10 research outputs found

    Robust dialog state tracking using delexicalised recurrent neural networks and unsupervised adaptation

    Full text link

    Robust Dialog State Tracking for Large Ontologies

    Full text link
    The Dialog State Tracking Challenge 4 (DSTC 4) differentiates itself from the previous three editions as follows: the number of slot-value pairs present in the ontology is much larger, no spoken language understanding output is given, and utterances are labeled at the subdialog level. This paper describes a novel dialog state tracking method designed to work robustly under these conditions, using elaborate string matching, coreference resolution tailored for dialogs and a few other improvements. The method can correctly identify many values that are not explicitly present in the utterance. On the final evaluation, our method came in first among 7 competing teams and 24 entries. The F1-score achieved by our method was 9 and 7 percentage points higher than that of the runner-up for the utterance-level evaluation and for the subdialog-level evaluation, respectively.Comment: Paper accepted at IWSDS 201

    Dialogue state tracking accuracy improvement by distinguishing slot-value pairs and dialogue behaviour

    Get PDF
    Dialog state tracking (DST) plays a critical role in cycle life of a task-oriented dialogue system. DST represents the goals of the consumer at each step by dialogue and describes such objectives as a conceptual structure comprising slot-value pairs and dialogue actions that specifically improve the performance and effectiveness of dialogue systems. DST faces several challenge

    Robust dialog state tracking using delexicalised recurrent neural networks and unsupervised adaptation

    No full text
    Tracking the user's intention throughout the course of a dialog, called dialog state tracking, is an important component of any dialog system. Most existing spoken dialog systems are designed to work in a static, well-defined domain, and are not well suited to tasks in which the domain may change or be extended over time. This paper shows how recurrent neural networks can be effectively applied to tracking in an extended domain with new slots and values not present in training data. The method is evaluated in the third Dialog State Tracking Challenge, where it significantly outperforms other approaches in the task of tracking the user's goal. A method for online unsupervised adaptation to new domains is also presented. Unsupervised adaptation is shown to be helpful in improving word-based recurrent neural networks, which work directly from the speech recognition results. Word-based dialog state tracking is attractive as it does not require engineering a spoken language understanding system for use in the new domain and it avoids the need for a general purpose intermediate semantic representation

    Proceedings of the 1st joint workshop on Smart Connected and Wearable Things 2016

    Get PDF
    These are the Proceedings of the 1st joint workshop on Smart Connected and Wearable Things (SCWT'2016, Co-located with IUI 2016). The SCWT workshop integrates the SmartObjects and IoWT workshops. It focusses on the advanced interactions with smart objects in the context of the Internet-of-Things (IoT), and on the increasing popularity of wearables as advanced means to facilitate such interactions
    corecore