269 research outputs found

    Hypergraph Modelling for Geometric Model Fitting

    Full text link
    In this paper, we propose a novel hypergraph based method (called HF) to fit and segment multi-structural data. The proposed HF formulates the geometric model fitting problem as a hypergraph partition problem based on a novel hypergraph model. In the hypergraph model, vertices represent data points and hyperedges denote model hypotheses. The hypergraph, with large and "data-determined" degrees of hyperedges, can express the complex relationships between model hypotheses and data points. In addition, we develop a robust hypergraph partition algorithm to detect sub-hypergraphs for model fitting. HF can effectively and efficiently estimate the number of, and the parameters of, model instances in multi-structural data heavily corrupted with outliers simultaneously. Experimental results show the advantages of the proposed method over previous methods on both synthetic data and real images.Comment: Pattern Recognition, 201

    Beyond pairwise clustering

    Get PDF
    We consider the problem of clustering in domains where the affinity relations are not dyadic (pairwise), but rather triadic, tetradic or higher. The problem is an instance of the hypergraph partitioning problem. We propose a two-step algorithm for solving this problem. In the first step we use a novel scheme to approximate the hypergraph using a weighted graph. In the second step a spectral partitioning algorithm is used to partition the vertices of this graph. The algorithm is capable of handling hyperedges of all orders including order two, thus incorporating information of all orders simultaneously. We present a theoretical analysis that relates our algorithm to an existing hypergraph partitioning algorithm and explain the reasons for its superior performance. We report the performance of our algorithm on a variety of computer vision problems and compare it to several existing hypergraph partitioning algorithms

    Multiple structure recovery with T-linkage

    Get PDF
    reserved2noThis work addresses the problem of robust fitting of geometric structures to noisy data corrupted by outliers. An extension of J-linkage (called T-linkage) is presented and elaborated. T-linkage improves the preference analysis implemented by J-linkage in term of performances and robustness, considering both the representation and the segmentation steps. A strategy to reject outliers and to estimate the inlier threshold is proposed, resulting in a versatile tool, suitable for multi-model fitting “in the wild”. Experiments demonstrate that our methods perform better than J-linkage on simulated data, and compare favorably with state-of-the-art methods on public domain real datasets.mixedMagri L.; Fusiello A.Magri, L.; Fusiello, A

    Quantum Multi-Model Fitting

    Full text link
    Geometric model fitting is a challenging but fundamental computer vision problem. Recently, quantum optimization has been shown to enhance robust fitting for the case of a single model, while leaving the question of multi-model fitting open. In response to this challenge, this paper shows that the latter case can significantly benefit from quantum hardware and proposes the first quantum approach to multi-model fitting (MMF). We formulate MMF as a problem that can be efficiently sampled by modern adiabatic quantum computers without the relaxation of the objective function. We also propose an iterative and decomposed version of our method, which supports real-world-sized problems. The experimental evaluation demonstrates promising results on a variety of datasets. The source code is available at: https://github.com/FarinaMatteo/qmmf.Comment: In Computer Vision and Pattern Recognition (CVPR) 2023; Highligh

    Parallel and Flow-Based High Quality Hypergraph Partitioning

    Get PDF
    Balanced hypergraph partitioning is a classic NP-hard optimization problem that is a fundamental tool in such diverse disciplines as VLSI circuit design, route planning, sharding distributed databases, optimizing communication volume in parallel computing, and accelerating the simulation of quantum circuits. Given a hypergraph and an integer kk, the task is to divide the vertices into kk disjoint blocks with bounded size, while minimizing an objective function on the hyperedges that span multiple blocks. In this dissertation we consider the most commonly used objective, the connectivity metric, where we aim to minimize the number of different blocks connected by each hyperedge. The most successful heuristic for balanced partitioning is the multilevel approach, which consists of three phases. In the coarsening phase, vertex clusters are contracted to obtain a sequence of structurally similar but successively smaller hypergraphs. Once sufficiently small, an initial partition is computed. Lastly, the contractions are successively undone in reverse order, and an iterative improvement algorithm is employed to refine the projected partition on each level. An important aspect in designing practical heuristics for optimization problems is the trade-off between solution quality and running time. The appropriate trade-off depends on the specific application, the size of the data sets, and the computational resources available to solve the problem. Existing algorithms are either slow, sequential and offer high solution quality, or are simple, fast, easy to parallelize, and offer low quality. While this trade-off cannot be avoided entirely, our goal is to close the gaps as much as possible. We achieve this by improving the state of the art in all non-trivial areas of the trade-off landscape with only a few techniques, but employed in two different ways. Furthermore, most research on parallelization has focused on distributed memory, which neglects the greater flexibility of shared-memory algorithms and the wide availability of commodity multi-core machines. In this thesis, we therefore design and revisit fundamental techniques for each phase of the multilevel approach, and develop highly efficient shared-memory parallel implementations thereof. We consider two iterative improvement algorithms, one based on the Fiduccia-Mattheyses (FM) heuristic, and one based on label propagation. For these, we propose a variety of techniques to improve the accuracy of gains when moving vertices in parallel, as well as low-level algorithmic improvements. For coarsening, we present a parallel variant of greedy agglomerative clustering with a novel method to resolve cluster join conflicts on-the-fly. Combined with a preprocessing phase for coarsening based on community detection, a portfolio of from-scratch partitioning algorithms, as well as recursive partitioning with work-stealing, we obtain our first parallel multilevel framework. It is the fastest partitioner known, and achieves medium-high quality, beating all parallel partitioners, and is close to the highest quality sequential partitioner. Our second contribution is a parallelization of an n-level approach, where only one vertex is contracted and uncontracted on each level. This extreme approach aims at high solution quality via very fine-grained, localized refinement, but seems inherently sequential. We devise an asynchronous n-level coarsening scheme based on a hierarchical decomposition of the contractions, as well as a batch-synchronous uncoarsening, and later fully asynchronous uncoarsening. In addition, we adapt our refinement algorithms, and also use the preprocessing and portfolio. This scheme is highly scalable, and achieves the same quality as the highest quality sequential partitioner (which is based on the same components), but is of course slower than our first framework due to fine-grained uncoarsening. The last ingredient for high quality is an iterative improvement algorithm based on maximum flows. In the sequential setting, we first improve an existing idea by solving incremental maximum flow problems, which leads to smaller cuts and is faster due to engineering efforts. Subsequently, we parallelize the maximum flow algorithm and schedule refinements in parallel. Beyond the strive for highest quality, we present a deterministically parallel partitioning framework. We develop deterministic versions of the preprocessing, coarsening, and label propagation refinement. Experimentally, we demonstrate that the penalties for determinism in terms of partition quality and running time are very small. All of our claims are validated through extensive experiments, comparing our algorithms with state-of-the-art solvers on large and diverse benchmark sets. To foster further research, we make our contributions available in our open-source framework Mt-KaHyPar. While it seems inevitable, that with ever increasing problem sizes, we must transition to distributed memory algorithms, the study of shared-memory techniques is not in vain. With the multilevel approach, even the inherently slow techniques have a role to play in fast systems, as they can be employed to boost quality on coarse levels at little expense. Similarly, techniques for shared-memory parallelism are important, both as soon as a coarse graph fits into memory, and as local building blocks in the distributed algorithm

    Improved image analysis by maximised statistical use of geometry-shape constraints

    Get PDF
    Identifying the underlying models in a set of data points contaminated by noise and outliers, leads to a highly complex multi-model fitting problem. This problem can be posed as a clustering problem by the construction of higher order affinities between data points into a hypergraph, which can then be partitioned using spectral clustering. Calculating the weights of all hyperedges is computationally expensive. Hence an approximation is required. In this thesis, the aim is to find an efficient and effective approximation that produces an excellent segmentation outcome. Firstly, the effect of hyperedge sizes on the speed and accuracy of the clustering is investigated. Almost all previous work on hypergraph clustering in computer vision, has considered the smallest possible hyperedge size, due to the lack of research into the potential benefits of large hyperedges and effective algorithms to generate them. In this thesis, it is shown that large hyperedges are better from both theoretical and empirical standpoints. The efficiency of this technique on various higher-order grouping problems is investigated. In particular, we show that our approach improves the accuracy and efficiency of motion segmentation from dense, long-term, trajectories. A shortcoming of the above approach is that the probability of a generated sample being impure increases as the size of the sample increases. To address this issue, a novel guided sampling strategy for large hyperedges, based on the concept of minimizing the largest residual, is also included. It is proposed to guide each sample by optimizing over a kk\textsuperscript{th} order statistics based cost function. Samples are generated using a greedy algorithm coupled with a data sub-sampling strategy. The experimental analysis shows that this proposed step is both accurate and computationally efficient compared to state-of-the-art robust multi-model fitting techniques. However, the optimization method for guiding samples involves hard-to-tune parameters. Thus a sampling method is eventually developed that significantly facilitates solving the segmentation problem using a new form of the Markov-Chain-Monte-Carlo (MCMC) method to efficiently sample from hyperedge distribution. To sample from the above distribution effectively, the proposed Markov Chain includes new types of long and short jumps to perform exploration and exploitation of all structures. Unlike common sampling methods, this method does not require any specific prior knowledge about the distribution of models. The output set of samples leads to a clustering solution by which the final model parameters for each segment are obtained. The overall method competes favorably with the state-of-the-art both in terms of computation power and segmentation accuracy

    A hidden Markov model for matching spatial networks

    Get PDF
    Datasets of the same geographic space at different scales and temporalities are increasingly abundant, paving the way for new scientific research. These datasets require data integration, which implies linking homologous entities in a process called data matching that remains a challenging task, despite a quite substantial literature, because of data imperfections and heterogeneities. In this paper, we present an approach for matching spatial networks based on a hidden Markov model (HMM) that takes full benefit of the underlying topology of networks. The approach is assessed using four heterogeneous datasets (streets, roads, railway, and hydrographic networks), showing that the HMM algorithm is robust in regards to data heterogeneities and imperfections (geometric discrepancies and differences in level of details) and adaptable to match any type of spatial networks. It also has the advantage of requiring no mandatory parameters, as proven by a sensitivity exploration, except a distance threshold that filters potential matching candidates in order to speed-up the process. Finally, a comparison with a commonly cited approach highlights good matching accuracy and completeness

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework
    corecore