
°y z 0 0 0 0 1 - 217
^zx- - 0 0 0 0 0

0
0
0
0
0

1 - 2 v

‘6xx-
€ y y

^ZZ
e xy

m N

-^zx-

(6)

Young’s Modulus is a quantity that describes the elastic stiffness o f a material, and

defined as the ratio of the stress (units of pressure - Pa) over the strain (dimensionless) along the

axis, where the stress is applied. For isotropic linear-elastic material models, the Young’s

Modulus is accurately defined only in the range of stress values, where there is a linear relation

between the stress and strain values, i.e. where the Hooke’s law holds [27]. Although linear

material models reflect acceptable elastic response for small deformations of soft-tissues,

experimental rheology studies show non-linear stress-strain relationships for actual soft-tissue

samples. In addition to this non-linear complexity, the experiments conducted by Miller and

16

Chinzei also suggest that this relationship is also dependent on strain rates, i.e. loading speeds

[28],

When an elastic object is compressed in one direction, it usually expands along the

perpendicular directions. Poisson’s Ratio is the linear parameter for the material model that

describes the relationship between the compression and expansion amounts. An isotropic linear

elastic incompressible material has a Poisson’s Ratio of 0.5 for small deformations [29], which is

assumed to be a valid value for soft-tissues as well [28],

The internal elastic forces can be derived through the so-called strain energy formulation.

When the continuum is undergoing deformation, the energy stored in the system is called strain

energy. For isotropic linear materials this energy term can be written as

U = ^ a ■ e, (7)

where a • e is defined as

o ■ e
= Z . Z . a y ’ € y ' (8)

i = l j = i

Strain energy density is a function of the displacement field. The elastic force per unit

volume can be obtained by taking the negative directional derivative of the strain energy density

with respect to the displacement field as

f = -V ut/ = —i v u(£-Ce) = —uVu£. (9)

After the force vectors are accumulated for each o f the particles, the corresponding

acceleration values are obtained through Newton’s second law of motion. The acceleration

17

values are then used to update the velocity and position vectors of the individual particles with an

appropriate time integration scheme.

2.3 Point-Based Discretization

Mesh-based discretization techniques such as FEM have dominated the field of

computational mechanics in the past several decades. FEM is characterized by three fundamental

steps:

1. A geometrically complex problem domain is decomposed into a collection of

geometrically simpler subdomains called finite elements. The finite elements are

tightly connected together, and they are collectively called the finite element

mesh.

2. The governing differential equation is approximated over each finite element.

3. The approximated element equations are assembled using the element

connectivity information, which leads to a large system of equations.

These methods have been widely used for modeling physical phenomena such as

elasticity, heat transfer, and electromagnetism and they heavily rely on the assumption of a

continuous domain. However, FEM is not well suited to problems involving extreme mesh

distortions that result in degenerate element shapes, moving discontinuities that do not align with

the element edges such as propagating cracks, and advanced material transformations such as

melting of a solid or freezing. To address these issues, significant interest has been developed

towards a different class of methods for solving PDEs, namely meshless or mesh-free methods

[25, 30], Mesh-based methods divide the deformable body into tightly connected finite-sized

18

elements. Meshless methods, on the other hand, represent a deformable object by a set of points,

whose influence is distributed around them by a weight function as illustrated in Fig. 4.

(a) (b)

Fig. 4. Influence o f a node to its neighbors in (a) mesh-based techniques, and in (b) meshless techniques.

Meshless methods are characterized by several fundamental steps [31]:

1. Meshless nodes are distributed throughout the computational domain and the

boundaries. The radii of the support domains are set.

2. For each node, field variables such as displacement are approximated using the

neighboring nodes that fall in the support domain. Shape functions, described

later in this chapter, are used in this approximation.

3. The governing differential equation is discretized in the domain to obtain the

linear algebraic equations at the nodes, either following the strong-form approach,

which uses the differential equations directly and discretizes them at the meshless

nodes, or following the weak-form approach, which first converts the differential

equations to their integral-form and then numerically integrates them over a sub-

domain.

19

4. The linear algebraic equations obtained from the previous step are assembled to

get the global stiffness matrix and the force vector. This final system of equations

is solved by a direct or iterative solver.

The first meshless approach dated back to 1977 [32] and proposed a smoothed particle

hydrodynamics (SPH) method that was used to model theoretical astrophysical phenomena such

as galaxy formation, star formation, stellar collisions, and dust clouds. Its Lagrangian

formulation allowed diverse usage areas besides astrophysics such as fluid flow, ballistics,

volcanology, and oceanography [33]. The discrete SPH form can be written as

where u (x) is the approximation of the field variable at the independent variable location x , I is

the node / at x, u, is the value of the field variable at the node /, and A Vj is the size o f the

domain of the node /.

Although the SPH method eliminates the necessity o f a mesh structure and allows the

solution of unbounded problems, it also has its limitations. Because of its approximation scheme

is based only on the weight function, it fails to reproduce first-order polynomials and even

constant fields, resulting in severe consistency problems [25] as depicted in Fig. 5.

(10)

the set of nodes that has the location x inside their domain of influence, Wi(x) is the weight of

20

Fig. 5. SPH-based approximation fails reconstructing constant fields (plus signs). Reconstruction results are

presented for different support radii with the order (a) < (b) < (c).

21

Although the SPH method performs relatively well in reconstructing constant fields when

the nodes are distributed uniformly, its approximation power degrades quickly under the

assumption of non-uniform node distribution as shown in Fig. 6.

3.0

0.5

11;

Fig. 6. Approximation power o f the SPH method degrades as the uniformity o f the nodes vanishes.

To alleviate this problem, methods that utilize Moving Least Squares (MLS)

approximations have been developed. The first work that used MLS approximations in a

Galerkin method is the work of Nayroles et al. [34], which was refined by Belytschko et al. [35]

and named Element-Free Galerkin (EFG) method. This class of methods, different from the SPH

method, uses shape functions in approximations that are essentially corrected versions of

compact supported weight functions

= (ii)
/

here, the sum of shape functions (p fx) for a given approximation equals to 1, which is known as

the partition o f unity paradigm [30] and important to improve the consistency of an

approximation as described below.

22

The shape functions are obtained by first representing the approximation as a product o f a

polynomial basis and a vector of unknown coefficients. Then, a functional is created by taking

the weighted sum of square of the approximation error. By taking the derivative o f this

functional with respect to the unknown coefficients and setting it to zero for minimizing the

approximation error, we obtain a set of equations that are reorganized to solve for the MLS shape

functions. The consistency - a solution needs to be consistent in order to ensure stability - o f the

MLS approximation scheme depends on the order and completeness of the chosen basis function.

If the basis function used in the approximation is a complete polynomial of order k, then the

MLS approximation is said to be &-th order consistent. In other words, an approximation that is

&-th order consistent can reproduce a k-th order polynomial exactly. This characteristic makes the

MLS based approximations more consistent than the SPH method [30] (Fig. 7). Detailed

description of complete polynomials and a brief analysis o f MLS approximations are discussed

in the next section.

80

60

4 0

20

Fig. 7. Comparison o f different order reconstructions. The data points corresponding to the function y = x 2 cannot

be reconstructed exactly via (a) MLS-based approximation with the linear basis [1 x], On the other hand, by using

(b) the quadratic basis [1 x x 2] they can be reconstructed exactly.

23

Another technique that has used the MLS approximation is the work of Muller et al. [36],

which forms the basis of the point-based method discussed in this dissertation. In their presented

framework, the authors calculated the spatial derivatives o f the deformation gradient only at the

particle locations. This approach is similar to the meshless point collocation methods [37] that

discretize the differential equations only at the meshless nodes. Typical characteristic of

meshless point collocation methods is their truly meshless nature as they do not require an

underlying mesh structure for field variable approximation or spatial integration. As described

above in the meshless method steps, instead of converting the governing differential equations

into their weak form and integrate over a sub-domain, point collocation methods directly

discretize the strong-form of the governing differential equation at the meshless nodes. The

advantage of the point collocation methods is the computational efficiency as the shape functions

do not need to be evaluated at the integration points, with the expense of difficulty in imposing

natural boundary conditions, where the field variables take the specified values. The technique

described by Mueller et al. is capable of simulating a wide range o f material properties from very

stiff materials to soft ones, while also being able to handle plastic deformations as well.

Horton et al. [38] proposed a new kind of meshless method named meshless total

Lagrangian explicit dynamics method. The authors extended their previous TLED algorithm [23]

to the meshless discretization framework by pre-computing the MLS shape function derivative

matrices for each of the integration point. Through this pre-computation, they did not have to

compute the costly shape functions at each time step at an expense of the additional memory

consumption. Their method is a fully explicit method, meaning not requiring the costly solution

of large system of equations that one need to solve for the implicit schemes. The additional

24

computation burden of an implicit solution can be exemplified with a simple system with the

following governing equation

^ = _ K x ’ (12)at

where x is a vector o f field variables and K is a coefficient matrix. This equation can be written

in its discrete form using the implicit (backward) Euler scheme as

xt+1 = x c - AtKxt+1, (13)

and the terms of this equation can be arranged to obtain the system o f equations that one needs to

solve for an implicit integration

xt+1(I + AtK) = x t, (14)

where I is the identity matrix.

Horton et al.’s proposed algorithm integrates the weak-form of the governing equations

over a regular background grid, where each cell has a single integration point. By having a single

integration point per each cell rather than the traditional multiple integration points, Horton et al.

were able to increase the computational throughput o f their algorithm.

Node distribution is the first step in the presented point-based discretization algorithm,

which supports both regular and hierarchical distribution of the nodes through the simulation

domain. In the case o f a simulation domain with a regular geometric shape, a regular uniform

distribution of the nodes is the natural choice. On the other hand, if the simulation domain has a

complex geometry, which is the general case, a uniform distribution becomes inapplicable. In

this case, meshless nodes have to be distributed throughout the domain bounded by the complex

boundary surface. In the meshless framework presented by Pauly et al. [39], the authors used a

balanced octree data structure to partition the volume of the object as illustrated in Fig. 8.

25

Fig. 8. Starting from the surface’s bounding box, each octree cell is refined i f it has a part o f the surface until the

desired octree depth is reached.

After the octree partition was completed, Pauly et al. created a meshless node at each

octree cell center that is located inside the bounding surface. A similar approach to the octree-

based node sampling algorithm proposed by Pauly et al. [39] was followed and the object

represented by a boundary surface was converted to a set o f meshless nodes through the

tetrahedralization algorithm. For this purpose, well-established computational geometry libraries

like TetGen [40] and CGAL [41] were utilized as an offline process. The output tetrahedra

meshes obtained from these were later post-processed, and the vertex positions were extracted to

be used as the initial meshless node locations (Fig. 9).

26

« U

 (£}___

Fig. 9. Volumetric discretization steps o f sample objects, (a) Triangular surface mesh o f the rectangular block and

liver objects, (b) the surface meshes are tetrahedralized with the QTetraMesher tool [42], (c) display o f the internal

tetrahedra.

Meshless methods represent a deformable body by a cloud o f particles, or nodes with

domains of overlapping support. Quantities such as mass, volume, support size, strain, and stress

are stored and updated per particle for the duration of the simulation. In this work, the support

27

domains of the particles are spherical and their radii are computed by finding the average

distance of the central node to its ^-nearest neighbors (Fig. 10). For efficient neighborhood

search purposes, a k-d tree data structure is used. Spherical support domains are chosen over

rectangular support domains, as the former type requires the evaluation of the weight function

only once with respect to the distance to the center o f the sphere whereas the latter type requires

evaluating the weight function three times in 3D with respect to the distance to the support center

along each axis.

Fig. 10. The workflow o f the point-based discretization pipeline takes node positions from the vertices o f

tetrahedral. For each node, the support radius is calculated from the average distance to the k-nearest neighbors,

which is used to define the nodal neighborhood.

The weight (kernel) function in the meshless method context describes the way meshless

nodes affect each other and how the material values of the continuum such as mass, volume, and

density are distributed among the nodes as detailed below. The neighboring particles that fall

inside the support domain of a central particle are weighted using the polynomial weight function

S u p p o rt rad ius o* each n o d e i
o b ta in e d from ih e a v e ra g e
d is ta n c e to th e k -n ea re s t

___________ neighbors______

N ode p o sitio n s from
th e v e r t 't e s ot

te t r a h e d ra

(Fig. 11)

(15)

I x '~*~X' II
with rtj = Jh - , where x; and Xj are the current locations o f the neighboring and central

particles respectively and hj is the support radius of the neighboring particle j (Fig. 12). This

function satisfies every requirement of a meshless weight function; in practice, it can also be

simplified as

w(rij) = (1 “ ro)3-

W

0.8

0.6

0.4

0.2

0.60.2 0.4

Fig. 11. The polynomial weight function (kernel) used in the MLS approximations. In meshless methods, weight

functions have to be continuous and positive in their support and they are critical to solution accuracy and stability.

Fig. 12. The central (blue) and neighboring (green) particles and the variables that define the influence o f one on

another.

28

(16)

29

The mass and density of a meshless node are assigned at the beginning and kept fixed

throughout the simulation. The mass values for each node are initialized with

m i = s f l̂ p , (17)

where p is the material density value, fj is the average distance of the /th node to its ^-nearest

neighbors, and s is a scaling factor that is chosen so that the average of the assigned densities is

close to the actual material density, which is assumed to be constant throughout the object. The

assigned mass value of a meshless node is distributed around the node with the weight function.

Therefore the density o f a meshless node is calculated after the mass allocation step by taking the

weighted average of the masses of the neighboring nodes

Pi = Y j mj w(rij) . (lg)
j

In other words, local density value p t, calculated at each meshless node, is a smoothed

quantity with weighted contributions from all nodes within the neighborhood. After nodal

densities are calculated, the volume of each node is obtained by dividing the node’s mass m* by

its density p*.

In the approach of this dissertation, instead of converting the governing differential

equation to the weak-form and performing numerical integration, it was decided to directly

discretize the strong-form of the governing equation at the meshless nodes to obtain the linear

algebraic equations. Similar to the meshless point collocation methods, the spatial derivatives of

the deformation gradient are calculated only at the meshless node locations (Fig. 13).

30

c» o % m o

O <3» Q * > %

O 0 ^ 3 * ©
© © • > © ©

t • %
• • •

• • • •
• • #

» » - «« ■ - • lfnagraoon p o ro
»-<— - »■ - - — «_«. _ ^ iroegraoon powics

^ »« »« —*— weswess nooes
• Meshless nodes

Fig. 13. Typically, spatial integration techniques utilize a background grid with multiple integration points per

region (left), in nodal integration techniques (right) spatial derivatives are calculated only at the node locations.

2.4 Moving Least Squares Approximation

Moving Least Squares (MLS) is a method of approximating a continuous function for a

given set of point samples [43], In MLS-based approximation, the approximated function f h at a

given location x is defined as

N

/*(*) = ^ 0 / (*) / / • (19)
i=i

where 0 ; (x) is the shape function of node-/ evaluated at x, and f / is the value of the function at

node-/. The shape function is computed from the weight function w (ri;) defined earlier in

equation (15) and the basis function p(x), which is a complete polynomial o f a given order such

as the second-order polynomial in 1D

pT(x) = [1 x x 2], (20)

and the first-order polynomial in 2D

PT(x) = [1 x y]. (21)

The reconstruction basis pT(x) and the support radius of the weight function w (ri;) play

important roles in the approximation accuracy. MLS-based approximation of random data at

31

equidistant locations shows the effects of the basis order and support radius on the approximation

accuracy (Fig. 14-Fig. 17).

Fig. 14. A continuous function is approximated from random data points at equidistant locations using the linear

basis [1 x] . The support radii o f the weight functions o f the nodes n t are all set to 5 node distance.

Fig. 15. Comparison o f weight and shape functions o f linear basis reconstruction, (a) The weight function o f node t

evaluated at the 9th node location, and (b) the shape function o f node i evaluated at the 9'11 node location obtained

from the linear basis. The shape values sum up to 1.

32

Fig. 16. A continuous function is approximated from random data points at equidistant locations using the quadratic

basis [1 x x 2]. The support radii o f the weight functions o f the nodes rij are all set to 5 node distance.

Fig. 17. Comparison o f weight and shape functions o f quadratic basis reconstruction, (a) The weight function of

node i evaluated at the 9th node location, and (b) the shape function o f node i evaluated at the 9th node location

obtained from the quadratic basis. The shape values sum up to 1.

Several support radii configurations have been tried for both the linear basis and the quadratic

basis reconstruction o f the given random points. The root mean square error values for the

approximations were obtained from the difference of fj and their reconstructed values at the node

locations. The results are shown in

Table 1.

33

Table 1. Root mean square error values o f the approximations are compared for different MLS configurations.

Support Radius RMSE at Linear Basis RMSE at Quadratic Basis
1 Singular matrix Singular matrix
2 0.148041 Singular matrix
3 0.212183 0.146464
4 0.241102 0.192909
5 0.258320 0.222548
6 0.267671 0.243705
7 0.273891 0.254194

The results show that approximations with the quadratic basis are generally better in

terms of the root mean square error. Also, decreasing support radius values result in better

approximations as well meaning that support radius in meshless approximations plays a similar

to the element size in finite element methods [30],

For the problem outlined in this dissertation, the partial derivatives of the displacement

vector field were needed in order to compute the strain, stress, and the internal elastic forces

applied to the meshless particles. Therefore, a version of the MLS-based approximation is used

to compute this gradient (Vu).

Recalling from the Equation (1), for a central meshless node / and its neighbor j , the

value of the x-component of the displacement, ux , at the location o f j can be approximated by the

first-order Taylor expansion as

dux
u Xi = u x . + ■

** Xi ax
The weighted sum of squared differences between the displacement vector and its

approximation obtained from Equation (22) gives the error measure of the MLS approximation

34

e = ' Y . { i i X j - u x ,) w (.r i j) -- > j — (23)
j

By inserting Equation (22) into Equation (23), the expression for the error measure for

the particle / becomes

e = I (u * + (w) x “ + (t f) y“ + (^ r) “ u ") (2 4 >
j

where Ê -, and Zi; are the x, y, and z-components of the vector X; - Xj. It is desirable to

minimize this error measure for some values of and therefore, based on the
d X d Y d Z

calculus of variations [44], the derivative of the error measure e with respect to the partial

derivatives of the displacement vector was set to zero, resulting in three equations for three

unknowns

(Ey(Xy - X,)(X, - Xi)Tw(ry)) | . = Xj (uXj - uXi) (Xj - XOwfry). (25)

This equality can be represented in a more compact format as

A ^ f I , = T {uxj ~ u x t) (Xy - x X n ,), (26)
j

where A, the 3x3 moment matrix, is given by

A = (2 > - X,)(Xy - X;) r w(r[7) | (27)

The moment matrix A can be inverted and pre-multiplied with both of the sides of the equation

for computing the partial derivatives.

35

2.5 Computation of Forces via Strain Energy

The elastic body forces that are applied to the individual nodes in the meshless

collocation method are calculated through the strain energy density, which is a function of the

particle displacements. For a node i with volume v t, strain et, and stress aiy the nodal strain

energy, which was defined in Equation (7), becomes

Ut = vi \ { e ioi). (28)

Recalling from the Equation (9), the elastic force applied to the volume at the meshless

node is the negative directional derivative of the above strain energy with respect to this node’s

displacement. The forces applied to the particle i and its neighbors j are then

f t = ~ V u x V i = - v i o i V l l x e l

ft = -Vu'.Ui = - v t a ^ e t (29)J X j X j

Equation (29) is iterated over all meshless nodes in the domain and the total force applied

to a given node is the sum of all the forces with the same index as that node. These force

components are obtained by using the Green-Saint-Venant strain tensor, which measures the

linear and shear elongation. In the case of a volume-inverting displacement however, this strain

becomes zero. In order to introduce restoring body forces in the event of volume inversion,

Muller et al. [36] added another energy term to the system that penalizes deviations from a

volume-conserving transformation

Ot = vi \ k v(\J i \ - l ') 2. (30)

In this energy term, 3i is the Jacobian of the displacement vector field mapping, which is

equal to J j = I + Vuf, and k v is the volume restoration constant. In the experiments, there was

not a situation that required this additional force component; therefore it was not included in the

implementation.

36

2.6 Summary

In this chapter, the approaches for modeling deformable objects were discussed. These

approaches range from non-physical methods to physically-based techniques. The former

category of methods is generally easier to implement and also gives the user the ability to control

the resulting animation. The problem with these techniques is that they are not based on physical

theories/calculations, which prevents them from being used in simulations with medical focus.

Next, a basis for the approach was established by discussing the basics of the continuum

elasticity theory. Finally the point-based discretization of the continuum and Moving Least

Square (MLS) approximation-based meshless method were presented. Compared to the

traditional mesh-based continuum elasticity methods, such as the FEM, meshless methods may

be useful in problems with extreme deformations or spatial discontinuities such as cuts.

37

CHAPTER 3

HANDLING DISCONTINUITIES IN MESHLESS METHODS

In engineering problems, discontinuities are a common occurrence. In these cases, the

continuum assumption of the elastic theory is undermined, which typically requires special

treatment to ensure the correct solution to the system. Discontinuities may be caused when the

continuum domain is composed of different material types or when there is a spatial gap in the

continuum such as a cut. This chapter will first present several existing techniques to handle

discontinuities, which will be followed by the approach used in this dissertation, where the 2D

model is described and subsequently its extension into 3D.

3,1 Overview

In meshless methods, there are three main classes o f techniques to treat discontinuity of

the field variable (displacement). These techniques are: (1) modification of the weight function,

(2) intrinsic enrichment of the basis of the approximation, and (3) techniques based on extrinsic

enrichment. Discontinuity treatment in meshless methods has been studied within a wide range

of approaches such as visibility criterion, diffraction/transparency methods, and H- and P-

refinements [25].

The visibility method is an example of techniques that modify the weight function. In this

method, the cut segment is treated as an opaque object and the influence of a node to a point in

the domain is decided by drawing a line between the node and the point in question, and testing

whether the line intersects with the cut segment or not. Although being simple in nature, this

method can lead to incorrect discontinuity calculations along the lines that pass through the cut

tips, as depicted in Fig. 18. Another disadvantage of this method is that it cannot be used to treat

38

non-convex boundaries. The diffraction method follows the same steps as the visibility criterion,

but improves the technique by passing the ray around the cut tip and calculating the influence of

a node on a point via the ray length. The diffraction method requires complex computations of

the bending rays and its extension into three dimensions is even more complex [45].

Fig. 18. Two examples o f weight function-modifying discontinuity treatment techniques in meshless methods, (a)

the visibility criterion and (b) the diffraction method.

Element Free Galerkin (EFG) method is a MLS-based meshless technique that uses

intrinsic basis for approximating the field* function. Given an approximation of the form

= (31)
/

MLS-based approximations compute the shape functions <pt (x) from the weight function and the

polynomial basis p T(x) as discussed in Chapter 2. To model strong discontinuities

(discontinuities involving the field variable), the intrinsic basis can be modified by using the

information from the cut geometry. For a 2D problem domain, the linear basis

pr (x) = [l.x.y] (32)

can be extended to

39

/ ̂ V / ̂ V / ̂ \ J ̂ V
pr(x) = [1 ,x,y,Vr" sin Vr cos^-J,Vr sin ^-Jsin(0),Vrcos^-Jsin(0)] (33)

where r is the radial distance to the cut tip and 9 is the incident angle to the cut [30], A

disadvantage of the intrinsic enrichment technique is the additional computational cost that

comes from the increased size of the basis. Shape function computations use the polynomial

basis, and also take place at each time step. This additional computation cost at each time step

eliminates the suitability of this type of enrichment for interactive applications.

3.2 Modeling Discontinuities in 2D

Barbieri et al. [12] proposed an enrichment technique based on a distance function for

handling discontinuities with multiple boundaries. Their method processed cuts as piecewise-

linear segments and calculated the absolute distance of a meshless node to these segments. The

enrichment function obtained from the distance field is then multiplied with the weight kernel of

the node. Based on an analytic formulation, this approach not only required less computation

compared to the competing techniques like the visibility criterion, but also was easier to extend

into 3D by modifying the distance function to support the extra dimension.

Fig. 19. The discontinuity caused by a cut segment is defined at the local coordinate frame o f the cut segment.

40

As depicted in Fig. 19, the distance function is computed in the local coordinate system

of the cut piece. The 2D distance function for a given point (x , y), can therefore be computed in

terms of the local coordinates (t , s) as

d2 (*.y) = J d l (t) 2 + s 2 (34)

where d* (t) is the positive part of the ID signed distance function d s(t) for a ID segment, in

local coordinates, and defined as

ds(t) = t - h + t2 — t2 (35)

where and t 2 are the endpoints of the cut segment in the cut’s local coordinate system (Fig.

2 0)and

(36)

3.0

2.5

2.0

- 3 - 2

Fig. 20. The function dj" (t) is calculated for a cut segment with ta = 0 and t2 = 1.

41

In order to introduce a sharp discontinuity across the cut segment that smoothly varies

from one side to the other side, we can take the partial derivative o f this distance function with

respect to the normal coordinate axis s,

dd2 s

and obtain the discontinuous function q> (Fig. 21) across the segment that is 1 on one side of the

cut and -1 on the other side and varies smoothly around the cut (Fig. 22).

1.0
4

0.5

0

-0 .5
t 2 s

4

0 - 1.0

M (b)

Fig. 21. Three dimensional plots o f (a) the distance function d2 and (b) the discontinuous function cp.

42

Fig. 22. Contour plot o f the discontinuous <p function.

This technique is easy to implement and also applicable to the existing methods to extend

their functionalities. One shortcoming of the technique is the approach it takes on handling

multiple cuts. Let h t be the enrichment value for the Z-th cut on a node, the cumulative

enrichment value for the node that is in the vicinity of/affected by n cuts is given by the product

h = U t i h i - (38)

Multiplicative application of consecutive enrichments is a practical approach and requires

the least amount of processing, but it may also lead to incorrect weight function modifications

and therefore fatal instabilities in the simulation as visualized in Fig. 23.

43

(d)_______________________ (e)_______________________ (f)

Fig. 23. The weight functions o f the close meshless nodes are modified incorrectly when consecutive enrichments

are applied by multiplying, (a-c) The three consecutive segments o f a cut and the resulting enrichment function from

multiplying, (d-f) The three consecutive segments o f a cut that separates the domain completely and the resulting

enrichment function.

The top row (a, b, c) of Fig. 23 shows the effect of a cut that is composed of three linear

segments, when their enrichment values are multiplied consecutively. The bottom row (d, e, f) of

the figure represents a cut that completely separates the domain into two parts. For this example,

the correct values for the enrichment at the final configuration (f) would be completely 1 on one

side and completely 0 on the other side.

In order to address these issues, an extension of the distance function-based enrichment

technique is proposed to support consecutive discontinuity fronts in a correct way. In this

extended technique, the enrichment values for multiple cuts are evaluated inside a grid structure,

named the enrichment grid. For each grid point, the corresponding enrichment value is

calculated similar to the original distance function-based technique, though, instead of a

multiplicative approach, each grid point is assigned to a specific cut segment region and its

enrichment value is calculated with respect to this specific cut segment.

The first step in the enrichment grid algorithm is to define a common coordinate system

for calculating the regions of the grid points. In 2D, this common coordinate system is defined by

the enrichment origin p 0 with coordinates (x0,y 0) and 60, which is the angle between the

44

horizontal axis of the common coordinate system and the positive x-axis of the world coordinate

system. The coordinate system is updated with each propagating cut as

where n is the number of segments, w* is the associated weight with the cut segment I, which is

typically the length of the segment in 2D problems, and and are the center point and

horizontal angle of the Z-th cut segment respectively (Fig. 24). After setting the global coordinate

system for the series of cut segments, each grid point with coordinates (x , y) as well as the

endpoints of the cut segments (x^y*) are translated into this new coordinate system to obtain

new coordinates (t) and (fy) by

IF = i wiPi (39)

and

(40)

t = cos(0) (x - x0) + sin(0) (y - y0) (41)

and

tj = cos(0) (x, - x0) + sin(0) (yt - y0). (42)

-►X

Fig. 24. The common coordinate system (s, t) is updated with each propagating cut segment (a-d).

With these translated points, the modified (t) function is now defined as

d-t(0 = (to ~ t) ■ H(t0 - t) + (t - tn) ■ H(t — tn),

where t0 and tn are the t-coordinates of the first and last points of the cut segment series, and

is the Heaviside step function (Fig. 25).

46

Fig. 25. Cut segments are processed as a series instead o f individual processing. The series o f cut segments (a-d) are

used to derive a common coordinate system. The function is calculated with respect to this common coordinate

system according to Equation (43).

The next step to calculate the distance function d 2(x,y ') is to set the s-coordinates o f the

grid points. This is achieved by assigning a cut segment region for each of the grid points by

comparing their t-coordinates against the t-coordinates o f the cut segment endpoints. A grid

point with t-coordinate t ’ is set to be in the region I when t ' > t t_1 & t’ < £*. For grid points

whose t-coordinates are smaller than t0 and larger than tn , their regions are set to the first and

last regions respectively (Fig. 26).

Fig. 26. The region values are assigned for individual cut segments with respect to the common coordinate system,

(a-c) are the consecutive segments o f the complete cut.

47

After assigning the region values for the grid points, the s-coordinates are calculated by

finding the vertical distance of the grid point to the assigned cut segment. For a grid point with

coordinates (x ,y) and assigned region I, the s-coordinate (Fig. 27) is calculated as

s = —sin(0;) (x - x{) + cos(0() (y - yt). (44)

Fig. 27. For each grid location, the s-coordinates, which essentially represent the signed vertical distance o f a point

to the cut, are calculated according to the assigned region value.

The (t, s) coordinates of the grid points are enough to calculate the extended enrichment

function. Using these values, d 2(x ,y) is calculated as in Equation (34) and its partial derivative

with respect to the s-coordinates is taken to obtain the extended enrichment function (Fig. 28).

48

(d) (e) (0
Fig. 28. The extended enrichment function for two cases o f sequential cut segments, (a-c) Piecewise-linear cut

segment and the corresponding updates to the enrichment grid, (d-f) Piecewise-linear cut segment that completely

separates the domain. Unlike the original multiplicative approach, the enrichment function modifies the weight

functions correctly to prevent instabilities.

The extended enrichment technique with enrichment grids provides computation cost-

efficient way of handling multiple discontinuity fronts and unlike the multiplicative approach, it

modifies the weight function of the affected meshless nodes in a way such that stability problems

are avoided.

3.3 Modeling Discontinuities in 3D

In three dimensions, discontinuity-imposing cuts are represented by triangle strips. The

enrichment grid is also extended into a 3D lattice structure with grid point coordinates ([x, y, z).

Similar to the 2D case, the first step is to derive a common plane for calculating the regions of

the grid points. This plane is represented by the point c0 and the normal vector n0. For a cut

front that is composed of n triangles, these values are calculated as

I?=lW tCt
Co (45)

and

where wt is the associated weight of the triangle t, which is equal to the area of the triangle, and

ct and nt are the centroid and normal o f the t-th triangle respectively. Each grid point (x , y, z)

and the vertices of the triangle strip are projected onto this common plane for further processing

as illustrated in Fig. 29.

Fig. 29. The original triangle strip that defines the cut surface (red), and the projected triangle strip (blue). The

triangles o f the blue triangle strip are coplanar and on the common plane.

The two projected triangles that are adjacent to each other are grouped together to define

their respective regions. Separator vectors n'r are located at the boundary of the adjacent groups

of triangles, and obtained by taking the cross product of the border vectors and the normal n0

of the plane that they are projected on, as shown in Fig. 30. Each projected grid point is then

tested against the separator vectors n'r to see whether the vector is facing towards the point. This

test is implemented by checking the sign of the dot product o f n .̂ and the vector from the origin

of nj. to the tested point. A positive dot product means that the n .̂ faces the projected grid point.

If the vector n£. faces towards to projected grid point, the region o f the point is set to the index of

50

the corresponding separator vector n -̂, which is r. The region assignment for each grid point is

visualized in Fig. 31.

45

40

30

20
20 30 40 50 60 70 80 90 100

Fig. 30. Separator vectors n'r are calculated at the boundaries o f the triangle groups. Each projected grid point is

then tested against these to find their corresponding regions.

Fig. 31. The regions o f 3D grid points are set by first projecting them onto the common plane and then testing them

against the separator vectors.

51

Once the regions are set for the grid points, the next step is to calculate enrichment-

related values. In three dimensions, the distance function that forms the basis o f the enrichment

technique is defined as

d3 (x, y, z) = J d £ 2 + s 2, (47)

where d j is the absolute distance of the projected grid point to the projected triangle that returns

positive values outside o f the triangle and 0 inside the triangle, and s is the distance of the grid

point to the triangle along its normal direction.

Fig. 32. The d j distance function computed for the cut surface.

Because, each region is associated with two triangles; for a projected grid point that is

assigned to a region, there are two candidate triangles to calculate d£ and 5 values. One of these

triangles has to be chosen and designated as the master triangle in order to correctly calculate the

necessary enrichment values. For a projected grid point inside the region r , this is achieved by

comparing the absolute distance d^ of this point to the two triangles that are associated with the

r-th region. The triangle with the smallest absolute distance is set as the master triangle and used

to compute the d \ (Fig. 32) and s values (Fig. 33).

Fig. 33. The computed s values for the grid points with respect to their master triangles.

The computed d 3 and s values are used to obtain the resulting distance function d 3 as

given in Equation (47). Similar to the 2D case, the partial derivative of d3 with respect to the

normal direction s is taken to get the discontinuous function (Fig. 34, Fig. 35, Fig. 36, Fig. 37)

53

Fig. 34. The contour plot o f the discontinuous function <J> (view 1)

Fig. 35. The contour plot o f the discontinuous function <|) (view 2).

54

Fig. 36. The contour plot o f the discontinuous function <)> (view 3).

55

Fig. 37. The iso-surfaces o f the calculated enrichment function for the grid, (a) 1-level-set, (b) 0.5-level-set, and (c)

O-level-set.

56

3.4 Summary

Discontinuities are frequently found in engineering problems and they have a variety of

causes, such as different material types or stronger discontinuities like fissures or fractures in the

domain. In a surgical simulation setting, discontinuities typically take the form of cuts that are

introduced by the user through haptic interaction. In this chapter, the approach on handling the

discontinuities that were built upon the meshless method that was discussed in the previous

chapter was presented. A previous technique was extended and the enrichment that is caused by

a cut in two and three dimensions was calculated. Cuts that are composed of multiple segments

were handled in a novel way to avoid instabilities in the simulation. This approach is a

completely analytic solution that can be efficiently computed and applied to the simulation in

real time. Moreover, the proposed enrichment grid doubles as a spatial data structure that proves

to be efficient for the intersection tests o f the meshless nodes that are affected by the cuts.

Implementation details of the enrichment grids are discussed in Chapter 5.

57

CHAPTER 4

VISUALIZATION OF POINT-BASED MODELS

Realistic and efficient rendering of simulation objects is essential in a surgical simulation

application. For visualization purposes, simulation objects are usually represented as triangle

meshes. In the point-based approach used in this dissertation however, the point primitives that

represent the visualized surface of the object do not have explicit connectivity information.

Without this knowledge of the connectivity of the vertices, or in other words a mesh, the

traditional algorithms that work with visualization meshes become dysfunctional, which require

the use of specialized algorithms. In this chapter, a discussion is provided on techniques in

various categories to visualize point-based objects, and then the approach to this problem is

presented and the steps that have taken to improve the visual quality of the rendered simulation

object are explained.

4.1 Overview

Visualization of point-based object representations can be divided into two main

categories. The first, the so-called direct point rendering methods, uses the point primitives

directly without inferring any connectivity information, while the second includes techniques

that reconstruct a surface from the discrete set of points and use that information to display the

object. Surface reconstruction techniques can be further divided into two categories, which are

direct triangulation of the point data through computational geometry, and triangulation of the

zero-level-set of the fitted implicit function into a mesh.

58

4.2 Surface Reconstruction Techniques

The Ball-Pivoting Algorithm [46] is a simple algorithm to construct a triangle mesh for a

given point cloud. It is a computational geometry algorithm that was originally developed for

triangulating point clouds acquired from range scanners. The algorithm accepts as input a point

cloud and a parameter d that denotes the radius o f the pivoting ball. It first finds a seed triangle

such that a ball with radius d touches the three vertices of the triangle but does not contain any

other points in the point cloud. From this point, the algorithm chooses one edge of the triangle as

the pivoting axis and rotates the ball around this axis until it touches another point (Fig. 38). The

pivoting edge and the new point form a new triangle and the algorithm repeats until termination.

The conceptual simplicity of the algorithm and the fact that it only requires a single parameter d,

make this approach easy to use and implement, but, unless the single parameter is chosen

carefully, some of the features of the object in the vicinity o f high curvature may be lost. Another

shortcoming of this technique is that if the point cloud has been composed of points with varying

density, the algorithm would result in a mesh with holes, or would need to perform multiple

passes with increasing ball radii.

p l

Fig. 38. The Ball-Pivoting algorithm starts from a seed triangle and a sphere that touches all three vertices. The

algorithm advances by pivoting the sphere over a chosen edge and stop the sweep when the sphere touches another

point.

59

Another algorithm that fits a triangle mesh to the input points is the Power Crust

algorithm [47], This algorithm guarantees a water-tight mesh that is produced from the

approximated medial axis transform of the object represented by point-cloud. Power Crust makes

use of a Voronoi partition of the point data, specifically the concept o f Voronoi balls, because the

object is approximated as the union of them. Power Crust is a robust algorithm in the sense that it

is guaranteed to return the boundary of the object and no surface extraction or hole-filling steps

are required. Although the reconstruction tolerates noise in the data, sampling should be

sufficiently dense.

The other class of surface reconstruction techniques first processes the point-cloud to

obtain an implicit function that best fits the data, and then extract and triangulate a certain iso­

value of this function. Poisson surface reconstruction [48] is one such method that reconstructs a

smooth watertight surface from a set of oriented points - points p t with normal information n t .

This algorithm reconstructs the surface by solving for the indicator function of the shape, which

is defined to take the value 1 inside the boundary of the object and the value 0 outside. The

gradient of the indicator function is closely related to the vector field that is defined by the

oriented point set and this relation can be transformed into a Poisson problem. The algorithm

first approximates a vector field by sampling it at the cells o f the generated octree. Next, the

divergence operator is applied to the vector field, which gives the right hand side of the Poisson

equation. The resulting equation is numerically solved using the multigrid method by utilizing

the previously generated octree structure. The solution gives the gradient o f the indicator

function, whose zero-level-set is extracted to obtain the final surface. The surface reconstructed

with this algorithm is robust to noise and can handle large sets of points, but it also over­

smoothes the original shape. The over-smoothing problem of the technique is addressed in a later

60

extension, the so-called Screened Poisson surface reconstruction [49]. This algorithm

interpolates the samples better than the original approach with the cost of increased sensitivity to

noise.

There are other techniques with a conceptually similar idea i.e., build an implicit function

from the given point-cloud and extract its zero-level-set [50-52], Unfortunately, the level-sets of

an implicit function are not directly usable by the graphics hardware as they need to be converted

to primitives that can be processed in the graphics pipeline. This problem is essentially known as

polygonising a scalar field, or 3D contouring. The seminal work of Lorensen and Cline [53], the

Marching Cubes (MC), describes an algorithm for creating a polygonal surface of an isosurface

of a 3D scalar field. The algorithm divides the domain into cubical regions, where the comers of

each cube are assigned a scalar value from the field. If the cube contains two or more comers

that are on the opposite sides of a user-defined iso-value, the cube contains a part o f the surface.

For each such cube, the intersection of the surface with the cube’s edges are computed and the

intersection points of the neighboring cubes are stitched together to obtain the triangulation of

the level-set of the given scalar field (Fig. 39).

61

Fig. 39. The Marching Cubes algorithm finds the intersection points o f the surface with the cubes and stitches a

triangular surface out o f these intersection points.

The MC algorithm is easy to implement and also efficient as it is based on table look-ups.

One shortcoming of the algorithm is that it smoothes out sharp features. Dual Contouring (DC)

[54], although being conceptually similar to the MC, is a triangulation algorithm designed to

alleviate this problem. In addition to the scalar values, this algorithm also needs surface normal

information or the gradient of the scalar function itself. Instead of just using edge-surface

intersection points for triangulation as MC does, DC finds points inside the cubes by minimizing

the error metric

k

£(d) = ^ ((d - p i) - n i)2 (49)
i = l

where d is the point inside the cube, k is the number of intersected edges, and pj and ns are the

location and normal of the i-th edge intersection (Fig. 40).

62

Fig. 40. The Dual Contouring algorithm uses the surface normal information to find a point inside the cubical

volumes that minimizes a given error metric. These points are used to stitch triangular surfaces.

Another way of visualizing the level-sets of implicit functions is through ray casting/ray

tracing, where individual rays are cast for each pixel of the image plane and these rays are traced

throughout the scene that is visualized. Ray tracing and its variants generate highly-realistic

images as the rays are reflected and refracted according to a physical basis. The application of

ray tracing operation on simple implicit shapes such as spheres, blobs, and other general implicit

surfaces are described in the work of Hart [55], and later on ported to massively parallel

graphical processing unit (GPU) architecture by Singh and Narayanan [56], The work of

Hadwiger et al. [57] presented an interactive ray casting method for discrete isosurfaces defined

by a regular volumetric grid. Deferred shading is applied in this approach, which means that the

data required for the advanced shading computation is gathered into an intermediate render

buffer and later on processed later on to obtain the final composition of the image. The implicit

function is enclosed by two distinct grid structures with different refinement levels in order to

efficiently skip the empty space during the ray casting operation and use as a brick caching

mechanism in case the whole model does not fit into the graphical processing unit's texture

63

memory. The implicit function values are evaluated at the discrete locations along the casted ray

to find the ray-surface intersection point. This approach can be problematic near fine-detailed

surface features as the discrete evaluations can completely miss the surface. The authors

addressed this issue by adopting an adaptive sampling approach to refine the intersection

detection.

4.3 Direct Point Rendering Techniques

Instead of inferring the topology and reconstructing the surface that represents the point -

cloud, direct point rendering techniques work on the raw point primitives, thus avoiding the

time-consuming reconstruction processes. The use o f points as display primitives was introduced

by the seminal report o f Levoy and Whitted [58], Other research has followed such as the work

of Schaufler and Jensen [59], in which the well-established ray tracing algorithm is extended to

work directly on the point primitives. The ray-point intersection is handled by representing the

ray as a cylinder and the points as oriented disks with same radii. The common radius r o f the

cylinder and the disks is chosen such that r is slightly larger than the radius o f the largest hole in

the point-cloud sampling. For a cast ray, the set of disks that intersect with the cylinder enclosing

the ray are collected. The final intersection location and orientation between the ray and the

point-cloud is approximated with a weighted average of the points in this set. The weighting

coefficients of the average point are chosen to be the tangential distances o f the points to the ray.

For more advanced illumination models, it is possible to assign additional attributes to the

individual points and interpolate these attributes using the same weighted averaging technique.

Although this technique generates high-quality visualizations, the resulting surface

64

representations are view-dependent, which may be acceptable for single renderings o f static

scenes, but can be problematic for rendering sequential images of an animation.

Adamson and Alexa [60, 61] apply the ray tracing algorithm to a point cloud from a

different approach. In a manner similar to the Moving Least Squares approximation method

presented earlier, each point is augmented with a spherical domain of influence, which is used to

define a neighborhood around the point. Then, for each point, the weighted average of the

neighboring point locations and orientations are used to approximate a plane. The ray-surface

intersection is handled in two steps; first a starting point is approximated using a bounded

volume hierarchy, either spherical volumes or oriented bounding boxes, then the actual

intersection point is calculated with an iterative procedure.

4.4 Point-Based Visualization with Surface Splatting

As opposed to the ray tracing algorithms discussed earlier, surface splatting is a forward

rendering approach that uses the point depth order information to resolve the visibility of the

object portions that share the same pixel on the image plane. As a result of this forward rendering

approach, point splats need to be rasterized - mapped to the image plane - and shaded. There are

several approaches to rastering point splats and they address different requirements o f the task at

hand.

In the OpenGL rendering pipeline [62], splats are not directly represented as a native

primitive type. Therefore, they need to be approximated with the supported types such as points,

triangles, or patches. A naive approach is to represent the splats as OpenGL point primitives.

Passing a single point primitive for each splat is efficient and compact. For each vertex, the

vertex shader in the rendering pipeline can be set to output the size of the point as an optional

65

parameter. When set to s, the point size parameter results in s x s squares in the image plane.

The point size parameter has to be carefully adjusted for the splats in order to cover the

represented surface without leaving any holes (Fig. 41).

Fig. 41. Direct rendering o f points with OpenGL point primitives as screen-aligned squares with adjustable size, (a)

a rectangular block, and (b) a liver model rendered with point primitives.

66

In supporting graphics hardware, it is also possible to draw screen-aligned disks instead

of squares by enabling the anti-aliasing filter through the OpenGL call (Fig. 42):

glEnable(GL_POINT_SMOOTH);

Fig. 42. On supporting graphics hardware, it is possible to render point primitives as screen-aligned disks.

Although rendering splats as point primitives is extremely efficient, they result in poor

visual performance, especially near the object’s silhouette. When using the specular lighting

model, the overlapping point primitives also pose a problem near highlighted areas. In order to

67

address the aliased look near the object’s contour, splats can be visualized as oriented disks. The

orientation of the disks can either be taken directly from the normal information of the point

cloud, or approximated by applying differential geometry techniques. The splats are then

rendered on polygonal primitives by mapping an elliptical alpha texture onto them (Fig. 43).

Fig. 43. Oriented point splats can be generated by applying an alpha texture on a polygon.

In conjunction with this alpha texture, the render pipeline alpha test is set to discard the

pixels that are smaller than or equal to a cut-off alpha value, which is typically zero. This

operation results in splats rendered as oriented and alpha-mapped disks. Here, the lighting is

computed per splat and the colors are blended through the alpha values obtained from the alpha

maps. A custom weight function is used that ranges from 0 to 1 to represent the splat alpha maps.

This function is defined as

7T i
bf(u, v) = cos (-V u 2 + v 2) (50)

where u and v are the horizontal and vertical texture coordinates respectively and they both vary

from 0 to 1. This function represents the weights of a splat’s color contribution to its neighboring

68

pixels, and also defines how to obtain the final color of a pixel if there are more than one splat

that land on that pixel (Fig. 44).

Fig. 44. The weight function is encoded as an alpha texture and applied to polygons to create oriented splats. The

weight values obtained from this function are used to blend the colors that land on same pixel location.

In graphics libraries that support pixel blending, individual functions that specify the

pixel arithmetic can be assigned to the incoming (source) pixels and the pixels that are already in

the frame buffer (destination). OpenGL library's glBlendFunc function specifies how the

pixels that land at the same location are blended together to obtain the final color at that location.

The function accepts two parameters, one for the source factor (sfactor) and another one for the

destination factor (dfactor). The incoming RGBA value is scaled with sfactor and the RGBA

value in the frame buffer is scaled with dfactor. The final color of the pixel is then obtained by

69

adding these two together. In the implementation for this dissertation, sfactor was chosen to be

the alpha value o f the incoming pixel and dfactor to be (1 - alpha value o f the incoming pixel)

(Fig. 45 - Fig. 46).

p tx e lv a tu c

44

(a)

Destination
a values

Source
a values

pixel value

pixel value

(C)

80 >

60

40

20

- 4 - 2 2 4

60

40 -

2-4 4

(b)

— a-modulated
destination pixels

 a-modulated
source pixels

Blended pixels

Destination
pixels

Source
pixels

(d)

Fig. 45. Pixels o f multiple splats can land on the same location in the frame buffer. In this case, pixels o f the splat

that are already in the frame buffer (destination pixels) and pixels o f the incoming splat (source pixels) are blended.

70

(a) Each splat has an associated blend weight function in the form o f an alpha texture, (b) The original and (c) alpha-

modulated pixel values o f the splats to be blended, (d) Blended pixel values.

Fig. 46. The alpha value-based color blending is implemented in several steps, (a) The frame buffer contents

initially, (b) the incoming color buffer from the new splat, (c) and (d), the (1 -so u rce a lph a) and so u rce a lp h a masks

respectively, (e) the resulting frame buffer after the blending operation.

71

Fig. 47. Direct point rendering results with alpha-blended point splats that are oriented according to the given point

normal information.

The surface splatting technique described here is an efficient single pass rendering

technique. However efficient it is, the visualization quality can still be improved (Fig. 47). One

approach would be to improve the visual quality through a multi-pass rendering scheme. The

QSplat [63] algorithm implemented the surface splatting with 3 passes. First, the splats were

rendered to the depth buffer, thus storing the depth information of the individual splats. In the

next pass, the blending pass, lighting was computed for the splats and their colors were blended

72

through additive alpha blending as described above. Different from the standard rendering

procedure, the blending pass did not update the depth buffer, instead, it added a small depth

amount to splat depth values and compared the output of the visibility pass to these modified

depth values. Finally, the RGB values were normalized with another render pass that essentially

divided the RGB channels by the accumulated alpha values. In the technique used in this

dissertation and in the QSplat algorithm, lighting equations were computed per splat and the

resulting colors were blended as depicted in Fig. 46. This type of shading is typically equivalent

to Gouraud shading model [64]. Gouraud shading, while being used to render a triangle mesh,

computes the color values for the individual triangle vertices and then interpolates these color

values through the triangle. Unless applied to a low-resolution/under-sampled geometry,

Gouraud shading results in smooth and continuous renders o f the object.

Although Gouraud shading is relatively a low-cost shading solution, it also produces

excessively blurred visuals and faceted looks in case of low-resolution geometry. A significant

improvement upon the Gouraud shading is the per-pixel Phong shading model [65], which,

unlike Gouraud shading, interpolates normal vectors, not the colors, across the primitives. Botsch

et al. came up with the idea of Phong splatting [66] that essentially assigned linear normal fields

rij(u, v) to the individual splats instead of using their associated constant normal vectors. The

linear normal field is defined as

11; (u , V) = fi; + UCCiUi + v 0 ivi (51)

where u and v are the local splat parameters, U; and V; are tangent vectors of splat s,, and iT;, a,-,

and ^ are normal field descriptors that are obtained through a least square fitting operation. In

this visualization scheme, normal fields for the individual splats have to be precomputed, which

73

makes it suitable for static geometry. In the case of a dynamically changing object however, this

technique becomes inapplicable.

4.5 Curvature Adaptive Splat Radius Sampling

Oriented point splats improve the visuals of the point-based objects significantly

compared to naive point primitive based rendering. The improvements are more profound at

object contours and locations with specular highlights. However, using the same radius value for

every splat poses new unwanted visual artifacts at the regions with high curvature (Fig. 47 - Fig.

48).

Fig. 48. Comparison o f direct point rendering approaches, (a) Direct point rendering with screen-aligned disks

produce poor visual quality at regions with specular highlight and object contours, (b) Oriented point splats with

alpha-blending improve the visual quality significantly, (c) Using same radii for all splats result in visual artifact at

high-curvature regions.

This problem can be addressed by adjusting the radii of the splats so that they are

decreased at high-curvature regions and increased at relatively smooth regions. Because point-

based representations of objects do not have explicit connectivity information, the curvature

information has to be approximated using the point neighborhoods. Three different approaches

were implemented to estimate the curvature information.

74

The first approach finds the local point density for each point, and uses this information

to estimate the curvature, based on the assumption that high-curvature areas have greater number

of points per area than smoother areas (Fig. 49). The technique accepts parameters k, which

denotes the number of nearest neighbors to estimate the local point density, and rmin and rmax

that are the lower and upper bounds of the radii of the splats respectively. The metric to estimate

the local point density for the point p t is the average distance to its k -nearest neighbors and

defined as

k

^ , = f c S P i ~ p ; i (52)
; ' = i

where are the nearest neighbors of the point p (.

Fig. 49. The average distance to ^-nearest neighbors is smaller in denser point samplings (a) compared to (b) sparse

point samplings.

The minimum and maximum values of the average distances p in and p max are mapped

to rmin and rmax, and the /r in-between are linearly mapped to rt, where r; are the radii of the

individual splats (Fig. 50).

75

Front View Right View

Splat Radii
O min l max

| ' 0
I 0 8

0

0.6

0.4

0.2

Fig. 50. The splat radii distribution with point density-based sampling.

The point density-based sampling of splat radii works well for a point cloud that is

irregularly distributed according to the level of detail of the object. For a regularly distributed

point cloud though, this approach would not perform very well. Therefore, other approaches

were implemented which use the neighborhood information along with differential geometry

concepts to estimate the curvature information for the individual points and sample the splat radii

accordingly. The approach of Gumhold et al. [67] was used to extract the features of the point

cloud. For each point p (in the point cloud, we compute two quantities c* and C*, which are the

local centroid of the neighborhood and the covariance matrix respectively,

k
(53)

and

k

(54)

76

where p; are the k -nearest neighbors o f p;. The covariance matrix is a useful construct and

widely used in statistics and applications as a measure of dispersion. The covariance matrix is a

symmetric positive-semidefinite matrix, meaning its eigenvectors give an orthogonal basis for

the plane that passes through the centroid of the points in the neighborhood, and the eigenvector

that corresponds to the smallest eigenvalue is the estimate o f the normal of that plane (Fig. 51).

• • • _ • • •

• • • • •

• • • • : •
• • • •

Fig. 51. Local plane fitting for curvature estimation, (a) For a local neighborhood o f points around the central point

Pi, the centroid c, o f neighboring points py is computed. From these values, the covariance matrix C, is computed,

(b) which is used to estimate the least-square-fitted plane that passes through c ; with normal e 0 (red vector).

After obtaining the eigenvectors (e0le lt e2) and the corresponding eigenvalues

{XQlX1,X2 | A0 < Xx < X2) of the covariance matrix o f the local neighborhood, this information is

used in two different ways to estimate the curvature information.

77

Fig. 52. Estimating the curvature o f the point p* with geometrical equalities.

The plane that passes through the centroid C; with normal e 0 is the least squares-fitted

plane to the local point neighborhood. It is possible to estimate the average curvature k of the

point Pj from this fitted plane. The distance of p* to the plane is d = |e0. (pj — Cj)|. The

curvature of the point Pj is represented by a circular arc with radius r. This arc intersects the

fitted plane at a point, which has an approximate distance o f fa to p* (Fig. 52). From the equality

fa2 — d2 — r 2 — (j — d) 2 (55)

the estimated curvature k = - becomes
r

2d
k = - 2. (56)

Similar to the point density-based splat radii sampling, we find the minimum and

maximum curvature values Km in and Km ax , and use these to linearly map the curvature values to

splat radii between rmin and rmax (Fig. 53).

78

Splai Radii
0:min I max

10I0.8

0.6

0.4

0.2

0

Fig. 53. The splat radii distribution with curvature-based sampling.

Curvature-based splat radius sampling provides good results in terms of setting as small

as possible the splat radii at regions with high curvature and as large as possible the splat radii at

smoother regions. Another technique to extract high-curvature features is the Surface Variation-

based feature detection proposed by Pauly et al. [68]. Compared to the curvature-based technique

discussed earlier, surface variation metric describes the variation o f a point along the estimated

surface normal without computing the distance of the point from the fitted plane. The deviation

of the point p ; from the tangent plane < e 0, Cj > is computed as

<57>

where Aq, Aj, and A2 are the eigenvalues of the covariance matrix defined in Equation (54) such that

A0 < Ax < A2. Surface variation varies from 0 to 1/3, where a value of 0 means that all neighborhood

points lie in the tangent plane and 1/3 means that all points are distributed evenly at all directions [68].

Surface variation gives a good estimate for the curvature information without requiring the extra distance

calculation, therefore providing an efficient tool to sample splat radii (Fig. 54).

79

Splat Radii
0 min l:max

Fig. 54. The splat radius distribution with surface variation-based sampling.

The presented three approaches can be used to adjust the radii of the splats according to

the curvature of the underlying surface that the splats represent. The three approaches can be

used interchangeably in order to obtain the best visual quality for a given point-based simulation

object (Fig. 55).

Fig. 55. Original point splat implementation vs. the adaptive implementation, (a) Original visualization o f the

simulation object with constant splat radii results in visual artifacts at regions with high curvature, (b) curvature

adaptive splat radii distribution alleviates these artifacts by adjusting the splat radii at high-curvature areas.

80

4.6 Animation of the Point Splats

The visualization of the deformable body has to be controlled by the physically-based

deformable behavior. In the presented visualization technique, an approach similar to the skeletal

animation technique [69] has been adopted. Each surface point splat has been assigned a number

of meshless nodes, whose influences on their corresponding surface point are measured with a

weight function of their distances in-between (Fig. 56).

Fig. 56. The surface point splat (disk with normal vector) is controlled by a number of nearby meshless nodes.

For each surface point splat, k -nearest meshless nodes are found. The maximum distance

from these fc-nearest meshless nodes to the surface point splat is set as the splat’s influence

radius. This radius is used to calculate the influence of a meshless node i on the point splat as

w,- = e 4 , (58

where d t is the distance between the meshless node i and the point splat, and h is the splat’s

radius of influence. These influence values are used to calculate the displacement o f the point

splat as

81

Us = E ^ ’ (59)

where us is the point splat displacement that is desirable and u, is the displacement vector o f the

meshless node i.

4.7 Summary

In this chapter, a visualization approach for point-based object representations was

discussed. Several related studies were presented on surface reconstruction techniques as the

current state of the art. Direct point rendering approaches, as opposed to surface reconstruction

techniques, were favored as they are computationally more efficient and produce visuals with

adequate quality. These properties make them good choices for the surgical simulation setting.

Simple direct point rendering approaches were built such as naive point primitive rendering, and

described the techniques that were employed in order to increase the visual quality such as

oriented surface splats. The theoretical basis for the three approaches was also provided, namely

a framework for adaptively sampling the splat radii in order to treat the unwanted visual artifacts.

Finally, the methodology to animate the surface point splats was presented.

The point-based objects are shaded with Gouraud shading, where the lighting

computations are based on the Phong reflection model. The presented approach is a single-pass,

efficient rendering scheme. One current limitation is the lack of texture support, which can be

implemented with multi-pass rendering schemes that remains to be analyzed for its feasibility for

the surgical simulation setting.

8 2

CHAPTER 5

A COMPLETE POINT-BASED SURGICAL SIMULATION FRAMEWORK

In the previous chapters o f this dissertation, a meshless method-based approach for

representing the deformable object and the methodology used in this dissertation on how to

handle discontinuities such as incisions/cuts, and algorithms for visualizing deformable objects

with point-inspired primitives have been discussed. This chapter presents design decisions,

functional modules, Hertzian Contact Theory-based code verification, and specialized algorithms

developed for the point-based framework.

5.1 Overview

Medical education has embraced computer-based modeling and simulation. From the

surgical training point of view, virtual environments provide a safe means to train medical

professionals, where there is no risk to a real patient. As opposed to the conventional training

procedures that involve text books and apprenticeships, they are interactive, multi-modal, with

3D visualizations, and also less expensive compared to cadaver training. A surgical simulation

framework has many facets, and each of them poses various challenges for medical simulation

research and development. These challenges are multi-disciplinary problems such as

biomechanical modeling, visualization, haptic interaction, and collision/contact handling. This

diverse problem set led the medical simulation community to seek the answers in open-source

software toolkits. Montgomery et al. presented Spring [70] as a generalized framework for

collaborative and real-time surgical simulation. Spring incorporated soft tissue modeling and also

featured network-based collaboration in terms of multi-user and multi-instrument haptics

interaction. Although the Spring framework was released to the public as an open-source project,

83

its development has ceased since 2007 and the authors have not provided the necessary means to

easily extend the framework. Other examples include GiPSi [71], Virtual Reality Aided Surgical

Simulation (VRASS) [72], and the Surgical Simulation and Training Markup Language

(SSTML) [73], all of which lack the necessary flexibility and modularity to be widely adopted by

the community.

5.2 Simulation Open Framework Architecture (SOFA)

SOFA [74] is an open-source object-oriented software library that is targeted towards

interactive medical simulations. SOFA has a modular structure that allows users to quickly

prototype simulation scenes with ready-to-use components. The architecture of SOFA is

designed to be modular and flexible, which makes it feasible for developers to extend the

functionalities of the library by deriving new components from the existing ones. With the

object-oriented design principle, the components that implement new algorithms integrate

seamlessly with the rest of the framework and interact with the core components within a

common simulation. The two most important objectives o f SOFA are to provide a software

framework for the simulation community with an emphasis o f medical simulation, and to enable

component derivation, evolution, sharing, and exchange through a modular plug-in mechanism.

In order to provide this level of flexibility and extendibility, SOFA architecture relies on

the notion of multi-model representation, which decomposes simulation objects into functional

units such as visualization, deformation, and collision detection. These functional units, called

modeh, are then connected to each other through mapping objects (Fig. 57, Fig. 58).

84

Visual Model

Behavior M odel

Collision M odel

Fig. 57. In SOFA, a simulation object has multiple representations (models) each corresponding to a different

functionality. These models are linked to each other with mapping objects.

Fig. 58. All three representations o f a deformable liver model are shown together.

85

Mapping objects essentially establishes a relationship or association between the sets of

primitives of the connected models. A mapping can be defined either as a bidirectional

relationship or a unidirectional relationship. The mapping between a behavior model and a

collision model is an example for a bidirectional mapping, meaning an update of the behavior

model is applied to the collision model and an update of the collision model is applied to the

behavior model. On the contrary, the mapping between a behavior model and a visual model is a

unidirectional mapping, meaning only the updates o f the behavior model are applied to the visual

model, not vice versa. The multi-model decomposition of simulation objects allows developers

to extend the functionality of the framework by implementing new components, and integrating

them to the existing components in a seamless way.

The behavior model is the underlying driving engine for a deformable simulation object.

Therefore, SOFA introduces a deeper level o f modularity for the behavior model. The behavior

model itself is defined by a series of components such as DoFs in a Mechanical Object, Mass,

Force Field, and Solver. These components work together and define the kinematic properties of

the simulation object. For example, the Force Field type of components describes internal or

external forces applied to the DoFs of the behavior model. Following this modular and flexible

open-source approach, a developer can integrate his or her ideas and algorithms within the rest of

the SOFA framework.

5.3 Point-Based Methods Plug-in for SOFA

For the implementation of the previously described point-based approach, the SOFA

platform was selected because of its extensible architecture, large number o f active users,

continuing support, and up-to-date development effort. A point-based meshless behavior and

86

splat-based visualization algorithms were implemented as a set of SOFA components that are

bundled together in the form of a plug-in (Fig. 59). The plug-in architecture allowed us to

integrate the point-based components into SOFA without altering the core SOFA classes and

directories.

Mechanical
Object

Uniform
Mass

|" Mechanical *
! Oriented •

Object |
Mechanical

Object

I Surfel ;
i Mapping i

Barycentric
Mapping

Fig. 59. Individual SOFA components that are used to model a deformable liver object. The core functionality has

been extended by deriving new components (dashed rectangles) from the old ones.

The core functionality of the point-based deformable object is implemented as a Force

Field component named Meshless Force Field. This component handles the point-based

discretization of the continuum, Moving Least Square (MLS) approximation of the displacement

gradient, and strain energy-based internal force computation. In addition to the Force Field

component, the point-based visualization approach discussed earlier is integrated to the

87

framework by three new component implementations. The Mechanical Oriented Object

component extends the DoF definition of the core framework by adding per-vertex normal

information, the Oriented Point Splat Model component implements the surface splatting

algorithm with alpha-blended oriented disks, and the Surfel Mapping component applies the

updates of the point-based behavior model to the point-based visual model.

5.4 Cutting Operation for the Behavior Model

The cutting operation is implemented by additional auxiliary components that modify the

internal states of the behavior and visual models. Meshless Haptic Device component interfaces

with a haptic device to capture the location and orientation of the stylus. This component can be

activated to record the cutting edge at specific intervals to create a cutting surface represented as

a triangle strip. Meshless Cut Event component is responsible for transferring the cut surface

information to the related components through SOFA’s event handling mechanism, and finally,

Meshless Enrichment Grid Manager component computes the enrichment values from the

received cut surface information and passes these values to the Meshless Force Field component

to let it update the weight values of the nodes (Fig. 60).

88

Behavior
Model

Visual
Model

Mechanical *
J Oriented *
J Object *

Surfel j
i Mapping i

Cutting
O p era tio n /
D iscontinu ity

Meshless
Cut

Event

Fig. 60. The components that were implemented for the point-based approach are grouped according to their

functionalities.

When there is a cut that intersects the deformable object, it affects the behavior and visual

models of the object separately. For the behavior model, the cutting operation is handled in

several steps:

1. The Meshless Haptic Device component records new cut points in the current

configuration of the deformable object (in world coordinates).

2. The Meshless Haptic Device broadcasts this information to the related

components in the scene graph.

89

3. The Meshless Force Field component converts the cut points from the current

configuration to the reference configuration (from world coordinates to material

coordinates) and passes these to the Meshless Enrichment Grid Manager.

4. The Meshless Enrichment Grid Manager component updates the current

enrichment grid for the continuing cut surface (Fig. 61).

From World
to Material
coordinates

Fig. 61. Processing o f the cut points in the enrichment grid, (a) When there is a cut, the points forming the cut

surface are converted from the world coordinates to deformable body’s material coordinates through an inverse

mapping, (b-c) the cut points in the material coordinates are used to update the values in the enrichment grid.

As discussed in Chapter 2, in the Lagrangian formulation, a deformable object is

represented in two configurations, the reference configuration and the current configuration.

Deformable object point locations in these two configurations are defined in the material and

world coordinates respectively. There is not any direct mapping from the world coordinates to

the material coordinates; however, an inverse mapping can be computed by approximating the

weight of a given point in world coordinates. Recalling the Equation (22), the displacement o f a

point with material coordinate Xj can be approximated as

For a point with the material coordinate X and that is in the neighborhood of i nodes, the

displacement u can be computed based on the neighboring nodal displacements u, as

where J t is the Jacobian of the i-th node and defined as = I + Vut .

When the point for which we want to calculate the inverse mapping is not in the

neighborhood of any node, or is in the neighborhood of a node with a very low weight value, the

matrix summation Y.i w(r[) will result in a singular matrix, which makes it impossible to

invert. In such cases, a fall-back mechanism has been implemented that approximates the

material coordinate of a point p by

du
(60)

w(rj)(Uj + VUj(X - X,-)), (61)

where p is the world coordinate of the point, w is the weight function defined in Equation (15)

!IX X-IIand Tj = ——1 hi being the support radius of the i-th node. It is desirable to obtain the materialhi■i

coordinate given the world coordinate, therefore Equation (31) is solved for X, given p and the

following is obtained

wfo) ^ p ' ~ ^ w(Ti)u^j + ^ wfr^VuiXij^,

91

where p(is one of the fc-nearest neighbors of p and equal to X, + U/.

5.5 Cutting Operation for the Visual Model

After obtaining the material coordinates o f the cut surface, Meshless Force Field

component forwards this information to the Meshless Enrichment Grid Manager for updating the

behavior model as discussed earlier. For the visual model o f the deformable object, the process

involves the following steps:

1. The Meshless Force Field component converts the cut points from the current

configuration to the reference configuration (from world coordinates to material

coordinates) and passes these to the Surfel Mapping through SOFA event

handling mechanism,

2. The Surfel Mapping samples regular points on the triangles that form the cut

surface and for each of these points, checks whether the point is inside or outside

of the surface of the deformable object,

3. For each of the points that are detected as inside of the boundary of the soft-tissue

model, two new DoFs are added to the Mechanical Oriented Object component,

forming the new surface of the cut deformable object.

When the Surfel Mapping receives the triangle strip vertex positions in material

coordinates, it uniformly samples points on the triangles. The point sampling algorithm accepts

as input the cutting surface and a density parameter that determines how many points should be

sampled per unit area of the triangles (Fig. 62, Fig. 63).

92

• • •
V « •

• pt 2

Fig. 62. New points are sampled uniformly on the cut surface for each pair o f triangles. The density o f the sampled

points is defined by a density parameter.

1: procedure UNlFORMSAMPLE{a/f, density) o cu tisa triangle strip
2: for each <p0,pl,p'2> and <p2,pl,p3> e cut
3: trilSamples*- {}
4: tri2Sa mpies *- {}
5: totalArea<- Area (<p0,pl,p2>) + Area(<p2,pl,p3>J
6: totalArea *- totalArea * density
7: el *- Norm(pl - pO)
8: e2 *- Norm(p2 - pO)
9: stepsl * - 1 / (\totalArea/el] — 1)
10: steps2 *- 1 / (\totalArea/e2\ — lj
11: for u*~ 0 to 1 step stepsl
12: for v *- 0 to 1 - u step steps2
13: y*~ 1 - u - v
14: trilSamples*- P u s h_b a c k (tri 1 Sam pics, p2*u + pl*v + p0*y)
15: tri2Samples*- Push_back[tri2Samples,pl*ii + p2*v + p3*y)
16: return <trilSamples, tri2Samples>
17: end procedure

Fig. 63. The algorithm for sampling uniform points on a cut surface represented as a triangle strip.

93

The points that are sampled in the reference configuration are input to an inside/outside

test against the current points that represent the surface of the deformable object. The points that

are classified as inside-points are used to generate new surface point elements (Fig. 64).

Point
inside/outside

test

New
surface point

generation

Fig. 64. Each point on the cut surface is input to an inside/outside test, and the ones that are designated as inside

points are used to generate new surface points. For each inside point, two new surface points are generated, and then

separated along the normal o f the cut triangle that they belong to.

The inside/outside test for a sampled point p works by first finding the two surface points

nearest to p, which we label px and p 2, and for which we define normal vectors n x and n 2.

Next, the algorithm determines whether these oriented points px and p2 are convex to each

other. If they are convex, the point p is categorized as inside the surface if both px and p2 are

facing away from p, based on a test on the normals n x and n 2. If the two-nearest points are

concave to each other, the point is classified as an inside point when at least one of the points Pi

or p 2 does not face towards p. The concavity and convexity definitions for two oriented points

and sample inside/outside regions are illustrated in Fig. 65.

94

w

Fig. 65. Surface inside/outside tests with respect to two oriented surface points, (a) Two surface points spanning a

concave surface, (b) spanning a convex surface, the regions classified as inside (blue) and outside (red) the local

surface spanned by pa and p2, which can be (c) concave or (d) convex.

In order to determine the convexity of the two points px and p 2 with normals n a and n 2,

we define two vectors p 1 2 = Pi — P2 and P2_i = P 2 — Pi The points px and p 2 are defined to

be concave if the dot products p x 2 ■ n 2 and p2 x ■ iij are both positive and they are defined as

convex points if either of the dot products is negative.

5.6 Spatial Data Structures

The operations that are described throughout this dissertation such as setting up support

radii of the meshless nodes, determining the meshless nodes that are affected by a cut surface,

and testing whether a cut point sample is inside or outside o f the deformable object all require

95

spatial queries such as like finding nearest neighbors or computing intersections between

geometric primitive. Brute-force implementations o f such operations typically have high

computation costs and they are certainly not suitable for applications with interactivity

requirements such as surgical simulation. When the performance is a critical factor for an

application, spatial data structures become essential elements to accelerate time-consuming

spatial queries.

There are various categories of spatial data structures. Regular grids, Octrees [75],

Bounding Volume Hierarchies [76], Binary Space Partitioning (BSP) trees [77], and their

generalization Kd-trees [78] all address different application requirements and problems. Among

these, Kd-trees are particularly useful for organizing point data and they are also capable of

performing specific queries efficiently such as nearest neighbor searches and range searches.

These features o f Kd-trees make them viable options for the purposes of this study. A subset of

the FLANN library [79] called nanoflann [80] was used, which is optimized for 3D point cloud

organization and querying.

The Kd-tree data structure is beneficial for point-based nearest neighbor queries and

range searches; however, the cutting operation requires computing the intersection of a cut

surface, which is a triangle strip, with multiple spherical regions that are essentially defined by

meshless node and surface point locations as well as their domains of influence. This intersection

query is critical for the cutting algorithm as it allows the algorithm to apply the enrichment only

to the necessary nodes and surface points, i.e. modification of the weight function of a meshless

node is only required if the cut surface intersects with its domain o f influence. Considering the

many triangles that a typical cut surface contain and the number meshless nodes as well as

96

surface points that this cut surface needs to be retested against, a brute-force approach is not a

viable option.

Typically, the way to approach this problem is to partition the space that encloses the

objects hierarchically and perform the intersection checks only between the objects that are

located in the same space cell [81]. The approach in this dissertation to address this problem

however, is a different, more practical approach. In order to find the nodes that are affected by a

cut, by-products of the Enrichment Grid are being used as a spatial data structure. Recalling

Equation (47) from Chapter 3 about handling discontinuities, a distance function was defined

that formed the basis of the enrichment function definition

The d3 function is a by-product of calculating the enrichment values for the enrichment

grid. For each grid value, the d3 function gives the minimum absolute distance of that grid point

to the cut surface. This distance metric, therefore, provides a practical way of finding which

meshless nodes/surface points are intersected by the cut surface as it translates the intersection

problem into a d 3-look-up operation for the node location. If the distance of a node to the cut

surface is smaller than its domain of influence size, then the cut surface affects that node (Fig.

66, Fig. 67).

(64)

97

I

Fig. 66. A cut in a deformable body affects a meshless node as it intersects with its spherical domain o f influence,

(a) The calculated distance function (in 2D) can be used to find the list o f nodes whose distances to the cut are

smaller than their domain radii (b).

The enrichment grid related algorithms were implemented using the open-source

Armadillo library [82]. Armadillo is an easy-to-use linear algebra library that provides matrix

manipulation syntax similar to MATLAB [83]. In order to access the distance values o f the

nodes quickly at run time, the indices of the nodes are pre-calculated and stored in an index

array. When one wants to query a distance grid, the stored indices are used to lookup the distance

98

values corresponding to the nodes. The nodes that have distance values smaller than their support

radii are chosen as affected nodes by the cut, as shown in Fig. 68.

Fig. 67. The distance function d3 is calculated for a cut surface in 3D.

99

Fig. 68. The iso-surface visualization o f the distance function at level-set (a) 0.5 and (b) 1.5.

5.7 Code Verification through Hertzian Contact Theory

The Hertzian theory of non-adhesive elastic contact [84] defines analytical solutions for

the interaction of elastic half-spaces with simple shapes in terms o f applied force and object

indentation. For example, the amount o f indentation of an elastic half-space under a spherical

load is given by

1 0 0

f = ^E*JFd3/ 2, (65)

where / is the vertical force applied on the spherical load, r is the radius of the spherical load, d.

is the indentation amount, and E* is the combined Young’s modulus of the two materials and

calculated using the Young’s moduli (E1, E2) and Poisson’s ratios (v1, v2) o f the two materials

as

1 1 — v? 1 — vf
— = - + (66)
E* Ei E2

The Hertzian theory assumes 1) small strains within the elastic material, 2) much smaller

area o f contact compared to the areas o f the objects in contact, and 3) continuous and frictionless

contact surfaces. There have been numerous finite element analysis studies about the Hertzian

theory that use both research and commercial finite element code [85-88],

In order to verify the usability of the Hertzian contact theory as a means of verification of

soft-tissue deformation, experiments were first conducted using a well-established finite element

platform: FEBio is an open-source software suite that is primarily targeted towards biomechanics

and biophysics problems with a specific focus on nonlinear large deformation problems in

biosolid mechanics [89]. FEBio provides several models and options to represent the non­

adhesive Hertzian contact theory. In the experiments, the facet-to-facet sliding algorithm that is

based on Laursen’s contact formulation [90] was selected. In this algorithm, the contact

constraints are enforced through Lagrange multipliers.

The FEBio experiment was setup by defining the fixed-position boundary conditions of

the deformable block at its bottom and side faces, facet-to-facet sliding contact between the top

face o f the deformable block and the rigid spherical indenter, and the sphere’s indentation

amount. The simulation was run for 10 time steps of 0.1s each and the simulation runtime took

101

over 4 minutes. The node at the middle of the top of the deformable block was tracked for the

vertical displacement and the vertical component of the contact force. The obtained load-

displacement curve was compared to the theoretical solution, which were in very good

agreement (Fig. 69), therefore verifying the usefulness o f the Hertzian contact theory as a

verification method.

force(N)

_ FEBio FEM
_ Theoretical solution

0.005 0.010 0.015 0.020

Fig. 69. Comparison o f the FEBio FEM Code and the theoretical solution o f the Hertzian non-adhesive frictionless

contact theory.

The contact mechanics experiment was setup as a SOFA scene. In order to assess the

ground-truth performance of the contact handling in SOFA, the rectangular deformable block

was represented with the hexahedral finite element model in addition to the point-based

deformable body approach. The validation of the hexahedral FEM implementation of SOFA was

studied by Marchal et al. [91]. For a given sphere radius, simulations were performed for varying

force values (/) applied to the spherical load as depicted in Fig. 70. With the applied force, the

rigid sphere comes into contact with the elastic solid block and deforms it. The vertical velocity

of the sphere is monitored and the indentation of the material (d) is measured when the sphere

comes to rest. This f - d pair is compared to the theoretical solution.

102

Fig. 70 Initial setup o f the indentation experiment for the SOFA FEM model, (a) The close-up view o f the indented

deformable material (b). SOFA allows the user to track and monitor simulation values o f indexed particles.

The meshless nodes are distributed uniformly inside a cubical volume with 2m long edge

length. The indentation experiment is repeated for several distribution configurations, which play

a critical role especially for the MLS approximation-based collocation methods. The

convergence rate in the L2 (vector) error norm of the force-indentation pairs with respect to the

theoretical values (Fig. 71) is investigated. The effect of different distribution schemes on the

accuracy, stability, and performance of the meshless collocation methods has yet to be examined.

In the implementation, the number of neighboring nodes is limited to 16 for each of the meshless

nodes.

103

L2-error norm

0.020

0 .0 1 5

0.010

Total number
4250. 4500, 4750. 50(H). 5250. 5500. 5750. of DOF

Fig. 71. Error in the L2 norm with respect to the theoretical solution as function of total number o f the degree o f

freedom for the meshless method.

The SOFA FEM implementation and the meshless collocation method were compared

with close accuracy (Fig. 72). For the meshless collocation method with nodal integration, an

explicit time integration scheme was used with a time step of 0.001s without any stability

problem. For the SOFA FEM implementation, implicit integration with a time step of 0.01s or

greater were used. The calculations were performed within the SOFA application on a single

Intel Core i5 CPU running at 2.67 GHz with 16 GB of RAM under Windows 7 operating system.

The SOFA FEM implementation took 195ms of calculations per time step, whereas the meshless

method consumed 20.11ms for calculations per time step. Therefore, the meshless collocation

implementation in SOFA (along with other SOFA related operations such as collision detection)

is roughly 25 times slower than the real-time operation, which is slightly better than the 30 times

slower performance reported by the Meshless TLED algorithm [38], The calculation speed of the

meshless collocation algorithm is governed by the number of particles and the number of

neighbors assigned to each particle.

104

force! N)
80-

-SO FA FEM 21x21x21
_ SOFA Meshless 18x18x19
_ Theoretical solution

40

20

d(m)
0.005 0.010 0.015 0.020 0.025

Fig. 72. Comparison o f the SOFA FEM implementation and the point-based approach with close indentation

accuracy and the theoretical solution.

A mesh convergence study for the meshless collocation method was also performed by

investigating the convergence of the indentation amount to the theoretical value for a fixed

amount of force (Fig. 73). After around 6000 particles, the indentation value converges to the

theoretical indentation value, the equation of which is given in Equation (65).

Indentation
at 50N
Theoretical
value

Number of
meshless nodes

Fig. 73. Convergence o f the indentation value with increasing number o f meshless nodes.

105

5.8 Summary

In this chapter, the implementation details o f the point-based approach for surgical

simulation were discussed. The approach was integrated into a previous framework due to the

fact that in a surgical simulation application there are several aspects of the problem that need to

be considered and it is simply not feasible to address all the problems in a reasonable amount of

time. Examples of several open-source frameworks were given and then the choice Simulation

Open Framework Architecture (SOFA) was presented.

The SOFA framework has a modular and flexible architecture that enables developers to

integrate novel algorithms with the rest of the framework. Details for several implemented

components were presented. These components control different functionalities in the approach

such as the deformable behavior, point-based visualization, and handling the cutting operation

through the input of a haptic device. Several algorithms were developed for various tasks that

were also described in detail in this chapter.

Finally, the formulation of the Hertzian non-adhesive contact theory was presented from

which the verification technique was based. Various experiments were performed with different

tools and techniques and the point-based deformable object modeling approach was compared

with these techniques and the theoretical solution of the contact theory in terms of accuracy and

performance.

106

CH APTER 6

RESULTS

In this chapter, the results for the point-based deformable object modeling approach are

presented by modeling two objects with the discussed techniques. The sample objects are a

synthetic rectangular block and a liver model. The triangular mesh o f the liver model, which is

used to initialize the meshless node and surface point locations, is obtained from the SOFA

repository [92], The soft-tissue elastic properties that were reported by McKee et al. [93] are

input to the point-based deformable model. The results are presented separately for a simple

deformation of the objects under gravity and after cuts are introduced to the models.

Fig. 74. The rectangular block, which is discretized by regularly distributed points, deforms under gravity.

The deformable block object is a simple geometric shape, which makes it possible for it

to be discretized by uniformly distributed set of points in addition to the non-uniform

tetrahedralization-based distribution that was discussed in Chapter 2. Fig. 74 shows the point-

based regular discretization of the rectangular object with 1408 DoFs. The number o f neighbors

(the points that are connected by blue lines) for each DoF is limited to a maximum number o f 16

107

neighbors and the simulation runs at about 80 simulation frames per second (FPS). It is also

possible to discretize the object geometry hierarchically by first obtaining the tetrahedral mesh,

and using the vertices o f the mesh as point-based node locations (Fig. 75).

Fig. 75. The meshless node locations o f the deformable block are obtained through hierarchical discretization. This

simulation object has 436 DoFs, the number o f neighbors is not limited, and simulated at around 125 FPS.

The meshless nodes shown above correspond to the behavior model o f the simulation

object. The visual model of the object, which is controlled by the behavior model, is also

represented by point primitives.

Fig. 76. The visual model o f the simulation object is represented by point primitives.

108

Fig. 76 shows the visual representation of the deformable block. The oriented point splat

primitives are scaled down to show the individual elements, and colored according to the

curvature of the point - from low curvature, shown in blue to high curvature, depicted in red.

Fig. 77 shows the continuous visualization of the block with oriented point splat primitives.

Fig. 77. The deformable block is visualized with oriented point splat primitives.

When a cutting operation is performed, an enrichment grid is generated for the cut, which

is used to update the behavior and visual models o f the deformable object. The changes applied

to the visual model includes updating meshless node - surface point neighborhood relation,

adding new surface points along the cut surface, and re-calculating the radii o f the oriented point

splats (Fig. 78, Fig. 79).

109

Fig. 78. The deformable block is cut, which results in the update o f the behavior and visual models. The curvature o f

the affected surface points is re-calculated.

Fig. 79. The deformable block is cut a second time, completely separating a piece.

Fig. 80 shows the cut deformable block that is visualized with oriented point splat

primitives. Although the radii of the affected splats are recalculated to conform to the new

curvature values, some visual artifacts can still be seen because of the very sharp change in the

splat orientation.

110

Fig. 80. The deformable block that underwent cut operations is visualized with oriented point splat primitives.

In addition to the deformable block, the liver model from the SOFA repository was also

discretized to obtain the meshless node locations. The resulting point-based deformable model

had 181 DoFs with an average number of 21 neighbors per each DoF, the simulation ran at

around 120 FPS (Fig. 81, Fig. 82, Fig. 83, and Fig. 84).

Fig. 81. The meshless node locations o f the liver object are obtained through hierarchical discretization.

I l l

k
Fig. 82. Visual model o f the liver object is represented by scaled-down oriented point splats.

Fig. 83. The deformable liver model is visualized with oriented point splat primitives.

112

Fig. 84. An introduced cutting operation is visualized by (a) scaled-down point splats, and (b) regular-sized oriented

point splat primitives.

113

CHAPTER 7

CONCLUSIONS

The feasibility of an entirely point-based approach for deformable body modeling in the

context of surgical simulations was investigated in this dissertation. The problem was divided

into three parts: assessing the use of point-based meshless methods for deformable object

modeling, development of a visualization technique that does not rely on an explicitly defined

mesh, and implementation of the cutting operation that takes advantage of these point-based

approaches for the behavior and visual models. Each of these problems was examined separately

by laying the theoretical foundation, which is followed by the presentation of the underlying

implementation and algorithmic details.

The behavior model of the deformable object is formulated by first discretizing the

domain of the simulation object with disconnected point primitives. The points in this

discretization are positioned either by regular sampling for objects with regular geometric shapes

or by tetrahedralization-based non-uniform sampling for objects with arbitrary shapes. After

initializing the simulation related variables for each of the points such as density, volume, and

inverse moment matrix, the internal elastic forces are computed at each time step by

approximating the displacement gradient of the continuum with the Moving Least Squares

(MLS) based approximation scheme. The behavior model implementation was verified by

comparing the response of the model against the analytical solution of the Hertzian non-adhesive

frictionless contact theory, which showed that the behavior model and the contact theory were in

good agreement.

In the surgical simulation context, an important functionality that the soft tissue models

need to have is the cutting operation. For the mesh-based models however, the cutting operation

114

is particularly problematic and usually becomes the bottleneck of the simulation in terms of

performance. This dissertation presented a novel way of handling piecewise cut segments in 2D

and 3D. The approach was achieved by extending the application of the mathematical

enrichment function described earlier by Barbieri et al. [12], The enrichment grid data structure

that is proposed in this dissertation allowed the handling o f consecutive cut segments in a correct

way that prevented the occurrence of computational instabilities. This data structure has also

proved itself to be a useful spatial query accelerator to find the meshless nodes as well as surface

points that are affected by a cut.

Another aspect of the problem is the visualization of the simulation objects. For the

scenarios where the object remains intact, i.e. the connectivity o f the primitives is not disturbed

by a discontinuity such as a cut; methods that use explicit meshes are the natural choice. When

there is a cut though, these traditional methods suffer the same problems that the mesh-based

deformable models do. Therefore, this dissertation adopted a purely point-based visualization

technique that does not rely on explicit connectivity information, which enabled it to handle cuts

in a more efficient way. Certain shortcomings of the point-based visualization technique were

also described, while several solutions were proposed to address these problems.

The proposed soft-tissue model is based on the isotropic linear elastic material model.

Although being a computationally efficient material definition, it may fail to reproduce the

correct soft-tissue behavior when the linear property of the soft tissue falls out o f a specific range

of the strain-stress curve. The characteristic strain-stress curve of soft tissue is nonlinear,

furthermore, they usually show anisotropic behavior due to the existence of fibers within the

tissue [94, 95].

115

Another limitation of the presented work is the lack of a haptic force-feedback model. In

a manner similar to this dissertation’s visual model implementation, a local surface can be

extracted from the neighborhood of the haptic tip and utilized in a haptic-constraint algorithm

[96]. This approach only works for haptic rendering of the surface o f the simulation object.

Special care has to be taken during the haptic rendering of a cutting operation. This problem,

investigated together with the effect of the fibrous structure of the soft tissue on haptic rendering,

creates an interesting future research direction.

Point-based visualization gave promising results, when the deformable object’s surface

topology changed due to the introduced discontinuities. Although the presented curvature-based

splat radius adaptation algorithm performed well and readjusted the radii of the splats that were

affected by the cut, some visual artifacts can still be seen caused by the very sharp edges formed

by the cut surfaces. Sharp edges need special processing in surface splatting-based visualizations

such as sub-dividing the sharp regions into smaller splats [97] or clipping the splats that are

along the sharp edges [98], These techniques require multi-pass rendering algorithms, whose

applicabilities need to be addressed within the SOFA framework.

Texture mapping is the process of mapping an image into a multidimensional space, and

was pioneered by the work of Catmull [99], Texture mapping is a cheap and easy way of

increasing the visual realism of an object as it is supported natively by all modem graphics

hardware. For an explicit mesh, each vertex of the surface is assigned a 2D coordinate called the

texture coordinate, which maps a texture location to the vertex. After each vertex is assigned a

texture coordinate, the connectivity information between the vertices is put into work to assign

color values to the pixels in-between the vertices through interpolation. As the point-based

visualization approach does not keep explicit connectivity information, obtaining the correct

116

color values in-between the point primitives becomes impossible with a single-pass algorithm.

Although the previously discussed multi-pass surface splatting algorithm [63] implemented high-

quality texture mapping, their approach did not allow visualizing point-based objects and mesh-

based objects in the same scene, which is an important requirement for surgical simulation

applications. Therefore, using objects having textured point-based visual models along with

objects having other visual models is another possible research topic.

117

REFERENCES

[1] E. A. Ashley, "Medical education - beyond tomorrow?," Medical Education, vol. 34, pp.
455-459, 2000.

[2] B. Loftin, "Med school 1.0: Can computer simulation aid physician training," Quest, vol.
5, pp. 16-19,2002.

[3] L. Grush. (2014, 04/23/2014). Surgical Theater: Flight simulation technology helps
surgeons prep for surgery. Available:
http://www.foxnews.com/health/2014/04/02/surgical-theater-flight-simulation-
technology-helps-surgeons-prep-for-surgerv/

[4] D. Ota, B. Loftin, T. Saito, R. Lea, and J. Keller, "Virtual reality in surgical education,"
Computers in Biology and Medicine, vol. 25, pp. 127-137, 1995.

[5] D. T. Chen, 1. A. Kakadiaris, M. J. Miller, R. B. Loftin, and C. Patrick, "Modeling for
plastic and reconstructive breast surgery," in Medical Image Computing and Computer-
Assisted Intervention-MICCAI 2000, 2000, pp. 1040-1050.

[6] J. Allard, S. Cotin, F. Faure, P. J. Bensoussan, F. Poyer, C. Duriez, et al., "SOFA - An
open source framework for medical simulation," in Medicine Meets Virtual Reality, 2007.

[7] H. Courtecuisse, H. Jung, J. Allard, C. Duriez, D. Y. Lee, and S. Cotin, "GPU-based real­
time soft tissue deformation with cutting and haptic feedback," Progress in Biophysics
and Molecular Biology, vol. 103, pp. 159-168, 2010.

[8] J. Wu, R. Westermann, and C. Dick, "Real-time haptic cutting of high-resolution soft
tissues," Studies in Health Technology and Informatics (Proc. Medicine Meets Virtual
Reality 2014), vol. 196, pp. 469-475, 2014.

[9] D. Steinemann, M. A. Otaduy, and M. Gross, "Splitting meshless deforming objects with
explicit surface tracking," Graphical Models, vol. 71, pp. 209-220, 2009.

[10] N. Moes, J. Dolbow, and T. Belytschko, "A finite element method for crack growth
without remeshing," International Journal fo r Numerical Methods in Engineering, vol.
46, pp. 131-150, 1999.

[11] P. Kaufmann, S. Martin, M. Botsch, E. Grinspun, and M. Gross, "Enrichment textures for
detailed cutting of shells," ACM Transactions on Graphics (TOG), vol. 28, p. 50, 2009.

[12] E. Barbieri, N. Petrinic, M. Meo, and V. L. Tagarielli, "A new weight-function
enrichment in meshless methods for multiple cracks in linear elasticity," International
Journal fo r Numerical Methods in Engineering, pp. 177-195, 2011.

[13] T. W. Sederberg and S. R. Parry, "Free-form deformation o f solid geometric models,"
ACMSiggraph Computer Graphics, vol. 20, pp. 151-160, 1986.

http://www.foxnews.com/health/2014/04/02/surgical-theater-flight-simulation-

118

[14] M. Muller, B. Heidelberger, M. Teschner, and M. Gross, "Meshless deformations based
on shape matching," ACM Transactions on Graphics (TOG), vol. 24, pp. 471-478, 2005.

[15] S. F. Frisken-Gibson, "Using linked volumes to model object collisions, deformation,
cutting, carving, and joining," IEEE Transactions on Visualization and Computer
Graphics, vol. 5, pp. 333-348, 1999.

[16] K. Waters and D. Terzopoulos, "A physical model o f facial tissue and muscle
articulation," in Visualization in Biomedical Computing, 1990, pp. 77-82.

[17] A. Van Gelder, "Approximate simulation of elastic membranes by triangulated spring
meshes," Journal o f Graphics Tools, vol. 3, pp. 21-42, 1998.

[18] L. P. Nedel and D. Thalmann, "Real time muscle deformations using mass-spring
systems," in Computer Graphics International, 1998. Proceedings, 1998, pp. 156-165.

[19] K.-J. Bathe, Finite element procedures vol. 2: Prentice hall Englewood Cliffs, 1996.

[20] R. Eymard, T. Gallouet, and R. Flerbin, "Finite volume methods," Handbook o f
numerical analysis, vol. 7, pp. 713-1018, 2000.

[21] A. R. Mitchell and D. F. Griffiths, "The finite difference method in partial differential
equations," Chichester, Sussex, England and New York, Wiley-Interscience, 1980. 281 p,
1980.

[22] M. Bro-Nielsen, "Finite element modeling in surgery simulation," Proceedings o f the
IEEE, vol. 86, pp. 490-503, 1998.

[23] K. Miller, G. Joldes, D. Lance, and A. Wittek, "Total Lagrangian explicit dynamics finite
element algorithm for computing soft tissue deformation," Communications in numerical
methods in engineering, vol. 23, pp. 121-134, 2007.

[24] S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, and H. Delingette,
"Multiplicative jacobian energy decomposition method for fast porous visco-hyperelastic
soft tissue model," in Medical Image Computing and Computer-Assisted Intervention—
MICCA12010, ed: Springer, 2010, pp. 235-242.

[25] Y. Chen, J. D. Lee, and A. Eskandarian, Meshless Methods in Solid Mechanics. Berlin:
Springer Verlag, 2006.

[26] W. Ji, A. M. Waas, and Z. P. Bazant, "Errors caused by non-work-conjugate stress and
strain measures and necessary corrections in finite element programs," Journal o f Applied
Mechanics, vol. 77, p. 044504, 2010.

[27] A. D. McNaught and A. Wilkinson, 1UPAC. Compendium o f Chemical Terminology, 2nd
ed. (the "GoldBook") vol. 1669: Blackwell Scientific Publications, Oxford, 1997.

119

[28] K. Miller and K. Chinzei, "Constitutive modelling o f brain tissue: experiment and
theory," Journal o f Biomechanics, vol. 30, pp. 1115-1121, 1997.

[29] I. S. Sokolnikoff and R. D. Specht, Mathematical Theory’ o f Elasticity vol. 83. New York:
McGraw-Hill, 1956.

[30] V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, "Meshless methods: A review and
computer implementation aspects," Mathematics and Computers in Simulation, vol. 79,
pp. 763-813,2008.

[31] H. Li and S. S. Mulay, Meshless Methods and Their Numerical Properties: CRC Press,
2013.

[32] L. B. Lucy, "A numerical approach to the testing of the fission hypothesis," The
Astronomical Journal, vol. 82, pp. 1013-1024, 1977.

[33] N. Sukumar. (2002, 08/01/2012). The Natural Element Method (NEM) in Solid
Mechanics. Available: http://dilbert.engr.ucdavis.edu/~suku/nem/

[34] B. Nayroles, G. Touzot, and P. Villon, "Generalizing the finite element method: Diffuse
approximation and diffuse elements," Computational mechanics, vol. 10, pp. 307-318,
1992.

[35] T. Belytschko, Y. Y. Lu, and L. Gu, "Element-free Galerkin methods," International
Journal fo r Numerical Methods in Engineering, vol. 37, pp. 229-256, 1994.

[36] M. Muller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa, "Point based
animation of elastic, plastic and melting objects," in ACM SIGGRAPH/Eurographics
symposium on Computer animation, 2004, pp. 141-151.

[37] X. Zhang, X. H. Liu, K. Z. Song, and M. W. Lu, "Least-squares collocation meshless
method," International Journal fo r Numerical Methods in Engineering, vol. 51, pp. 1089-
1100 , 2001 .

[38] A. Horton, A. Wittek, G. R. Joldes, and K. Miller, "A meshless total Lagrangian explicit
dynamics algorithm for surgical simulation," International Journal fo r Numerical
Methods in Biomedical Engineering, vol. 26, pp. 977-998, 2010.

[39] M. Pauly, R. Keiser, B. Adams, P. Dutr\, \#233, M. Gross, et al., "Meshless animation of
fracturing solids," ACM Trans. Graph., vol. 24, pp. 957-964, 2005.

[40] H. Si, "TetGen: A quality tetrahedral mesh generator and three-dimensional delaunay
triangulator," Weierstrass Institute fo r Applied Analysis and Stochastic, Berlin, Germany,
2006.

[41] J.-D. Boissonnat, O. Devillers, M. Teillaud, and M. Yvinec, "Triangulations in CGAL,"
in Proceedings o f the Sixteenth Annual Symposium on Computational Geometry, 2000,
pp. 11-18.

http://dilbert.engr.ucdavis.edu/~suku/nem/

120

[42] D. Liibke. (2013, 03/17/2014). QTetraMesher. Available: http://qtm.dennis2societv.de

[43] D. Shepard, "A two-dimensional interpolation function for irregularly-spaced data," in
Proceedings o f the 1968 23rd ACM national conference, 1968, pp. 517-524.

[44] 1. M. Gelfand and S. V. Fomin, Calculus o f variations: Courier Dover Publications, 2000.

[45] D. Organ, M. Fleming, T. Terry, and T. Belytschko, "Continuous meshless
approximations for nonconvex bodies by diffraction and transparency," Computational
mechanics, vol. 18, pp. 225-235, 1996.

[46] F. Bemardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin, "The ball-pivoting
algorithm for surface reconstruction," IEEE Transactions on Visualization and Computer
Graphics, vol. 5, pp. 349-359, 1999.

[47] N. Amenta, S. Choi, and R. K. Kolluri, "The power crust," in Proceedings o f the sixth
ACM symposium on Solid modeling and applications, 2001, pp. 249-266.

[48] M. Kazhdan, M. Bolitho, and H. Hoppe, "Poisson surface reconstruction," in Proceedings
o f the fourth Eurographics symposium on Geometry processing, 2006.

[49] M. Kazhdan and H. Hoppe, "Screened poisson surface reconstruction," ACM
Transactions on Graphics (TOG), vol. 32, p. 29, 2013.

[50] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H.-P. Seidel, "Multi-level partition of
unity implicits," in ACMSIGGRAPH 2005 Courses, 2005, p. 173.

[51] S. Fleishman, D. Cohen-Or, and C. T. Silva, "Robust moving least-squares fitting with
sharp features," in ACM Transactions on Graphics (TOG), 2005, pp. 544-552.

[52] F. Calakli and G. Taubin, "SSD: Smooth signed distance surface reconstruction," in
Computer Graphics Forum, 2011, pp. 1993-2002.

[53] W. E. Lorensen and H. E. Cline, "Marching cubes: A high resolution 3D surface
construction algorithm," ACMSiggraph Computer Graphics, vol. 21, pp. 163-169, 1987.

[54] T. Ju, F. Losasso, S. Schaefer, and J. Warren, "Dual contouring of hermite data," ACM
Transactions on Graphics (TOG), vol. 21, pp. 339-346, 2002.

[55] J. C. Hart, "Ray tracing implicit surfaces," Siggraph 93 Course Notes: Design,
Visualization and Animation o f Implicit Surfaces, pp. 1-16, 1993.

[56] J. M. Singh and P. Narayanan, "Real-time ray tracing of implicit surfaces on the GPU,"
IEEE Transactions on Visualization and Computer Graphics, vol. 16, pp. 261-272, 2010.

[57] M. Hadwiger, C. Sigg, H. Scharsach, K. Biihler, and M. Gross, "Real-Time Ray-Casting
and Advanced Shading of Discrete Isosurfaces," in Computer Graphics Forum, 2005, pp.
303-312.

http://qtm.dennis2societv.de

121

[58] M. Levoy and T. Whitted, "The use o f points as a display primitive," University o f North
Carolina, Department of Computer Science TR 85-022, 1985.

[59] G. Schaufler and H. W. Jensen, "Ray tracing point sampled geometry," in Rendering
Techniques 2000, ed: Springer, 2000, pp. 319-328.

[60] A. Adamson and M. Alexa, "Approximating and intersecting surfaces from points," in
Proceedings o f the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, 2003, pp. 230-239.

[61] A. Adamson and M. Alexa, "Ray tracing point set surfaces," in Shape Modeling
International, 2003, 2003, pp. 272-279.

[62] D. Schreiner, Open GL Programming Guide: The Official Guide to Learning OpenGL,
Version 4.3: Addison Wesley, 2013.

[63] S. Rusinkiewicz and M. Levoy, "QSplat: A multiresolution point rendering system for
large meshes," in Computer Graphics and Interactive Techniques, 2000, pp. 343-352.

[64] H. Gouraud, "Continuous shading of curved surfaces," IEEE Transactions on Computers,
vol. 100, pp. 623-629, 1971.

[65] B. T. Phong, "Illumination for computer generated pictures," Communications o f the
ACM, vol. 18, pp. 311-317, 1975.

[66] M. Botsch, M. Spemat, and L. Kobbelt, "Phong splatting," in Proceedings o f the First
Eurographics conference on Point-Based Graphics, 2004, pp. 25-32.

[67] S. Gumhold, X. Wang, and R. MacLeod, "Feature extraction from point clouds," in
Proceedings o f 10th international meshing roundtable, 2001.

[68] M. Pauly, M. Gross, and L. P. Kobbelt, "Efficient simplification of point-sampled
surfaces," in Proceedings o f the conference on Visualization '02, 2002, pp. 163-170.

[69] J. Lander, "Skin them bones: Game programming for the web generation," Game
Developer Magazine, vol. 5, pp. 10-18, 1998.

[70] K. Montgomery, C. Bruyns, J. Brown, S. Sorkin, F. Mazzella, G. Thonier, et a l , "Spring:
A general framework for collaborative, real-time surgical simulation," Studies in Health
Technology and Informatics, pp. 296-303, 2002.

[71] M. C. Cavusoglu, T. Goktekin, F. Tendick, and S. Sastry, "GiPSi: An open source/open
architecture software development framework for surgical simulation," Studies in Health
Technology and Informatics, pp. 46-48, 2004.

[72] M. Nakao, T. Kuroda, M. Komori, and H. Oyama, "Evaluation and User Study of Haptic
Simulator for Learning Palpation in Cardiovascular Surgery," in ICAT, 2003.

1 2 2

[73] J. Bacon, N. Tardella, J. Pratt, and J. H. J. English, "The surgical simulation and training
based language for medical simulation," Medicine Meets Virtual Reality’ 14: Accelerating
Change in Healthcare: Next Medical Toolkit, vol. 119, p. 37, 2006.

[74] F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau, H. Talbot, H.
Courtecuisse, G. Bousquet, I. Peterlik, S. Cotin, "SOFA: A multi-model framework for
interactive physical simulation," in Soft Tissue Biomechanical Modeling fo r Computer
Assisted Surgery, ed: Springer, 2012, pp. 283-321.

[75] D. Meagher, "Geometric modeling using octree encoding," Computer Graphics and
Image Processing, vol. 19, pp. 129-147, 1982.

[76] T. L. Kay and J. T. Kajiya, "Ray tracing complex scenes," in ACM SIGGRAPH Computer
Graphics, 1986, pp. 269-278.

[77] H. Fuchs, Z. M. Kedem, and B. F. Naylor, "On visible surface generation by a priori tree
structures," in ACM Siggraph Computer Graphics, 1980, pp. 124-133.

[78] J. L. Bentley, "Multidimensional binary search trees used for associative searching,"
Communications o f the ACM, vol. 18, pp. 509-517, 1975.

[79] M. Muja and D. G. Lowe, "Fast approximate nearest neighbors with automatic algorithm
configuration," in VISAPP (1), 2009, pp. 331-340.

[80] J. L. B. Claraco. (2013, 04/02/2014). Nanoflann. Available:
https: //code. google. com/p/nanoflann/

[81] C. Ericson, Real-Time Collision Detection. San Francisco, CA: CRC Press, 2004.

[82] C. Sanderson, "Armadillo: An open source C++ linear algebra library for fast prototyping
and computationally intensive experiments," NICTA2011.

[83] The MathWorks, Inc. (2014, 04/04/2014). MATLAB - The Language o f Technical
Computing. Available: http://www.mathworks.com/products/matlab/

[84] H. Hertz, "Uber die Beriihrung fester elastischer Korper," Journal fu r die Reine und
Angewandte Mathematik, vol. 1882, pp. 156-171, 1882.

[85] D. Franke, A. Duster, and E. Rank, "The p-version of the FEM for computational contact
mechanics," Proceedings in Applied Mathematics and Mechanics, vol. 8, pp. 10271 -
10272,2008.

[86] N. Schwarzer, H. Djabella, F. Richter, and R. Amell, "Comparison between analytical
and FEM calculations for the contact problem of spherical indenters on layered
materials," Thin Solid Films, vol. 270, pp. 279-282, 1995.

http://www.mathworks.com/products/matlab/

123

[87] D. Franke, A. Duster, V. Niibel, and E. Rank, "A comparison of the h-, p-, hp-, and rp-
version of the FEM for the solution of the 2D Hertzian contact problem," Computational
Mechanics, vol. 45, pp. 513-522, 2010.

[88] F. Pennec, H. Achkar, D. Peyrou, R. Plana, P. Pons, and F. Courtade, "Verification of
contact modeling with COMSOL multiphysics software," in Sixth EUROSIM Congress
on Modelling and Simulation, Ljubljana, Slovenia, 2007.

[89] S. A. Maas, B. J. Ellis, G. A. Ateshian, and J. A. Weiss, "FEBio: Finite elements for
biomechanics," Journal o f Biomechanical Engineering, vol. 134, pp. 110050-1 —110050-
10 , 2012 .

[90] T. Laursen and B. Maker, "An augmented Lagrangian quasi-Newton solver for
constrained nonlinear finite element applications," International Journal fo r Numerical
Methods in Engineering, vol. 38, pp. 3571-3590, 1995.

[91] M. Marchal, J. Allard, C. Duriez, and S. Cotin, "Towards a framework for assessing
deformable models in medical simulation," in Biomedical Simulation, ed: Springer, 2008,
pp. 176-184.

[92] F. Faure. (2014, 04/13/2014). Getting Started - SOFAWiki. Available: http://wiki.sofa-
framework.org/wiki/Getting Started

[93] C. T. McKee, J. A. Last, P. Russell, and C. J. Murphy, "Indentation versus tensile
measurements of Young's modulus for soft biological tissues," Tissue Engineering Part
B: Reviews, vol. 17, pp. 155-164, 2011.

[94] J. Humphrey, "Review Paper: Continuum biomechanics o f soft biological tissues,"
Proceedings o f the Royal Society o f London. Series A: Mathematical, Physical and
Engineering Sciences, vol. 459, pp. 3-46, 2003.

[95] Y. Fung, "Biomechanics: Mechanical properties o f living tissues," ed: Springer-Verlag,
New York, 1993, p. 568.

[96] A. Leeper, S. Chan, and K. Salisbury, "Point clouds can be represented as implicit
surfaces for constraint-based haptic rendering," in International Conference on Robotics
and Automation (ICRA), Saint Paul, MN, USA, 2012, pp. 5000-5005.

[97] B. Adams and P. Dutre, "Interactive boolean operations on surfel-bounded solids," ACM
Transactions on Graphics (TOG), vol. 22, pp. 651-656, 2003.

[98] M. Zwicker, J. Rasanen, M. Botsch, C. Dachsbacher, and M. Pauly, "Perspective accurate
splatting," in Proceedings o f Graphics interface 2004, 2004, pp. 247-254.

[99] E. Catmull, "A Subdivision Algorithm for Computer Display of Curved Surfaces," PhD
Thesis, University of Utah, 1974.

http://wiki.sofa-

124

APPENDIX

The following is the generated Doxygen documentation o f the components that are implemented

in the SOFA framework.

sofa::component::forcefield::MeshlessForceField

Defines how meshless nodes behave according to the underlying constitutive equations.

Member Function Documentation

template<class DataTypes >
bool sofa:component::forcefield::MeshlessForceField< DataTypes >::getMaterialCoord

(const Coord & world,
Coord & mater

)

Get the material coordinate given world coordinate. Used when there is a cut.

Parameters
world the world coordinate to convert,
mater the material coordinate (OUT).

Returns
TRUE if converted successfully.__

template<class DataTypes >
bool sofa::component::forcefield::MeshlessForceField< DataTypes >::getMaterialCoordApprx

(const Coord & world,
Coord & mater

)

Get the approximate material coordinate given world coordinate. Used when getMaterialCoord returns
false.

Parameters
world the world coordinate to convert.
mater the approximate material coordinate (OUT).

Returns
TRUE if converted successfully.___ _

template<class DataTypes >
void sofa::component::forcefield::MeshlessForceField< DataTypes >::getPhyxLinIndices

(arma::uvec & indices)

Get the linear indices of the meshless nodes to be used to query the meshless enrichment grid.

Parameters
indices____ The armadillo vector that contains the indices (OUT)._________________________

125

template<class DataTypes >
void sofa::component::forcefield::MeshlessForceField< DataTypes >::handleEvent (

core::objectmodel::Event * event)
virtual

Processes the MeshlessCutEvent received from the MeshlessHapticDevice and first, converts the world
coordinates to material coordinates. Then call the appropriate function of the EnrichmentGridManager.
template<class DataTypes >
void sofa::component::forcefield::MeshlessForceField< DataTypes >::init ()

virtual

Initialization tasks:

Nodes should be already distributed in the mechanical state object
For each particle, evaluate the average distance to k-nearest neighbors Use this information to

compute the support radius
Set particle neighborhood information (if the distance between nodes is smaller than the support)
Evaluate density scaling constant which is used to set the appropriate densities for the nodes
Evalute the mass, density, and volume of the particles
Evalute the inverse moment matrices of the particles
Do precomputations related to the enrichment grid.__

Member Data Documentation

template<class DataTypes>
Data< Real > sofa::component::forcefield::MeshlessForceField< DataTypes >::dampingConstant

The damping constant for applying drag force. Scene graph name: dampingConstant_______________
template<class DataTypes>
Data< Real > sofa::component::forcefield::MeshlessForceField< DataTypes >::densityScale

The scaling factor for all nodes, chosen s.t. phyxel densities are close to material density. Scene graph
name: densityScale__
template<class DataTypes>
Data< int > sofa:component::forcefield::MeshlessForceField< DataTypes >::displayEnrGridIndex

Display which enrichment grid? One enrichment grid is recorded for each cut. (DEBUG) Scene graph
name: DisplayEnrichmentGridlndex___
template<class DataTypes>
Data< bool > sofa::component::forcefield::MeshlessForceField< DataTypes >::displayEnrichmentGrid

Display the enrichment grid in material coordinates? (DEBUG) Scene graph name:
DisplayEnrichmentGrid___
template<class DataTypes>
Data< bool > sofa::component::forcefield::MeshlessForceField< DataTypes >::displayNeighbors

Display neighbors of a meshless node by drawing lines in-between. (DEBUG) Scene graph name:
DisplayNeighbors___

126

template<class DataTypes>
Data< int > sofa::component::forcefield::MeshlessForceField< DataTypes >::displayNeighborsIdx

Display the neighbors of which meshless node? (DEBUG) Scene graph name: DisplayNeighborsIndex
template<class DataTypes>
Data< int > sofa::component::forcefield::MeshlessForceField< DataTypes >::kNearest

The number of nearest neighbors to consider during initialization. Scene graph name: kNearest_______
template<class DataTypes>
Data< Real > sofa: component: :forcefield::MeshlessForceField< DataTypes >::materialDensity

Material density in kg/m3. Scene graph name: materialDensity________________________________
template<class DataTypes>
Data< int > sofa::component::forcefield::MeshlessForceField< DataTypes >::neighborLimit

To limit number of neighbors for each node? (-1 no limit i.e. all nodes inside support radius are
neighbors) Scene graph name: neighborLimit__
template<class DataTypes>
Data< Real > sofa::component::forcefield::MeshlessForceField< DataTypes >::poissonsRatio

Poisson's Ratio elastic property. Scene graph name: poissonsRatio______________________________
template<class DataTypes>
Data< Real > sofa::component::forcefield::MeshlessForceField< DataTypes >::supportRadiusScale

Average distance to k-nearest neighbors is multiplied with this scaling constant to obtain support radius
for the node. Scene graph name: supportScale__
template<class DataTypes>
Data< Real > sofa::component::forcefield::MeshlessForceField< DataTypes >::volumeConstant

The volume conservation constant kV. Scene graph name: volumeConstant______________________
template<class DataTypes>
Data< Real > sofa::component::forcefield::MeshlessForceField< DataTypes >::youngsModulus

Young's Modulus elastic property in Pa. Scene graph name: youngsModulus_____________________

PointBasedMethodsPlugin::MeshlessEnrichmentGridManager

The manager class that holds information regarding the calculated enrichments. For each new
cut, this class generates new 3D grid and provide these grids to the related components.

Member Function Documentation

void PointBasedMethodsPlugin: :MeshlessEnrichmentGridManager: :endCut
(const sofa::defaulttype::Vector3 & ptO,

const sofa:: defaulttype:: Vector3 & pt 1
)

Called when the previously started cut is completed.

Parameters

127

ptO The first point of the cutting edge in MATERIAL coordinates.
ptl The second point of the cutting edge in MATERIAL coordinates.______________

void PointBasedMethodsPlugin::MeshlessEnrichmentGridManager::getCutInformation
(Vector3Vector & cutPts,

std::vector< double > & cutAreas,
Vector3Vector & cutNormals

)

Return the cut information that were used to compute the last enrichment grid values.

Parameters
cutPts The vector of 3D points that form the cut surface (OUT).
cutAreas The vector of area values of the triangles that form the cut surface (OUT).
cutNormals The vector of 3D normals of the triangles that form the cut surface (OUT).

double PointBasedMethodsPlugin::MeshlessEnrichmentGridManager::getGridDX (
) const
inline

Return the grid cell size in material x-dimension.__
double PointBasedMethodsPlugin::MeshlessEnrichmentGridManager::getGridDY (

) const
inline

Return the grid cell size in material y-dimension.__
double PointBasedMethodsPlugin::MeshlessEnrichmentGridManager::getGridDZ (

) const
inline

Return the grid cell size in material z-dimension.__
const arma::vec *
PointBasedMethodsPlugin::MeshlessEnrichmentGridManager::getLastDistanceGridVec (

)

Return the last distance grid computed to be used by the requesting components._______________
const arma::vec *
PointBasedMethodsPlugin: :MeshlessEnrichmentGridManager: igetLastEnrichmentGridVec (

)

Return the last enrichment grid computed to be used by the requesting components.____________
int PointBasedMethodsPlugin: :MeshlessEnrichmentGridManager::getResX ()

const
inline

Return the number of grid cells in x-dimension.___
int PointBasedMethodsPlugin: :MeshlessEnrichmentGridManager::getResY ()

const
inline

Return the number of grid cells in y-dimension.___

128

int PointBasedMethodsPlugin::MeshlessEnrichmentGridManager::getResZ ()
const
inline

Return the number of grid cells in z-dimension. __________________________________
void PointBasedMethodsPlugin: :MeshlessEnrichmentGridManager:: getTriCenters (

Vector3Vector & triCents)

Return the cut triangle centers that were used to compute the last enrichment grid values.

Parameters
triCents The vector of 3D coordinates of the triangle centers (OUT)._____________________

void PointBasedMethodsPlugin: :MeshlessEnrichmentGridManager::startCut (const
sofa::defaulttype::Vector3 & ptO,

const sofa::defaulttype::Vector3 & ptl
)

Called when a new cut is started. Creates the necessary grid constructs.

Parameters
ptO The first point of the cutting edge in MATERIAL coordinates.
ptl The second point of the cutting edge in MATERIAL coordinates._______________________

void PointBasedMethodsPlugin::MeshlessEnrichmentGridManager::updateCut (const
sofa::defaulttype::Vector3 & ptO,

const sofa:: defaulttype:: Vector3 & pt 1
)

Called when there is a new cut edge of a previously started cut. Updates the contents of the associated
grid structures.

Parameters
ptO The first point of the cutting edge in MATERIAL coordinates.
ptl The second point of the cutting edge in MATERIAL coordinates._______________________

Member Data Documentation

Data<double> PointBasedMethodsPlugin: :MeshlessEnrichmentGridManager: :inflateAmount

The size of the bbox of the enrichment grids are determined automatically from the enclosed object.
This is the buffer amount to add to the bbox.__
Data< int > PointBasedMethodsPlugin::MeshlessEnrichmentGridManager::resX

Number of grid cells in x-dimension.__
Data< int > PointBasedMethodsPlugin::MeshlessEnrichmentGridManager::resY

Number of grid cells in y-dimension.__
Data< int > PointBasedMethodsPlugin: :MeshlessEnrichmentGridManager::resZ

Number of grid cells in z-dimension.__

129

sofa::component::container::MechanicalOrientedObject

Derived from the MechanicalObject, this class keeps the DoFs for the OrientedPointSplatModel
visual model.

Member Function Documentation

template<class DataTypes >
void sofa::component::container::MechanicalOrientedObject< DataTypes >::addOrientedPoints

(const sofa::helper::vector< Vec3d > & pos,
const sofa::helper::vector< Vec3d > & nor

)

Adds new DoFs to the SOFA vectors. Used when there is a cut.

Parameters
pos the standard vector that holds new positions,
nor the standard vector that holds new normals.

Member Data Documentation

template<class DataTypes>
Data< Deriv > sofa::component::container::MechanicalOrientedObject< DataTypes >::defaultNormal

protected

The default normal vector to assign when a new DoF is added and the vector is not specified.________
template<class DataTypes>
Data< VecDeriv > sofa::component::container::MechanicalOrientedObject< DataTypes >::normals

protected

The SOFA vector that holds the additional normal information for the oriented splats.______________
template<class DataTypes>
Data< bool > sofa:xomponent:container::MechanicalOrientedObject< DataTypes >::showNormals

protected

Show normals (DEBUG).___
template<class DataTypes>
Data< float > sofa::component::container::MechanicalOrientedObject< DataTypes
>:: showNormalsScale

protected

The scale of the visualized normal vectors (DEBUG)._______________________________________
template<class DataTypes>
Data< VecTexUV > sofa::component::container::MechanicalOrientedObject< DataTypes >::texCoords

protected

The SOFA vector that holds the texture coordinates for the oriented splats._______________________

sofa::component::mapping::SurfelMapping

130

The deformable model controls the visual model. This class defines the relation between the two
models. It maps the MechanicalObject o f the deformable body to the OrientedMechanicalObject
of the visual model.

Member Data Documentation

template<class Tin , class TOut >
Data< Real > sofa::component::mapping::SurfelMapping< Tin, TOut >::cutOpening

The amount that two surfels are separated when creating new cut surfaces.______________
template<class Tin , class TOut >
Data< int > sofa::component::mapping::SurfelMapping< Tin, TOut >::cutPointDensity

Number of points to sample on the cut surface per unit area._________________________
template<class Tin , class TOut >
Data< bool > sofa::component::mapping::SurfelMapping< Tin, TOut >::displayNeighbors

Show the neighborhood information? (DEBUG)___________________________________
template<class Tin , class TOut >
Data< int > sofa::component::mapping::SurfelMapping< Tin, TOut >::displayNeighborsIdx

The index of surfel to show the neighborhood information (DEBUG).__________________
template<class Tin , class TOut >
Data< int > sofa::component::mapping::SurfelMapping< Tin, TOut >::kNearestPhyxel

Number of nearest phyxels to find when computing the relation between the two models.

sofa: .'component: :visualmodel::OrientedPointSplatModeI

The visual model that implements surface splatting algorithm.

Member Function Documentation

void sofa::component::visualmodel::OrientedPointSplatModel::updateSurfelRadii
(int nbAddedSurfels,

const arma::uvec & cutlndices
)

Called when there is a new cut, and the splat radii has to be updated because of the changed
neighborhood.__

PointBasedMethodsPlugin::MeshlessCuttingDevice

Extends the SofaHAPIHapticsDevice by adding functionality to handle cutting operation for
meshless objects. Cutting starts by pushing the primary button on the haptic stylus.

Member Data Documentation

131

Data<int> PointBasedMethodsPlugin::MeshlessCuttingDevice::cutCaptureRate

Capture a cutting edge and send it as an MeshlessCutEvent every this number of frame.
Data<Vec3d> PointBasedMethodsPlugin: :MeshlessCuttingDevice: :cutEdgePtO

The location of the first point of the cutting edge in this device's coordinate system.
Data<Vec3d> PointBasedMethodsPlugin::MeshlessCuttingDevice:icutEdgePt 1

The location of the second point of the cutting edge in this device's coordinate system.

sofa::core::objectmodel::MeshlessCutEvent

This event notifies about haptic device interaction.

Member Enumeration Documentation

enum sofa::core::objectmodel::MeshlessCutEvent::EventType

The type of the meshless cut event.

START Starting a new cut.
UPDATE Updating a new cut.
END The cut is completed.

Member Function Documentation

sofa::defaulttype::Vector3 sofa::core::objectmodel::MeshlessCutEvent::getPtO
(void) const

inline

Return the first point of the cut edge in world coordinates.________________
sofa::defaulttype::Vector3 sofa::core::objectmodel::MeshlessCutEvent::getPtl
(void) const

inline

Return the second point of the cut edge in world coordinates.______________

132

VITA

Rifat Aras

Modeling, Simulation, and Visualization Engineering Department

Old Dominion University

Norfolk, VA 23529

Educational Background

Ph.D.: August 2014, Old Dominion University, Norfolk, VA, USA
Major: Modeling and Simulation
Dissertation: Meshless Mechanics and Point-Based Visualization Methods for Surgical
Simulators

M.Sc.: January 2008, Bilkent University, Ankara, Turkey
Major: Computer Science
Thesis: 3D Hair Sketching for Real-Time Hair Modeling and Dynamic Simulations

Professional Background

Central Bank of Republic of Turkey - Database Administrator (2006-2009)

Worked as a database administrator of the IBM DB2 database management system running on
multiple platforms like Linux, Windows, AIX, and z/OS.
Developed custom administration tools and a technology showcase web application that was
presented at the annual International DB2 Users Group conference.

AYESAS - Software Engineer (2004-2005)

AYESAS (whose 30% ownership is of L3 communications), provides solutions in Aerospace
and Defense business areas.
Worked as a part of the development team of the "SmartDeck" project, which involved of
transforming mechanical and electronic avionics user interface elements into a central OpenGL-
based interface.

	Old Dominion University
	ODU Digital Commons
	Summer 2014

	Meshless Mechanics and Point-Based Visualization Methods for Surgical Simulations
	Rifat Aras
	Recommended Citation

	00001.tif

