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Abstract

This work addresses the problem of robust fitting of geometric structures to noisy data corrupted by outliers. An extension of
J-Linkage (called T-Linkage) is presented and elaborated. T-Linkage improves the preference analysis implemented by J-Linkage
in term of performances and robustness, considering both the representation and the segmentation steps. A strategy to reject
outliers and to estimate the inlier threshold is proposed, resulting in a versatile tool, suitable for multi-model fitting “in the wild”.
Experiments demonstrate that our methods perform better than J-linkage on simulated data, and compare favorably with state-of-
the-art methods on public domain real datasets.
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1. Introduction: the challenges of multi-model fitting

Finding multiple models (or structures) that fit data cor-
rupted by noise and outliers is an ubiquitous problem in the
empirical sciences, including Computer Vision, where organiz-
ing and aggregating unstructured visual content in higher level
geometric structures is a necessary and basic step to derive bet-
ter descriptions and understanding of a scene.

A typical example of this problem can be found in 3D re-
construction, where multi-model fitting is employed either to
estimate multiple rigid moving objects and hence to initialize
multi-body Structure from Motion [1, 2], or to produce interme-
diate geometric interpretations of reconstructed 3D point cloud
by fitting geometric primitives [3, 4, 5]. Other scenarios in
which the estimation of multiple geometric structure plays a
primary role include face clustering, body-pose estimation, aug-
mented reality, image stitching and video motion segmentation,
to name just a few.

In all these contexts the information of interest can be ex-
tracted from the observed data and organized in semantic signif-
icant structures by estimating some underlying geometric para-
metric models, e.g. planar patches, homographic transforma-
tions, linear subspaces or fundamental matrices, as shown in
Figure 1 where a set of two view correspondences is segmented
according to the moving objects they belong to.

Multi-model fitting is a challenging and demanding task,
as many issues are involved. If multiple instances of the same
structure are present in the data, the problem becomes a typi-
cal example of a chicken-&-egg dilemma: in order to estimate
models one needs to first segment the data, and in order to seg-
ment the data it is necessary to know the models associated with
each data point. Moreover, the presence of multiple structures
strains robust estimation, which has to cope with both gross
outliers and pseudo-outliers (i.e. “outliers to the structure of
interest but inliers to a different structure” [6]).

Figure 1: Example of multi-model fitting application: multiple rigid motions
are estimated by fitting fundamental matrices to a set of 2D correspondences
across two images.

The main challenge is therefore the simultaneous robust es-
timation of both segmentation and models without knowing in
advance the correct number of models κ. As a matter of fact,
the problem of multi-model fitting, is inherently ill-posed, since
many different interpretations of the same dataset are possible.
Making the problem tractable requires a regularization strategy
that constrains the solution using prior information, usually in
the form of one or more parameters, such as the number of
sought structures or the noise magnitude. Unfortunately esti-
mating these quantities turns out to be a thorny problem, as in
general there is no a canonical way to judge the appropriateness
of a solution. Following the spirit of Occam’s razor – that one
shall not presume more things than the required minimum – κ
should be kept as low as possible, but finding a correct trade-
off between data fidelity and model complexity (a.k.a. bias-
variance tradeoff) is an intricate model selection task.

Contributions. In this work we present T-Linkage, a frame-
work in which the multi-model fitting problem is tackled from
the segmentation horn of the chicken-&-egg dilemma, leverag-
ing on preference analysis and hierarchical clustering in a con-
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tinuous conceptual space1. This scheme has the merit of au-
tomatically discovering the number of structures hidden in the
data, furthermore treating rogue points as micro-clusters that,
in turn, can be pruned in a probabilistic framework where the
reliability of a structure is measured in term of its randomness.
The resulting algorithm enjoys a straightforward implementa-
tion. In addition only a global scale is required, therefore, if
consensus clustering is integrated in this approach, it is possi-
ble to estimate this parameter given a proper interval search.
Thanks to these features, T-Linkage is a suitable tool for mul-
tiple structure recovery “in the wild” when minimal to no prior
knowledge of the data is available.

In this paper we wrap up and review all the material that
appeared in [7, 8, 9], including more thorough descriptions, ad-
ditional insights and new experiments. In particular: the back-
ground material and the description of T-Linkage have been en-
hanced; a new discussion on the scale estimation problem is
presented; new experiments have been added, including tests
on the complete Adelaide dataset and a 3D plane fitting experi-
ment.

Outline. The article is organized as follows: after a presenta-
tion of the relevant literature in Section 2, the main steps of
T-linkage algorithm are presented and explored. At first in Sec-
tion 3 we concentrate on the conceptual representation: we in-
vestigate the “preference trick” and we propose a continuous re-
laxation of the binary, winner-take-all approach followed by J-
linkage [10]. In this way we provide a more general framework
in which we are able to integrate the use of soft functions in
order to robustly depict data preferences. Density-based tech-
niques are also employed to analyse the geometry of our con-
ceptual space in Section 4, showing that points belonging to the
same model are clustered in a high density region, whereas out-
liers can be characterized as the most separated points. This ob-
servation provides insights into the effectiveness of the cluster-
ing techniques described in Section 5. The problem of dealing
with outliers is addressed in Section 6, whereas Section 7 con-
centrates on the selection of the correct inlier threshold avoid-
ing the classical model selection trade-off of two terms (data
fidelity versus model complexity).

2. Related work: a consensus and preference perspectives

To set the general context and notation, µ denotes a model
and X = {x1, . . . , xn} a set of n data, possibly corrupted by noise
and outliers. Multi model fitting consists in estimating κ in-
stances of models θ1, . . . , θκ, also termed structures, together
with C1, . . . ,Cκ subsets of the data such that all points described
by θi are aggregated in Ci. We assume the structures to be para-
metric – i.e. they can be represented as vectors in a proper
parameter space Θ – and the existence of an error function

err : X × Θ→ R+ (1)

1This notion will be defined at pg. 12, for now it suffices to say that the
conceptual representation of an object is the vector of its posterior probabilities
given certain classes

that associates to every point-model pair (x, θ) ∈ X ×Θ the cor-
responding residual error err(x, θ). For the sake of illustration,
in a line fitting problem such as the one reported in Figure 2,
Θ = P1∗ is the projective space of all the lines of the plane,
and err is simply the geometric point-line distance. In the two
view motion segmentation problem encountered in Figure 1, Θ

can be identified with the fundamental manifold and err can be
either the sampson distance or the reprojection error.

inlier threshold

PSµ,✏(x1) = {h1, h2}

✏

x1

x2
x3
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h2
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CSµ,✏(h1) = {x1, x2, x3}

Figure 2: Consensus and preference sets: a simple line-fitting example illus-
trates the consensus set of the line h1 and the preferred models of x1.

In order to deal with the scale of the noise, a threshold ε ∈
R+, commonly known as the inlier threshold, is introduced. A
point x is said to belong to a given structure θ if

err(x, θ) ≤ ε. (2)

Hence, the consensus set of a structure is simply defined as the
set of points that fits the model within a certain inlier threshold
ε:

CSε(θ) = {x ∈ X : err(x, θ) ≤ ε}. (3)

Dually, the preference set of a point is the set of models having
that point as an inlier:

PSε(x) = {θ ∈ Θ : err(x, θ) ≤ ε}. (4)

Most of the multi-model fitting algorithms proposed in the
literature can be dichotomized according to which part of the
chicken-egg-dilemma is addressed first. Consensus methods
put the emphasis on the estimation and aim for the structures
that describe as many points as possible. On the other hand,
preference approaches concentrate on the segmentation side of
the problem: point preferences are clustered in order to obtain
a partition of the data that is used to estimate the structures of
interest.

Hereinafter we attempt to trace the path that has been fol-
lowed in the literature to address these challenging issues, start-
ing from consensus and continuing to preference analysis.

2.1. Consensus analysis
The peculiar nature of visual data – typically affected by ar-

bitrarily large gross measurement errors – breaks down classical
least-square estimators that are fragile and sensitive to outliers.
Consensus analysis stands out as one of the first attempts that
is not unduly affected by rogue data. The methods belonging
to this category follow a common two step paradigm. At first
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the parametric space Θ of all the feasible structures is approx-
imated as a suitable finite hypothesis space H. Then a voting
procedure elects the structures in H that best explain the data in
terms of a consensus set.

This idea of exploiting consensus is at the core of the cele-
brated Ransac (Random Sample Consensus) [11], aimed at esti-
mating the parameters of a single model in the presence of large
numbers of outliers. The goal of minimizing squared residuals,
typical of the Least Square method, is replaced in Ransac with
the objective of maximizing the size of the consensus set of a
structure, provided the inlier threshold as input. Ransac approx-
imately maximizes this criterion by searching through a pool of
putative structures H determined by random sampling. In par-
ticular at each iteration a Minimum Sample Set (MSS) – com-
posed of the minimum number of points necessary to instantiate
the free parameters of a structure – is drawn. In this way the es-
timation problem in the continuous domain Θ is converted into
a selection problem in the finite discrete subset H ⊂ Θ.

For each estimated model the corresponding consensus set
is computed by counting the residuals below the inlier thresh-
old. This procedure is repeated until a structure having enough
supporting inliers is discovered. A number of efforts have been
made to improve the RANSAC paradigm. For example, MSAC
(M-estimator Sample Consensus) and MLESAC (Maximum Like-
lihood Estimation Sample Consensus) [12] propose to increas-
ing the robustness of the Ransac paradigm incorporating the use
of M-estimator techniques. A lot of other refinements [13] in
terms of both accuracy and efficiency have been made; for ex-
ample different sampling strategies have been proposed in the
literature to reduce the number of iterations necessary to recov-
ery an inlier structure. A nice survey on all these advancements
can be found in [14] or in the more comprehensive overview
of recent researches presented in [15] where Usac (Universal
Framework for Random Sample Consensus) is also derived.

The Ransac strategy has been adapted to estimate multiple
structures. Its most straightforward generalization is embod-
ied by Sequential Ransac, an iterative algorithm that executes
Ransacmany times and removes the found inliers from the data
as each structure is detected. Zuliani et al. [16] noticed some
drawbacks of this greedy estimate-and-remove approach, which
in fact may happen to be sub-optimal since the quality of the at-
tained solution can be affected by inaccurate estimation of the
initial structures.

In order to correct this behavior Zuliani et al. introduced
Multi-Ransac. Remaining tied to the idea of maximizing the
consensus set, Multi-Ransac replaces the sequential scheme with
a parallel approach. Rather than looking for a single structure
having the largest consensus, κ models having maximal sup-
port are searched for simultaneously at each iteration. This is
done by updating iteratively a collection of κ models with κ new
sampled structures using a fusion procedure that explicitly en-
forces the disjointness of the obtained consensus sets. However
as demonstrated experimentally in [10], this method may yield
poor results in the presence of intersecting structures.

The popular Hough transform and its randomized version
(Randomize Hough Transform [17]) can be considered as well
as consensus-oriented algorithms. In these approaches the pa-

rameter space Θ is approximated as a quotient space H = Θ/∼
in which models are represented as equivalence classes of sim-
ilar structures. The space H is hence employed to build an
accumulator collecting data votes: every point adds a vote to
the bins representing the structures it belongs to. After voting
is complete, the accumulator is analysed to locate the maxima
that individuate the desired structures. Differently from Ransac,
where H is a discrete sampled version of Θ, in the Hough trans-
form the elements of the hypothesis space provide an exhaustive
representation of the parameter space, and tentative models are
all considered simultaneously. This, however, comes at the cost
of defining a proper quantization of the space, which rapidly
becomes intractable as the degrees of freedom of the models
increase. A randomized Hough Transform instead of consid-
ering the votes of all the points, exploits random sampling to
approximate the accumulator for votes, reducing the computa-
tional load.

This strategy can be considered as an instance of a more
general approach, that consists in finding modes directly in Θ [18].
In this way, the difficulties of the quantization step are allevi-
ated by mapping the data into the parameter space through ran-
dom sampling and then by seeking the modes of the distribution
with, e.g., mean-shift [19].

In all the consensus based methods, alongside the voting
phase, the approximation of Θ is a recurring theme and a very
critical step. The key point is that, when multiple structures
are hidden in the data, consensus oriented algorithms have to
disambiguate between genuine structures and redundant ones,
i.e. multiple instances of the same model with slightly different
parameters.

This crucial difficulty is hence addressed by enforcing sev-
eral disjointedness criteria implicitly implemented in the dif-
ferent approximations of the solution space. For instance, the
Hough transform attempts to handle redundancy by capturing
similar structures in the same equivalence class via the prob-
lematic quantization of Θ. Along the same lines, the band-
width used in mean shift can be thought of as a way to local-
ize and aggregate redundant models. As suggested in [20] also
both Sequential Ransac and Multi-Ransac enforce disjointed-
ness by avoiding the sampling of similar models. As regards
Sequential-Ransac, this idea can be individuated in the itera-
tive removal of the discovered inliers and in the subsequent
sampling of the hypotheses on the remaining data. In Multi-
Ransac this is more evident, since this algorithm explicitly in-
cludes in its parallel approach a disjointedness constraint by di-
rectly searching for the best collection of κ disjoint models. In
practice, however, using consensus as the only criterion seems
short-sighted, as, in many cases, ground truth models can have
mutual intersection greater than redundant ones, and, conse-
quently, the plain consensus fails in discerning authentic struc-
tures.

2.2. Preference analysis
In order to overcome the difficulties inherent in consensus

methods, it has been proposed to tackle the problem from a
different point of view. Instead of exploiting the consensus of
structures, the role of data and models are reverted: rather than
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representing models and inspecting which points match them,
the preference sets of individual data points are examined.

This idea can be traced back to Residual Histogram Analy-
sis [21] where the residuals distributions of points, with respect
to a set of putative structures randomly sampled, is taken into
consideration. In particular, an histogram analysis of the resid-
uals is used to reveal the most significant structures as peaks in
the histograms. In addition, the number of models is automat-
ically determined by the median number of modes found over
all data points. Even if, in practice, the mode-finding step of
this strategy suffers from low accuracy and depends critically
on the bin size adopted, this method has the merit of reformu-
lating the model-estimation task in a conceptual space, where
points are described by their residuals.

The change of perspective entailed by preference analysis
results in a different approach to the chicken-&-egg dilemma.
Structures are recognized as groups of neighbouring points in
the conceptual space so the emphasis is shifted from the esti-
mation to the segmentation part of the problem.

J-Linkage [10] embodies the spirit of preference analysis
exploiting a preference based representation of data. This algo-
rithm has been demonstrated to be very effective in practice,
and has been extensively exploited in the literature in many
multi-model fitting problems2.

At a high level, a two steps first-represent-then-clusterize
scheme is implemented. At first, data are represented as prefer-
ence sets with respect to a pool of tentative models instantiated
via random sampling, then a greedy agglomerative clustering is
performed to obtain a partition of the data. The key idea is that
points belonging to the same structure will have similar prefer-
ence sets, and the clustering algorithm proceeds in a bottom-up
manner to merge clusters until all their points share a common
preference.

More in detail, a cluster U ⊆ X, is portrayed as the pref-
erence set of all the common preferences among all the data
belonging to it:

PSε(U) =
⋂
x∈U

PSε(x). (5)

and the distance between clusters is computed as the Jaccard
distance [22] between the respective preference representations.
The Jaccard distance between two sets A, B is defined as

J(A, B) = 1 −
|A ∩ B|
|A ∪ B|

(6)

and measures the degree of agreement between the votes of two
clusters; it ranges from 0 (identical votes) to 1 (disjoint pref-
erence sets). Starting from singletons, each sweep of the al-
gorithm merges the two clusters with the smallest Jaccard dis-
tance. The cut off value is 1. It is worth noting that, if outliers
are not present in the data, the number of clusters is automati-
cally detected by this algorithm and the only required input is
the inlier threshold, used in the computation of the preference
sets.

2For a list of applications of J-linkage see http://www.diegm.uniud.
it/fusiello/demo/jlk/j-parade.html

Several trends in common with previous methods can be
recognized: an inlier threshold ε needs to be provided in ad-
vance as in Ransac, and the idea of points casting votes on the
models echoes the Randomize Hough Transform. Nevertheless
J-Linkage does not work in a quantize space, which is at the
root of the shortcoming of Hough Transform, nor in the resid-
ual space, which leads to the difficulties of modes estimation,
but explicitly introduces conceptual space where points are por-
trayed by the preferences they have accorded to random provi-
sional models.

Along the same line of J-Linkage, Kernel Fitting [23] ex-
ploits preferences to derive a kernel matrix that encapsulates
the order in which models are preferred, (i.e., the order of their
residuals). The rationale is that points belonging to the same
ground-truth structure should have similar orders of preferred
models. Exploiting this information, a transformation is ap-
plied to the data points into a space which permits the detection
of outliers. The removal of outliers yields a reduced kernel ma-
trix that, in turn, is used to over-segment the remaining inliers.
Finally a merging scheme is used to reassemble these models
into the final structures.

RCMSA (Random Cluster Model Simulated Annealing) [24]
also takes advantage of the same idea representing data points
as permutations on a set of tentative models constructed iter-
atively, using subsets larger than minimal. Point preferences
are organized in a weighted graph and the multi-model fitting
task is stated as a graph cut problem which is solved efficiently
in an annealing framework. Alternatively in [25] the idea of
representing points as permutations of models is also exploited
by QP-MF a quadratic programming aimed to maximize the
mutual preferences of inliers. Residual information is also ex-
ploited in [26], a single-model estimation technique based on
random sampling, where the inlier threshold is not required.

Another stream of investigation focused on higher order
clustering [27, 28, 29, 30, 31] implicitly adopts a preference
based approach. In these works higher order similarity ten-
sors are defined between n-tuple of points as the probability
that these points are clustered together exploiting the residual
error of the n points with respect to provisional models. In this
way preferences give rise to a hypergraph whose hyperedges
encode the existence of a structure able to explain the incident
vertices that represent data. The problem of multi-model fit-
ting is hence reduced to find highly connected components in
this preference hypergraph. In practice, the similarity tensor is
properly reduced to pairwise similarity and fed to spectral seg-
mentation algorithms. Hypergraph Fitting [31], on the contrary,
works directly with the hypergraph. At first, the hypergraph
is built by expanding as much as possible its hyperedges ex-
ploiting robust statistics, then an hypergaph partition algorithm
is used on the most significant hyperedges in order to detect
sub-hypergraph. Hence the best representative of hyperedges
in each sub-hypergraph is selected and duplicate structures are
removed leveraging on mutual information theory. Also[32]
works with higher order graphs, but multi-model fitting is trans-
lated into a mode-seeking problem on the data/model hyper-
graph.

In summary, different perspectives on the multi-model fit-
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ting problem have been adopted. Consensus oriented methods
look at the problem considering some kind of accumulation
space – either consisting of individual models, as in Ransac,
or in equivalence classes of structures as in the Hough trans-
form – in which votes of points are collected. Structures are
hence estimated from maximal consensus. This paradigm has
been demonstrated to be successful in single model estimation,
but it is less effective if multiple structures are present in the
data, because consensus does not allow us to distinguish clearly
between genuine models and redundant ones. When multi-
ple structure recovery is viewed through the lens of preference
analysis the attention is shifted to the segmentation part of the
problem. Data are represented as points in a high dimensional
space or as vertices of an hypergraph and clustered together us-
ing ad hoc techniques.

It goes without saying that the state-of-the art on multi-
model fitting can also be described along other dimensions. For
example multiple structures recovery can be seen from an op-
timization perspective as the minimization of a global energy
functional composed of two terms: a modeling error which can
be interpreted as a likelihood term, and a penalty term encoding
model complexity mimicking classical MAP-MRF objectives.
A survey of multi-model fitting methods from this point of view
can be found in [33].

A model selection approach is taken in [34, 35, 36, 24, 33],
where the cost function to be minimized is composed of a data
term that measures goodness of fit and a penalty term which
weighs model complexity (see e.g. [37]). Sophisticated and ef-
fective minimization techniques such as SA-RCM [24], AR-
JMC [36] and PEaRL [33] have been proposed. The latter,
for example, optimizes a global energy function that balances
geometric errors and regularity of inlier clusters, also exploit-
ing spatial coherence. However the relative magnitude of the
penalty term with reference with the data term is not obvious to
define.

In order to complete the picture, it is worth mentioning
that optimization routines have also been tailored to specific
instances of multi-model fitting, e.g., subspace segmentation
[38, 39, 40]. In this field the use of low-rank and sparse analysis
has produce a solid literature, accurately illustrated for exam-
ple in [41]. Local subspace affinity (LSA) [38] is an algebraic
method that uses local information around points in order to
fit local subspaces and to cluster points using spectral cluster-
ing with pairwise similarities computed using angles between
the local subspaces. Agglomerative Lossy Compression (ALC)
[39] is a bottom up clustering algorithm that aims at segmenting
the data minimizing a coding length needed to fit the points with
a mixture of degenerate Gaussians up to a given distortion. SSC
[40] exploits sparse representation for segmenting data. Since
high dimensional data can be expressed as linear combination
of few other data points, SSC use the sparse vectors of coeffi-
cients of these linear combinations as a convenient conceptual
representation of points. Then spectral clustering is performed
for segmenting data in this conceptual space.
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Figure 3: The preference trick in a nutshell: data X are represented via φH
(defined in Eq. 12) in the Tanimoto space as preference function collecting the
votes they grant to a pool of tentative hypotheses H.

3. The preference trick: a lift to Tanimoto space

The binary preference analysis implemented by J-Linkage
suffers from the same drawbacks as Ransac with respect to
Msac, therefore we propose enhancing it by relaxing the notion
of a preference set. To this end we borrow from robust statis-
tics the weighting functions adopted by M-estimators and use
them as a voting function to express robust point preferences.
As a result, we alleviate the influence of outliers and mitigate
the truncating effect of the inlier threshold. We hence conceive
a continuous conceptual space in which the Jaccard distance
is generalized by the Tanimoto distance in order to handle the
continuous representations of points.

In pattern recognition a theoretical framework for concep-
tual representation was settled by Pekalska and Duin in [42]:

Definition 3.1 (Conceptual representation). Given two arbi-
trary sets A and B, let φ be a non negative function, expected to
capture the notion of closeness between a pair of points in A×B,
e.g. a similarity or a dissimilarity measure. A conceptual repre-
sentation of a point a ∈ A is a set of similarities/dissimilarities
between a and the elements of B expressed as a vector

a 7→
[
φ(a, b1), φ(a, b2), . . . , φ(a, bm)

]
∈ Rm (7)

B is called a representation set.

The function φ might be non-metric. This definition is very
flexible. In the case A = B the conceptual representation is a
standard similarity or dissimilarity measure between a pair of
objects. Allowing B to be an arbitrary set of prototypes [43],
several generalizations, recently applied for classification pur-
poses, can be derived. For example [44] exploits hidden markov
model to construct a conceptual space for clustering sequential
data, whereas [45] relies on one class support vector machine
to represent and aggregate semantically similar images.

The representation step adopted by J-Linkage can be mapped
in this framework setting A = X, B = H ⊆ Θ, the pool of sam-
pled structure is regarded as the representation set, and choos-
ing as φ the similarity measure defined as

φ(xi, h j) =

1 if err(xi, h j) ≤ ε
0 otherwise.

(8)
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In practice φ assesses the fitness to xi with respect to the struc-
ture h j. As noted in [42], this construction can be interpreted
in a statistical sense as the posterior probabilities of the point x
with respect to the m classes determined by the consensus set
of the putative structures:

[Prob (x|CSε(h1)) , . . . ,Prob (x|CSε(hm))] ∈ Rm (9)

Seen in this way, this conceptual representation is linked to the
stream of research on higher-order clustering where probability
is used to define higher-order affinity between points.

With respect to J-linkage, we introduce a continuous relax-
ation of the binary preference set: the preference function of
a point. Each data point x is described by a function φ taking
values in the whole closed interval [0, 1] and not only in {0, 1}.

In this way the conceptual space is generalized from the set
of characteristic functions to [0, 1]H = {φ(x, ·) : H → [0, 1]},
and we are allowed to express the preferences of a point more
accurately by integrating more specific information on residu-
als. In practice, the idea is to mitigate the truncating effect of
threshold in (8) defining the preference of a point x via the sim-
ilarity:

φ(x, h j) =

{
exp

(
− err(x, h j)/τ

)
if err(x, h j) < 5τ

0 otherwise.
(10)

The time constant τ plays the same role as the inliers threshold ε
; however, compared to the discrete case, the threshold defined
by (10) is less critical since it replaces the abrupt truncation
in (8) with an exponential decay. Please note that setting the
residuals smaller than 5τ to zero is quite natural since for u >
5τ the function e−u/τ can be considered almost constant, with
variations that do not exceed 0.7 %.

In principle this step can also be performed by exploiting
other types of functions, typical of the M-Estimator framework,
e.g. one can define the similarity φ : X × H → [0, 1] as

φ(xi, h j) = wc

(
err(xi, h j)
τσn

)
, (11)

where wc can indicate any of the weighting functions whose
images are contained in the interval [0, 1], namely the Huber,
Cauchy, Geman, Welsh and Tukey weighting functions. In prac-
tice wc plays the same role as the inlier threshold and can be
tuned either using this parameter or, under the assumption of
gaussian noise, as c = kσn where σn is an estimate of the stan-
dard deviation of the residuals and k is chosen to ensure a pre-
defined level of asymptotic efficiency on the standard normal
distribution for the specific M-estimator selected.

It is straightforward to embed data points from their ambient
space to the conceptual one using the vectorial mapping φH :
X → [0, 1]m, simply defined as

x 7→
[
φ(x, h1), . . . , φ(x, hm)

]
. (12)

As depicted in Figure 3, every point x is robustly represented
as a m-dimensional preference vector in the conceptual space
whose entries are the weights, giving rise to a soft version of
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Figure 4: Insights on the geometry of Tanimoto space. (a) one frame of the bis-
cuitbookbox sequence. Model membership is color coded; black crosses (x) are
outliers. (b) conceptual representation of the data in Tanimoto space are pro-
jected in the plane using Multi-Dimensional Scaling for visualization purposes.
Outliers (x) are recognized as the most separated points. (c) Tanimoto neigh-
bourhoods with the same radius in [0, 1]2 have a smaller Euclidean diameter if
the center lies near the origin. (d) The reachability plot shows the reachability
distance of ordered points (model membership is color coded according to the
ground truth).

the preference set. From the preference analysis perspective,
the rationale beyond this construction is that the i-th component
of this vector expresses, with a soft vote in [0, 1], the preference
granted by x to the tentative structures hi. Please note how this
parallels the difference between Ransac and Msac, if consensus
sets are considered.

The next step is to introduce in the unitary cube [0, 1]m a
suitable metric that generalizes the Jaccard distance. This is
accomplished by the Tanimoto distance [46], defined as

dT (p, q) = 1 −
〈p, q〉

‖p‖2 + ‖q‖2 − 〈p, q〉
(13)

for every p, q ∈ [0, 1]m. This distance ranges in [0, 1] and equals
0 for preference vectors sharing the same preferences whereas
reaches 1 if points have orthogonal preferences, i.e. there does
not exist any model in H that can explain both the points p
and q. We denote as T = ([0, 1]m, dT ) the metric space en-
dowed with the Tanimoto distance [47]. Please observe that if
we confine ourselves to the space {0, 1}m the Tanimoto distance
coincides with the Jaccard one. The agreement between the
preferences of two points in the conceptual space reveals the
multiple structures hidden in the data: points sharing the same
preferences are likely to belong to the same structures as points
matching the same collection of models are likely to belong to
the same ground truth model.

In short, echoing the celebrated “kernel trick", which lifts
a non linear problem into a higher dimension space in which it
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becomes easier, this conceptual representation, shifts the data
points from their ambient space to the Tanimoto one, revealing
the multiple structures hidden in the data as groups of neigh-
boring points.

Clustering can be thought of as the discrete and statistical
counterpart of the continuous and geometric problem of finding
connected components. With this idea as a guide, a geometric
analysis of the Tanimoto space can confirm the intuition that
points sharing the same preference are grouped together in the
conceptual space. To illustrate qualitatively these properties we
consider the multi model fitting problem reported in Figure 4a,
taken from [48]. In this dataset three objects move indepen-
dently, each giving rise to a set of point correspondences in two
uncalibrated images: points belonging to the same object are
described by a specific fundamental matrix. Outlying corre-
spondences are also present.

Some insight into the geometrical sparseness of outliers can
be reached considering a system of neighbourhoods: if we fix
some η ∈ (0, 1) and some p ∈ T the Tanimoto ball of radius η
and center p is denoted by Nη(p). As illustrated in Figure 4c,
the Euclidean diameter of Nη changes according to the position
of the center p. In particular this quantity tends to be smaller
for points lying near the origin of T , that corresponds to the
region of T mainly occupied by rogue points. In fact outliers
grant their preferences to very few sampled hypotheses, have
a small Euclidean norm and consequently tend to lie near the
origin. Hence the probability that two outliers live in the same
ball of radius η is significantly lower than the probability that
two inliers (with higher Euclidean norm) are contained in a ball
with the same radius. For this reason outliers can be recognized
as the most separated points in T .

4. Density analysis

With this perspective as a guide, we can examine our con-
ceptual representation through the lens of density based anal-
ysis in order to make these aspects of Tanimoto space more
explicit.

p

q
o

p

q

Figure 5: Illustration of reachability. Reachability is not a symmetric relation:
in the example on the left p is density reachable from q, but q is not density
reachable from p. On the right p and q are density-connected to each other with
respect to o.

In particular we adopt the multi-scale approach offered by
Optics (Ordering Points to Identify the Clustering Structure)
[49]. Optics is a density-based technique which frame the ge-
ometry of the data in a reachability plot thanks to the notion

of reachability distance. To start with, we tailor the definition
of density-connected component proposed in [50] to Tanimoto
space:

Definition 4.1. Given p, q ∈ T , the cardinality ζ of MSS and
η ∈ (0, 1)

− p is said to be a core point if |Nη(p)| > ζ;

− p is directly density-reachable from q with respect to η if
p ∈ Nη (q) and q is a core point;

− p is density reachable from q with respect to η if there is
a chain of points p1, . . . , p` s.t. p1 = p, p` = q and pi+1
is directly density reachable from pi;

− p is density-connected to point q with respect to η if there
is a point o such that both p and q are density reachable
from o.

− a density-connected component is a maximal set of density-
connected points.

An illustration of these concepts is depicted in Figure 5.
Density-connectivity is an equivalence relation hence all the
points reachable from core points can be factorized into max-
imal density-connected components yielding the desired seg-
mentation. A crucial advantage of this definition is that it deals
directly with outliers which can be recognized as points not
connected to any core point. In topological words, outliers can
be identified as isolated points, whereas inliers are either inter-
nal or boundary points of a density-connected component. A
key merit of this notion is that density-connected components
may have an arbitrary shape. Note that, by definition, a density-
connected component must contain at least ζ + 1 points; this is
consistent with the fact that at least ζ + 1 points are needed to
instantiate a non-trivial model (ζ points always define a model
by definition of MSS).

Definition 4.2. Given the cardinality ζ of MSS,

− if p is a core point, the core-distance of p refers to the
distance between p and its w-nearest neighbor.

− if p is a core point, the reachability-distance of a point
p with respect to a point q is the maximum between the
core distance of p and the distance dT (p, q).

After the data have been ordered so that consecutive points
have minimum reachability distance, Optics produces a special
kind of dendrogram, called a reachability plot, which consists
of the reachability values on the y-axis of all the ordered points
on the x-axis. The valleys of this plot represent the density-
connected regions: the deeper the valley, the denser the cluster.

Figure 4d, where the biscuitbookbox reachability plot is shown,
illustrates this. Outliers have high reachability values, while
genuine clusters appear as low reachability valleys and hence
are density-connected components in T . Other examples of
reachability plots are reported in Figure 6.

A final remark concerns the sampling strategy. Since the
data we are dealing with have a geometric nature, we gain some
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Figure 6: Examples of reachability plots (bottom row). Ground truth segmen-
tation (top row),

(a) Uniform sampling

1
2
3

(b) Localized sampling

Figure 7: At equal number of hypotheses, localized sampling helps in produc-
ing more accurate results. The image is a sample frame of the video segmenta-
tion experiment reported in Section 5.1.

benefits (see Figure 7) by introducing a locality bias. In partic-
ular, we adopt a mixed sampling strategy, combining uniform
sampling with local sampling for selecting neighbouring points
with higher probability. In this way we are able to exploit local
information and at the same time to explore hypothesis space.

T-Linkage is modular with respect to sampling, and other
strategies can be adopted as well, relying on different addi-
tional assumptions. Clearly it is desirable to sample as many
pure structures as possible – i.e. structures whose MSS is en-
tirely composed of inliers of the same model – as spurious hy-
potheses assume, along the dimension of models, the same role
played by outliers along the dimension of data. As a matter of
fact, efficient hypothesis generation is an active field of research
and many techniques have been proposed to guide sampling to-
wards promising models, reducing the computational burden of
this step, for example [51, 52] just to name a few. An exam-
ple of what can be gained in terms of accuracy by exploiting
filtering techniques is represented by [53] where T-Linkage is
combined with Fast Hypothesis Filtering, a method that rejects
spurious and irrelevant hypotheses.

5. Preference analysis via T-linkage clustering

In this section we investigate how the robust preference trick,
can be combined with clustering analysis in order to solve the
multi-model fitting problem. In particular we tailor the agglom-
erative linkage clustering to handle continuous representations
in the Tanimoto space, so that structures can be recovered as
clusters of preferences in the conceptual space. In this set-
ting outliers can be recognized as micro-clusters occurring by
chance and are filtered out relying on a probabilistic framework.
Some experiments are carried out in order to validate the benefit
of this approach.

The abundant literature on clustering3 offers many tools to
organize data in many sensible taxonomies according to several
criteria. Here we rely on hierarchical clustering which, rather
than defining a static partitioning of the data as partitonal meth-
ods, aggregates points into a sequence of nested partitions, and
exploits the attained hierarchy of subsets to infer the hidden
structure of the data. This process can be performed in two
directions, namely bottom-up or top-down. In the first case,
starting from singletons, a cluster including all the data points
is produced by successive merging. Vice versa in the latter case
the data are sequentially split into several groups. For a data set
with n elements, the top-down scheme would start by consider-
ing 2n−1 − 1 possible splits of the data , which is computation-
ally expensive. Therefore, in practice, bottom-up approaches
are usually preferred.

The hierarchy of nested groups is encapsulated in a dendro-
gram, which depicts the formation of a cluster together with the
(dis)-similarity levels that have been created by merge or split
moves. The final segmentation of the data is obtained by cutting
the dendrogram at the desired similarity level.

Several ways to compute the distance or the similarity mea-
sure between clusters – called linkage functions – have been
proposed in the literature; the most common and popular be-
ing:

− Single linkage: where the distance between a pair of clus-
ters is determined by the two closest elements to the dif-
ferent clusters. This procedure tends to generate elon-
gated clusters, which causes the so called chaining effect.

− Complete linkage: In contrast to single linkage, the far-
thest distance of a pair of objects is used to define inter-
cluster distance.

− Average linkage: The distance between two clusters is
defined as the average of the distances between all pairs
of data points, each of which comes from a different group.

Our method can be thought of as a variation of average link-
age in the Tanimoto space. Each cluster is represented by a
suitable prototype, but instead of averaging the preferences of
the points belonging to a cluster, we take the minimum of all
their votes. More precisely, we extend the preference trick to a

3For a short survey on the subject the interest reader is referred to [54]
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subset of the data S ⊆ X as

φH(S ) = min
x∈S

φH(x). (14)

In this way a subset S of X is represented as a vector in [0, 1]m

whose j-th component expresses the minimum votes granted to
h j among all the points in S . Component-wise we have:

[φH(S )] j = min
x∈S

φ(x, h j). (15)

We prefer to use Equation (15), instead of averaging prefer-
ences for two reasons. First if we confine ourselves to the bi-
nary space {0, 1}m we obtain exactly the same linkage scheme
proposed in J-Linkage. Second the minimum is associative
(min(min(a, b), c) = min(a,min(b, c))). Therefore the repre-
sentation of a cluster is independent of the order in which it has
been formed, and once a cluster is formed we do not need to
keep track of its point preferences.

Starting from all singletons, each sweep of the algorithm
merges the two clusters with the higher similarity. Tanimoto
distances are hence updated and clusters are aggregated until
all the distances equals 1. This means that the algorithm will
only link together elements whose preference representations
are not orthogonal, i.e. only as long as there exists in H a struc-
ture that received a positive vote from two clusters, will they be
merged. This fact motivates the use of a voting function with
a finite rejection point, if soft descenders with an infinite cutoff

were adopted, small preferences, accorded to outlying struc-
tures, will cause the union of all the points in a unique cluster.
On the contrary having set the votes of outliers to zero allows
the use of the natural predetermined clustering-cutoff . More-
over, as a byproduct,

− for each cluster there exists at least one model for which
all the points have expressed a positive preference (i.e., a
model that fits all the points of the cluster)

− it is not possible that two distinct clusters grant a positive
preference to the same model (otherwise they would have
been linked).

Each cluster of points defines (at least) one model. If more
models fit all the points of a cluster they must be very similar.
As a consequence, in principle, it is sufficient to sample every
genuine structure once.

From the explanatory data analysis perspective, the dendro-
gram produced by T-Linkage can be used to examine the at-
tained cluster. An example is shown in Figure 8, where it can
be appreciated that outliers tend to emerge as small clusters at
the end of the agglomerative process, as can be inferred by the
height of their subtrees. On the other hand inliers determine
wider subtrees with smaller height. This means that T-Linkage,
although being greedy, promotes the aggregation of points be-
longing to genuine structures at the very beginning of the merg-
ing process increasing the overall robustness of the method.
This is also confirmed by the analysis of the linkages illustrated
in Figure 9: the majority of linkages (59%) involve the fusion
between clusters collecting inliers of the same structures, only

few outliers (3%) are aggregated to genuine clusters, and the re-
maining of the linkages happens at the end of the process aggre-
gating small clusters entirely made up of rogue points. Clearly
the separation of the outliers in the Tanimoto space discussed
in Section 4 is the reason for such behavior.
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Figure 8: Dendrogram produced by T-Linkage on the Star5 datasets. The five
subtrees corresponding to inliers can be easily recognized. Best viewed in color.
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(b) Box plots

Figure 9: Analysis of the agglomerative process for the Star5 dataset. Left:
cophenet distances registered through the agglomerative process, labeled as
“inlier-inlier” when clusters associated to the same structures are merged,
“outlier-outlier” when clusters of outlying points are merged and “wrong” oth-
erwise. Right: Box plots of the cophenet distance.

.

We can observe that the separation of the outliers, in the
Tanimoto space, results in the fact that typically rogue points
are merged later with respect to inliers. This can be appreciated
from the fact that, on the contrary, inliers are linked together at
the very first stage

T-Linkage, as any agglomerative clustering algorithms, fits
all the data: bad models must be filtered out a posteriori (this
aspect will be discussed in Section 6). Finally, the model for
each cluster of points is estimated by least squares fitting.

As noted in Section 1, the problem of multiple fitting can be
considered from two alternative points of view usually coexist-
ing: we want to faithfully segment the data and at the same time
to obtain an accurate estimate of the underlying models. Each
of these two tasks can not be undertaken without the other. T-
Linkage is a pure preference based method and concentrates
on the first task segmenting the data in the conceptual space
and extracting a model only at the end via least-squares fitting.
However once models have been obtained, optionally it is pos-
sible to perform an additional refinement step: points are reas-
signed to their nearest model – if it has a distance smaller than
ε – and finally structures are re-estimated according to this new
segmentation. In this way not only can the segmentation and
the model estimation step take advantages from each other, but
we also gain the benefit of mitigating the greedy behavior of
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T-Linkage since the final clustering depends less critically on
the order in which points were merged together. Under the as-
sumption of gaussian noise, this step can also be viewed as a
maximum likelihood estimation, since minimizing the distance
of points from the fitted model is equivalent to maximizing their
likelihood.

Remark:. Both Optics and T-linkage can be profitably used to
produce a dendrogram which captures the nature of the data.
While the diagram created by Optics can be computed more ef-
ficiently with respect to the tree obtained by T-linkage, extract-
ing automatically a clustering from the reachability plot turns
out to be less convenient. In [8], an heuristic strategy based on
Watershed segmentation has been proposed: the main idea is to
locate the valleys of the reachability plot by detecting its local
minima, requiring the user to define a sensitivity parameter. Un-
fortunately, this approach does not have the two guarantees (i.e.
all points are explained by at least one structure, and there is no
a structure explaining the points of two clusters) enforced by
T-Linkage thanks to its preference updating mechanism. In ad-
dition, in some cases, the reachability plot shows great variation
in steepness, and the sensitivity parameter to reject spurious lo-
cal minima, is more difficult to set with respect to the inlier
threshold that, by contrast, has a clear geometric meaning. For
these reasons, in this work we have decided to concentrate our
focus on T-linkage and its parameter, while we are leaving how
the strengths of T-Linkage can be combined into the more com-
putationally convenient framework of Optics, for future study.

5.1. Validation

A simple experiment on simulated data with intersecting
structures is here conducted in order to characterize the per-
formances of T-linkage with respect to J-Linkage [10] and con-
firms the benefits of working with continuous values rather than
operating with binary preferences.

We compare the performances of J-Linkage and T-linkage
on fitting lines to the Star5 data (Figure 10a) using the misclas-
sification error (ME), defined as follows:

ME =
# misclassified points

# points
. (16)

where a point is misclassified when it is assigned to the wrong
model, according to the ground-truth.

The results can be appreciated in Figure 10 where the corre-
sponding ME is reported as a function of threshold parameters
for both J-Linkage and T-linkage on synthetic datasets. The ad-
vantages of T-linkage over J-linkage are twofold. On the one
hand T-linkage reaches a lower ME, thereby obtaining a more
refined clustering. On the other hand, the threshold parameter
integrated in the weighting function is less critical compared
to J-Linkage: the error function for T-linkage presents a larger
plateau, i.e. a large interval of ε the algorithm obtains values
near the optimum.

A second experiment is conducted on a real dataset to val-
idate the benefits of T-linkage over its binary counterpart. For
this purpose we consider a motion segmentation problem on the

(a) Star5
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(b) ME vs. ε

(c) Circle4
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(d) ME vs. ε

Figure 10: T-Linkage attenuates the sensitivity of ε. Left column: segmenta-
tions attained by T-Linkage, point membership is color coded. Right column:
the ME committed by J-Linkage and T-Linkage on Star5 (top) and Circle4 (bot-
tom) datasets is reported as a function of their corresponding inlier threshold
parameters. T-Linkage depends less critically on the choice of the inlier thresh-
old.

Hopkins 155 motion dataset [55], which is available online at
http://www.vision.jhu.edu/data/hopkins155 (see Fig-
ure 7 for a sample). The dataset consists of 155 sequences of
two and three motions, divided into three categories: checker-
board, traffic, and other (articulated/non-rigid) sequences. In
motion segmentation the input data consist of a set of feature
trajectories corrupted by noise (no outliers are present), across
a video taken by a moving camera, and the problem consists
in recovering the different rigid-body motions contained in the
dynamic scene. Under the assumption of affine cameras, this
task boils down to clustering data-trajectories in a union of sub-
spaces.

The more accurate results of T-linkage with respect to J-
Linkage can be appreciated from tables 1 and 2.

The better result for T-linkage is due to the more expressive
representation provided by the continuous conceptual space in
proximity to model intersections, since residual information al-
lows us to disambiguate more accurately between disputed points.
J-Linkage on the contrary has no information to decide to which
structure a point in the intersection of two inlier band has to be
assigned. In this perspective we have made a little step toward
the solution of intersecting models which caused the poor per-
formances of Multi-Ransac.

Indirectly we are also able to compare T-linkage with se-
quential Ransac, and with algorithms tailored to subspace clus-
tering: SSC [40] LSA [38] and ALC [39] using the figure re-
ported in the site mentioned above. In the two-motion sequences
the results of T-linkage are mixed, although it always achieves
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Ransac LSA 4n ALC 5 ALC sp SSC J-Lnkg T-Lnkg

Checkerboard mean 6.52 2.57 2.56 1.49 1.12 1.73 1.20
median 1.75 0.72 0.00 0.27 0.00 0.00 0.00

Traffic mean 2.55 5.43 2.83 1.75 0.02 0.70 0.02
median 0.21 1.48 0.30 1.51 0.00 0.00 0.00

Others mean 7.25 4.10 6.90 10.70 0.62 3.49 0.82
median 2.64 1.22 0.89 0.95 0.00 0.00 0.00

All mean 5.56 3.45 3.03 2.40 0.82 1.62 0.86
median 1.18 0.59 0.00 0.43 0.00 0.00 0.00

Table 1: Motion segmentation: misclassification error (%) for video sequences
with two motions

Ransac LSA 4n ALC 5 ALC sp SSC J-Lnkg T-Lnkg

Checkerboard mean 25.78 5.80 6.78 5.00 2.97 8.55 7.05
median 26.02 1.77 0.92 0.66 0.27 4.38 2.46

Traffic mean 12.83 25.07 4.01 8.86 0.58 0.97 0.48
median 11.45 23.79 1.35 0.51 0.00 0.00 0.00

Others mean 21.38 7.25 7.25 21.08 1.42 9.04 7.97
median 21.38 7.25 7.25 21.08 0.00 9.04 7.97

All mean 22.94 9.73 6.26 6.69 2.45 7.06 5.78
median 22.03 2.33 1.02 0.67 0.20 0.73 0.58

Table 2: Motion segmentation: misclassification error (%) for video sequences
with three motions

a zero median error (as SSC does) and in one case (Traffic) also
the best average error. The overall average is the second best
after SSC, and fairly close to it.

On the three-motion sequences, the results of T-linkage are
worse than in the other sequences, and are also somehow odd:
on the traffic sequence it achieves the lowest ME, but on Checker-
board and Others it comes only third (it is second, however, in
the mean and median ME).

6. Dealing with outliers

Despite countless efforts spent by the scientific community,
there is no universally accepted definition able to capture the
elusive nature of outliers. Nevertheless a multitude of approaches
have been suggested to characterize outliers; among them we
can single out some of the most common assumptions [56]:

− Probability-based : Outliers are a set of small-probability
samples with respect to a reference probability distribu-
tion.

− Influence-based: Outliers are data that have a relatively
large influence on the estimated model parameters. The
influence of a sample is normally the difference between
the model estimated with and without the sample.

− Consensus-based: Outliers are points that are not consis-
tent with the structure inferred from the remainder of the
data.

T-linkage is agnostic about the outliers rejection strategy
that comes after; depending on the application, different rejec-
tion criteria can be adopted. Since the output of T-Linkage is a
partition of data points in consensus sets of the estimated struc-
tures, a viable solution is to integrate together the approaches
based on probability and consensus by analyzing the cardinal-
ity of the attained clusters in a probabilistic framework in order

to distinguish between good fits from random ones. This so-
lution can be traced back to Minpran [57] and Plunder [58]
and recently appeared also in [59]. More generally this idea is
supported by a stream of research rooted in gestalt theory [60,
61] that provides a formal probabilistic method for testing if a
model is likely to happen at random or not. The rationale is the
Helmholtz principle [62] which asserts that a strong deviation
from a background model is valuable information. In our case
the background model is determined by outliers, whereas struc-
tures of inliers are regarded as an unlikely structure of interest.

First of all we can safely start rejecting all those clusters
that have less than ζ + 1 elements since they can be deemed
spurious.

Under the mild assumption that outliers are independently
distributed [57], it is possible to easily estimate the probability
that a cluster is entirely composed of outliers according to its
cardinality and the model it defines. Consequently we retain
only the groups with a high confidence of being inliers and dis-
card those structures that “happen by chance" and do not reflect
an authentic structure in the data.

In practice, following Minpran, at first, the probability p
that an outlier belongs to the consensus set of an estimated
structure is computed by a Monte-Carlo simulation. The value
of p can be estimated either in advance for a generic structure,
or for every specific model attained by T-Linkage at the end of
the clustering. The latter option takes into account the fact that
in general models are not all equiprobable and avoids to con-
sidering a fixed minimum cardinality. Then the probability that
k points belong to the same given model is computed as

α(k) = 1 − F(k, n, p), (17)

where n is the total number of data points, and F is the binomial
cumulative distribution function:

F(k, n, p) =

k∑
i=0

(
n
i

)
pi(1 − p)n−i. (18)

For each structure we compute kmin = α−1(0.01) the minimum
cardinality necessary to be not considered mere coincidence. If
the considered model is supported by less than kmin points, it is
rejected as outlier. [10] Alternatively, based on the observation
that large clusters of outliers are very unlikely, if the number
κ of structures is known beforehand, it is sufficient to keep the
largest κ clusters as inliers.

(a) T-Linkage output (b) Outlier rejection

��������
� 	 
� 
	 �� �	 ��

�


�

��

��


�

	�

��

��
�����������������������
�
���kmin

(c) Cluster cardinality

Figure 11: Results obtained by the proposed outlier rejection on the biscuit-
bookbox dataset. (a) the output produced by T-linkage, (b) outliers are detected
and marked with a black ×. (c) histogram of cluster cardinality. Accuracy:
99.22% False number rate: 0%
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7. Choosing the scale: a model selection problem

T-linkage does not have any scale selection strategy and the
inlier threshold ε has to be manually specified by the user, as in
Msac. If prior knowledge about the noise in the data is avail-
able, ε can be easily tuned, otherwise the scale turns out to be
a sensible free parameter even if the use of a soft weighting
function mitigates its criticality.

In this section we develop a method for estimating the scale
which results in a novel model selection technique avoiding the
classical model selection trade-off of two terms in favour of a
single term criterion. In particular, we borrow, from the Con-
sensus Clustering technique [63], the idea, originally outlined
in the context of micro-array data, that the stability of the clus-
tering suffices in disambiguating the correct estimate of models.
The rationale behind this method is that the “best” partition of
the data is the one most stable with respect to input randomiza-
tion. We translate this principle in the context of geometric fit-
ting, tailoring the Consensus Clustering strategy to T-Linkage.

It is important to observe that ε plays a crucial role in both
of these steps of T-Linkage. At first, in the conceptual represen-
tation step, the inlier threshold ε explicitly defines which points
belong to which model (a point belongs to a model if its dis-
tance is less than ε). If the scale is underestimated the models
do not fit all their inliers; on the contrary, if the scale is overes-
timated, the models are affected by outliers or pseudo outliers.
With respect to the clustering step, points are linked together
by T-Linkage until their vectorial representations are orthogo-
nal. Here again, as ε controls the orthogonality between these
vectors, also the final number of models depends on this param-
eter.

Given a genuine model, if the true noise variance is known,
it is always possible to compute a region containing a certain
fraction of the inliers. For example, under the typical assump-
tion that the noise for inliers is Gaussian, with zero mean and
variance σ2, the squared point-model errors between an inlier
and the uncontaminated model can be represented as chi-square
distribution with d degrees of freedom since it is a sum of d
squared Gaussian variables, where d is the codimension of the
model. For this reason, in order to recover a fraction ρ of inliers,
an appropriate threshold ερ can be computed as

ε2
ρ = χ−1

d (ρ)σ2, (19)

where χ−1
d is the inverse cumulative chi-square distribution. Hence

it is possible to derive the value of the inlier threshold with a
certain level of confidence ρ. Many robust estimators of the
noise variance have been proposed, one of the most popular
ones is the so called MAD (Median Absolute Deviation) which
is defined as

MAD = median j| err(xi, θ) − err(x j, θ)|. (20)

Even if this estimator has a 50% breakdown point, it is biased
for multiple-mode cases even when the data contains less than
50% outliers.

As a matter of fact, in many real applications selecting the
correct scale is a hard problem. In practice many factors hinder
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Figure 12: The difficulties inherent in scale estimation for spurious structures.
On the left a contrived multi-line fitting example is presented. Data points are
sampled, with different level of noise from three ground truth lines (member-
ship of these lines is color coded). Four MSS are drawn, three MSS are pure,
the fourth is mixed. Analysing the residuals of the corresponding instantiated
model (on the left) clearly shows that as regards the pure MSS ordered residu-
als clearly exhibit the presence of multi-modal population that can be separate
by suitable statistical test. On the contrary in the case of the spurious model
(bottom-right) residuals do not present any regularity since there are not enough
inlier points. As a consequence scale estimation can not produce a reliable re-
sult.

scale estimation: the uncertainty of the estimated models has to
be taken into account, the presence of high level of contamina-
tion due to outliers and multiple structures strains robust esti-
mation and the fact that noise does not always follow gaussian
assumption complicates statistical computations. Nevertheless
several solutions for automatic scale selection have been pro-
posed. For example this problem is addressed in [26, 64] in re-
gard to the case of single model estimation, whereas [65, 66, 67]
treat the case of inlier noise estimation for multiple models
exploiting elaborated robust statistics. These techniques rely
on the idea of simultaneously estimating a structure together
with its inlier threshold. Unfortunately, this captivating strat-
egy turns out to be impossible to integrate in T-linkage. As a
matter of fact, T-Linkage merges together clusters as long they
have a common structure in their preferences. Therefore a sin-
gle structure for which ε has been erroneously over-estimated
is sufficient to cause an incorrect aggregation of clusters and to
bias the result towards under segmentation. By way of illustra-
tion, one can think of the extreme case where all the sampled
structures are computed with the correct scale value, but a sin-
gle inlier threshold is inaccurately over-estimated in a way that
the corresponding consensus set includes all the data points, in
this case T-Linkage will return a single cluster.
All the thresholds ought to be estimated accurately in a data
dependent fashion. However reasoning about the distribution
of inlier residuals is not a viable solution as suggested by Fig-
ure 12.

In first instance all the scale estimators that rely on vari-
ants [68, 67] of the MAD, which has a breakdown point of 50%,
can not be adopted because they are prone to over-estimation
due to the large number of pseudo-outliers in a common multi-
model fitting scenario. Furthermore, the presence of mixed
minimal sample sets thwarts all the approaches with a higher
breakdown point such as Kose [69] and Ikose [36], which sub-
stitute MAD with the k-th ordered absolute residual. In this
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case the problem is that spurious structures do not have enough
supporting points obeying the statistical assumption made by
this kind of estimator. Other approaches, e.g. [70], avoid to
estimating the scale using all the data points and exploit a for-
ward search method [71]: starting from MSS, the consensus
set is expanded until a statistical test on the residuals is veri-
fied. Also these methods will definitely fail, because structures
arising from impure MSS, produce drifting models and, again,
over-estimated scales. In short while scale estimation can work
reliably for structures close to the ground truth model param-
eters, the automatic tuning of the inlier threshold of “random”
structures is somehow unfeasible. Unfortunately the ideas pre-
sented in Section 6 can not be used in this context to recognize
and discard these spurious structures, since ε is required as an
input to measure the randomness of a model.

For these reasons we found it profitable to tackle the prob-
lem from a different perspective. The pivotal observation is that
in T-linkage the tuning of ε turns out to be a typical model
selection problem. If ε is too small, we are stuck in under-
segmentation: multiple similar structures explain the same model
in a redundant way. On the contrary, if ε is too large, we run
into the problem of over-segmentation obtaining fewer struc-
tures than necessary that poorly describe the data. We can there-
fore identify our scale selection problem as a model selection
one. The great advantage of this approach is that by tuning the
single free parameter ε we are able to implicitly balance at the
same time between both the complexity of the obtained struc-
tures and their fidelity to the data.

Model selection is a thorny pattern recognition problem that
appears ubiquitous in the multi-model fitting literature (see e.g. [37]).
As a matter of fact, following the spirit of Occam’s razor, sev-
eral multi-model fitting methods result in minimizing an appro-
priate cost function composed of two terms: a modelling error
and a penalty term for model complexity. Just to name a few
relevant algorithms, this approach is taken in [34, 35, 36, 24, 33]
where sophisticated and effective minimization techniques such
as SA-RCM [24], ARJMC [36] have been proposed. Several al-
ternatives have been explored for encoding model complexity.
PEaRL [33] for example, optimizes a global energy function
that balances geometric errors and regularity of inlier clusters,
also exploiting spatial coherence. In [72], an iterative strategy
for estimating the inlier-threshold, the score function, named
J-Silhouette, is composed of a looseness term, dealing with fi-
delity, and a separation one, controlling complexity.

Our starting point is StaRSaC [64] in which Choi and Medioni
demonstrate that choosing the correct ε enforces the stability of
the parameter of the solution in the case of a single structure.
We extend this result to the multiple structures scenario, rea-
soning on segmentation rather than on models parameters. The
idea of exploiting stability appears in the context of clustering
validation. In particular in [63] the authors propose Consensus
Clustering, a strategy that succeeds in estimating the number of
clusters in the data with a single term model selection criterion
based on stability. The next section is devoted to a presentation
of the Consensus Clustering approach.

7.1. Consensus Clustering

In some cases the thorny problem of correct tradeoff data fi-
delity for model complexity (a.k.a. bias-variance dilemma) can
be bypassed introducing a different model selection principle
based exclusively on the stability of models.

The key idea of this approach is that good models should
be found among the ones that are stable with respect to small
perturbations of the data. This very general principle with the
necessary specifications can be applied in many contexts, and
can be exploited also in the classical segmentation problem.

For instance, consider the situation illustrated in Figure 13.
In this case the models to choose are all the possible partitions
of points in k disjoint subsets and model selection is employed
for choosing the correct value of k. Running k-means several
times on subsamples of the same data, with different values of
k shows that the resulting clusterings are stable only when k
expresses the nature of the data, otherwise they manifest lack
of stability.
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(c) k = 10
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(f) k = 10

Figure 13: Clusters estimation. k-mean is run two times (rows) on subsamples
of the same dataset with different values of k (columns). Only for k = 4 the
attained segmentation is the same. This figure is best viewed in color.

This simple example sustains the intuition that the more sta-
ble models represent valid structures in the data.

In [63] the authors develop this idea and present the Con-
sensus Clustering approach to determine the correct number of
clusters by maximizing the consensus, i.e., the agreement of
clustering after perturbation of the data.

More in detail, the Consensus Clustering approach consists
in assuming a clustering algorithm, for example k-means, and a
resampling scheme (e.g. bootstrapping) in order to perturb the
data. Then for each possible cluster number k = 2, 3, . . . , kmax
the data are subsampled several times and processed by the
clustering algorithm. The corresponding results are described
for each k by means of a consensus matrix Mk which is in-
tended to capture the mutual consensus of attained clusters. The
consensus matrix Mk is defined as follows: the element (Mk)i j

stores the number of times points i and j are assigned to the
same cluster divided by the total number of times both items
are selected by the resampling scheme. In other words, the
consensus matrix records the proportion of clustering runs in
which the two points i, j have been clustered together. For this
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reason (Mk)i j ∈ [0, 1] and perfect consensus corresponds to a
clean consensus matrix with all the entries equal to either 0 or
14, whereas a deviation from this case should be explained with
lack of stability of the estimated clusters. Exploiting this obser-
vation, the k that yields the cleanest consensus matrices accord-
ing to an ad hoc measure is selected as the optimal estimate of
the number of models.

7.2. T-Linkage with Consensus Clustering

In this section we shall concentrate on tailoring Consensus
Clustering to T-Linkage, in order to guide the selection of the
scale ε, leveraging on a single term model selection criterion
based on consensus stability.

As explained in Section 7, in the case of T-Linkage we do
not have to select the number of clusters (that is automatically
determined by T-Linkage clustering) but we shall concentrate
on the scale ε which, is a sensitive input parameter that im-
plicitly tunes the balance between the complexity of the ob-
tained clusters and their fidelity to the data. If ε is too small,
we are stuck in under-segmentation: similar multiple structures
explain the same model in a redundant way. Alternatively, if ε
is too large, we run into the problem of over-segmentation ob-
taining fewer structures than necessary that poorly describe the
data.

The outline of our approach is sketched in Figure 14. The
estimation of ε is iteratively laid out as follows. At first the in-
terval search [εL, εR] has to be defined, ensuring that the correct
ε belongs to the interval. For this reason a sound choice of εL is
a small scale value that surely over-segments the data, whereas
εR has to give rise to under-segmentation (for example it can be
estimated fitting a single model to all the data points and taking
the maximum of their residuals). For each ε value belonging to
the interval search, T-Linkage is run t times t = 1, . . . , tmax on
the data properly perturbed.
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Figure 14: The proposed method in a nutshell. Different ε values are used for
running multiple times T-Linkage on the perturbed Star5 dataset. In correspon-
dence to ε1 (which is lower than the ground truth inlier threshold) T-Linkage
over-segments the data producing unstable results, when the threshold is ε2 a
reliable and stable clustering composed of 5 structures is returned, and finally
using the over-estimation of the threshold ε3, data are under-segmented in dif-
ferent ways. The corresponding consensus matrices measure the mutual con-
sensus between the attained segmentations and define the stability index. The
most stable clustering, corresponding to ε2, is selected. (Best viewed in color)

4If the data points were arranged so that points belonging to the same model
are adjacent to each other, perfect consensus would translate into a block-
diagonal matrix

Rather than bootstrapping the raw data in advance as in [63],
we perturb their representation in the conceptual space inside T-
Linkage by bootstrapping the generated hypothesis: In practice,
at each iteration, instead of working with the whole hypothesis
space H, we extract a subset Ĥ of tentative structures and use
it to construct the conceptual representation of points. In our
simulations, we build Ĥ by uniformly extracting about 90% of
structures in H.

After the data have been processed we obtain tmax cluster-
ing outputs for each ε value. The intuition is that, on the correct
scale, there will be consistency between the partitions produced
by T-linkage. For each scale the consistency of the partitions is
hence tabulated via the consensus clustering matrix Mε intro-
duced in Section 7.1.

Now we measure the consensus stability of each matrix
boiling down each Mε to a single consensus stability value s per
scale. If we were to plot a histogram of the entries of (Mε)i j,
perfect consensus would translate into two bins centered at 0
and 1 and, in general, a histogram skewed toward 0 and 1 in-
dicates good clustering. With this idea in mind, consider the
following change of variable:

F(x) =

{
x if x < 0.5
x − 1 if x ≥ 0.5. (21)

F redistributes the entries of Mε from the [0, 1] range to the
interval [−0.5, 0.5]. The effect is to rearrange the histogram
symmetrically around the origin. In this way stable entries are
concentrated around 0 whereas unstable ones are accumulated
at the tails of the histogram. For this reason, measuring how far
the entries of F(Mε) are spread out accounts for the consensus
stability of a given scale ε. For this purpose we propose to
employing the variance5 of the vectorized upper triangular part
of F(Mε) and defining a consensus stability index as

s(ε) = var (vech (F(Mε))) , (22)

where vech returns the vectorization of the upper triangular ma-
trix it receives in input. Then, assuming we are dealing with
authentic multiple structures, the scale is selected among the
ε values that segment the data in at least two clusters. Within
these ε we retain as correct the smallest one obtaining the lower
score of s:

ε∗ = min
(
arg min

ε : # cluster>1
s(ε)

)
. (23)

The most stable solution (the one obtained with ε∗) is then re-
turned.

With respect to the computational complexity of this method,
if c is the execution time of T-linkage, k1 the threshold values
tested and k2 the number of bootstrapping trials, the total ex-
ecution time of this method is k1k2c to which the time needed
for computing the consensus matrices has to be added. Even
if the number of bootstrap iterations is small (k2 = 4 in our
experiments suffices in providing good results), there is space
for improvement for example by replacing exhaustive search on
the interval [εL, εR] with a suitable (direct) minimization strat-
egy reducing the number of scale values that are evaluated.

5We also tested other dispersion indices with comparable results.
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7.3. Validation

This section is devoted to evaluating the proposed method
on both simulated and real data, proving that consensus stability
s can be exploited as a single term model selection criterion for
automatically fit multiple structures.

Some synthetic experiments are carried on in order to qual-
itatively assess the proposed approach. In particular, as shown
in Figure 15, we address the problem of fitting circles (Figure
15a) and lines (Figures 15b, 15c) to noisy data contaminated by
gross outliers. Since the number of structures is unknown – ac-
tually it is determined by the parameter ε we want to estimate –
we do not rely on this information for rejecting outliers. There-
fore we employ the outlier rejection strategy described in 6 that
discards the structures which happen by chance. It is worth
noting that this criterion works properly to filter out bad models
with a different percentage of outliers.

 

 

(a) Circle6, 50% of outliers
 

 

(b) Stair4, 60% of outliers
 

 

(c) Star5, 75% of outliers

 

 

(d) Estimated models (e) Estimated models
 

 

(f) Estimated models

Figure 15: Synthetic examples: rogue data are reported in the first row, extracted
models are shown in the second one. Membership is color coded.

We validate this strategy – henceforth referred to as TLCC
(T-Linkage and Consensus Clustering)– on some real datasets.
We test our method on image pairs correspondences taken from
the AdelaideRMF dataset[48] on both two view motion seg-
mentation and plane experiments. The sequences in this dataset
consist of matching points in two uncalibrated images with gross
outliers. In the case of plane segmentation the (static) scene
contains several planes, each giving rise to a set of point cor-
respondences described by a specific homography. The aim is
to segment different planes by fitting an homography matrix to
subsets of corresponding points. In the second case (motion
segmentation) the setup is similar, but the scene is not static,
i.e., it contains several objects moving independently, each giv-
ing rise to a set of point correspondences described by a specific
fundamental matrix. The aim is to segment the different mo-
tions by fitting fundamental matrices to subsets of correspond-
ing points.

We compare TLCC with the results obtained by T-linkage
when an optimal scale εopt in the interval search is given as
input:

εopt = arg min
ε∈[εL,εR]

ME(ε), (24)
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Figure 16: Stability index s (blue) and ME (red) as a function of the scale
ε parameter for some image pairs of the motion segmentation (16a, 16b) and
plane segmentation experiments (16c). The estimated scale is marked with a
diamond on the s curve.

in other words εopt is the global minimum of ME. We remind
to the reader that ME, defined in Eq.16, measures the percent-
age of misclassified points with respect to the ground labelling.
For each experiment we compare the ME(ε∗) achieved in corre-
spondence with the scale ε∗ estimated by TLCC with the ME(εopt)
of the optimal scale obtained by T-Linkageopt

Using the data reported in [24] we are able to compare
TLCC indirectly with other state of the art algorithms inspired
by the classical two term model selection approach. For fair
comparison with [24], where the parameters of each sequence
are individually tuned and the best outcomes out of several trials
have been recorded, we adjust the localized sampling parame-
ters per sequence separately.

In regard to fundamental matrix fitting, according to Ta-
ble 3, TLCC succeeds in estimating the optimal ε in six cases
(marked in bold) and misses the global optimum in two cases,
for which we plot the ME and the stability index in Figures 16a
and 16b. It can be appreciated that the profile of the ME is fairly
flat near the optimum, and that the minimum of the stability in-
dex is fairly close to the optimum of ME anyway.

Our conjecture for such a behaviour is that the models have
mutual intersections (or close to), and that ME does not mea-
sure properly the quality of a clustering. For instance, imagine a
point P that lies in the intersection of two models, say A and B,
and suppose that, according to the ground truth, it is assigned to
A. A clustering that assigns P to B is penalized by ME, whereas
it should not. A similar argument applies to points that lie close
to two models (without belonging exactly to the intersection):
the penalty for assigning a point to the wrong model should be
attenuated in such close-to-ambiguous situations.

In all but three cases TLCC achieves the best result, and, if
the mean ME is considered, it is the best algorithm. These cases
are reported in Figures 17a, 17b 17c where it can be appreciated
that the resulting segmentation is reasonable anyway.

On plane segmentation experiments, in five cases (marked
in bold) the proposed method estimates an optimal scale ac-
cording to ME.

For the johnsonb image pairs the attained segmentation by
TLCC is slightly less accurate than the optimal one, however
from Fig. 16c, where the ME and the stability index are shown,
it can be appreciated that the value achieved by TLCC cor-
responds to a plateau of ME. The segmentation produced by
TLCC is presented in Figure 17f. Notice that the actual global
optimum of ME can be conditioned by arbitrary tie-breaking of
disputed points between models.
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Two term model selection Stability

PEARL QP-MF FLOSS ARJMC SA-RCM TLCC T-Linkopt

biscuitbookbox 4.25 9.27 8.88 8.49 7.04 2.71 0.39
breadcartoychips 5.91 10.55 11.81 10.97 4.81 5.19 5.19
breadcubechips 4.78 9.13 10.00 7.83 7.85 2.17 2.17
breadtoycar 6.63 11.45 10.84 9.64 3.82 4.27 4.27
carchipscube 11.82 7.58 11.52 11.82 11.75 1.22 1.22
cubebreadtoychips 4.89 9.79 11.47 6.42 5.93 4.46 3.50
dinobooks 14.72 19.44 17.64 18.61 8.03 13.86 13.86
toycubecar 9.5 12.5 11.25 15.5 7.32 3.03 3.03

Mean 7.81 11.21 11.68 11.16 7.07 4.62

Table 3: ME (%) for two-view motion segmentation.

Two term model selection Stability

PEARL QP-MF FLOSS ARJMC SA-RCM TLCC T-Linkopt

johnsona 4.02 18.5 4.16 6.88 5.9 3.12 3.12
johnsonb 18.18 24.65 18.18 21.49 17.95 8.83 8.81
ladysymon 5.49 18.14 5.91 5.91 7.17 6.17 6.17
neem 5.39 31.95 5.39 8.81 5.81 4.78 4.78
oldclassicswing 1.58 13.72 1.85 1.85 2.11 1.65 1.65
sene 0.80 14 0.80 0.80 0.80 0.42 0.42

Mean 5.91 20.16 6.05 7.62 6.62 4.08

Table 4: ME (%) comparison for plane segmentation.
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Figure 17: Sample results of TLCC in two-view motion segmentation (top row)
and planar segmentation (bottom row). Point membership is color coded, red
dots are points rejected as outliers.

Table 4 compares TLCC with state of the art methods (re-
sults for all the methods but TLCC are taken from [24]). Our
method achieves in all cases, but one, the best ME and a rea-
sonable segmentation and it scores first on the average.

In order to simulate the performance of this method in a use
case scenario where there is no any kind of prior information
on the data, we also run TLCC on the whole Adelaide dataset
adopting a pure uniform random sampling scheme without ex-
ploiting local priors. In this challenging scenario, the genuine
structures are less represented in the hypothesis space and, as
can be seen in Table 5, the attained results of T-Linkageopt are
also less accurate with respect to the mixed sampling strategy
previously employed. This situation is reflected in the fact that
the attained segmentations are less reliable and therefore less
stable. As a consequence, TLCC is less precise and often se-
lects a scale that is near to the best available segmentation pos-
sible. Nevertheless the achieved ME are still comparable with
the optimal ones.

Table 5: Adelaide two view segmentation (uniform sampling)

motion segmentation plane segmentation

TLCC T-Linkopt TLCC T-Linkopt

biscuitbookbox 2.33 1.55 unionhouse 6.71 5.03
breadcartoychips 5.19 5.19 bonython 1.52 1.52
breadcubechips 3.48 3.48 physics 0.00 0.00
breadtoycar 4.88 4.32 elderhalla 4.67 4.67
carchipscube 4.27 2.44 ladysymon 11.81 10.13
cubebreadtoychips 17.83 15.92 library 7.91 7.44
dinobooks 13.86 13.86 nese 1.97 1.18
toycubecar 10.10 7.07 sene 1.69 1.27
biscuit 0.63 0.00 napiera 10.93 8.94
biscuitbook 0.29 0.29 hartley 10.63 10.00
boardgame 9.68 7.89 oldclassicswing 3.58 3.58
book 2.14 2.14 barrsmith 9.36 6.81
breadcube 0.41 0.41 neem 18.70 18.70
breadtoy 2.43 1.74 elderhallb 17.14 16.73
cube 5.30 5.30 napierb 16.88 12.24
cubetoy 2.81 1.20 johnsona 21.53 8.78
game 0.01 0.01 johnsonb 13.46 12.98
gamebiscuit 25.30 2.44 unihouse 8.72 5.70
cubechips 1.76 1.76 bonhall 14.77 14.77

mean 5.53 3.56 mean 9.58 7.92
median 2.43 1.76 median 9.36 7.44

In Figure 18 we present TLCC results on some plane seg-
mentation experiments taken from the VGG dataset6.
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(b) Merton College III

Figure 18: Qualitative results of TLCC on stereo images from VGG, Oxford
(point membership is color coded, red dots are points rejected as outliers)

We also validate our approach on the 3D plane fitting prob-
lem: given an unordered cloud of 3D points, the aim is to ag-
gregate the visual content in significant higher-level geometric
structure. Here, we describe the Pozzoveggiani dataset [10] as
a combination of different planes representing the wall of the
building. As can be sensed from Figure 19, TLCC succeeds in
providing an accurate description of the edifice, selecting the
scale that recovers all the six walls that can be clearly seen in
the top view of the church.

In summary, results show that TLCC, and a fortiori T-Linkage,
place in the same range as the state of the art competing algo-
rithm adopting a classical two-term model selection strategy,
with a free balancing parameter. Experiments show that this
method succeeds in suggesting the optimal scale parameter of
T-linkage and provides evidence that stability has a minimum
in the “right" spot, ideally the same spot where the misclassifi-
cation error (ME) achieves its minimum.

6available online at http://www.robots.ox.ac.uk/~vgg/data/
data-mview.html
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(a) 1000 input points (top view) (b) Segmentation attained by TLCC

Figure 19: Qualitative results on 3D plane segmentation on the Pozzoveggiani
dataset

8. Final remarks

We have presented and examined T-Linkage, a simple and
versatile tool for geometric model fitting based on preference
analysis and hierarchical clustering. This method generalizes
and improves J-Linkage, by relaxing the notion of a preference
set in the Tanimoto space. The number of sought structures
is automatically decided. Moreover, if rogue data are present,
the peculiar geometry of the Tanimoto space brings robustness
to the clustering step, and outliers can be easily detected and
pruned. The only input required by the user is the inlier thresh-
old, whose tuning can be guided by exploiting the proposed
consensus clustering framework. In this way T-linkage can be
employed to explore and analyze data, when little prior infor-
mation on the data is available. At the same time, when some
prior information is available, this can easily be integrated into
T-Linkage, for instance, by tailoring the sampling step to the
specific problem at hand.

Further enhancements are possible and are being planned
for future work. For example, it would be interesting to exploit
the information provided by the hierarchy of nested clusters in
order to define robustly an adaptive cutoff of the dendrogram.
Also cophenet distances could be profitably integrated in the
outlier rejection phase.
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