110 research outputs found

    Mechatronics of systems with undetermined configurations

    Get PDF
    This work is submitted for the award of a PhD by published works. It deals with some of the efforts of the author over the last ten years in the field of Mechatronics. Mechatronics is a new area invented by the Japanese in the late 1970's, it consists of a synthesis of computers and electronics to improve mechanical systems. To control any mechanical event three fundamental features must be brought together: the sensors used to observe the process, the control software, including the control algorithm used and thirdly the actuator that provides the stimulus to achieve the end result. Simulation, which plays such an important part in the Mechatronics process, is used in both in continuous and discrete forms. The author has spent some considerable time developing skills in all these areas. The author was certainly the first at Middlesex to appreciate the new developments in Mechatronics and their significance for manufacturing. The author was one of the first mechanical engineers to recognise the significance of the new transputer chip. This was applied to the LQG optimal control of a cinefilm copying process. A 300% improvement in operating speed was achieved, together with tension control. To make more efficient use of robots they have to be made both faster and cheaper. The author found extremely low natural frequencies of vibration, ranging from 3 to 25 Hz. This limits the speed of response of existing robots. The vibration data was some of the earliest available in this field, certainly in the UK. Several schemes have been devised to control the flexible robot and maintain the required precision. Actuator technology is one area where mechatronic systems have been the subject of intense development. At Middlesex we have improved on the Aexator pneumatic muscle actuator, enabling it to be used with a precision of about 2 mm. New control challenges have been undertaken now in the field of machine tool chatter and the prevention of slip. A variety of novel and traditional control algorithms have been investigated in order to find out the best approach to solve this problem

    Robust Control Design for Two-link Nonlinear Robotic System

    Get PDF

    Parameter identification and model based control of direct drive robots

    Get PDF
    Imperial Users onl

    Comparative Experiments with a New Adaptive Controller for Robot Arms

    Get PDF
    This paper presents a new model-based adaptive controller and proof of its global asymptotic stability with respect to the standard rigid-body model of robot-arm dynamics. Experimental data from a study of one new and several established globally asymptotically stable adaptive controllers on two very different robot arms 1) demonstrate the superior tracking performance afforded by the model-based algorithms over conventional PD control, 2) demonstrate and compare the superior performance of adaptive model-based algorithms over their nonadaptive counterparts, 3) reconcile several previous contrasting empirical studies, and 4) examine contexts that compromise their advantage

    Design of a workcell incorporating a gripper-based SCARA robot

    Get PDF
    This Master Thesis dealt with the development of an operative gripping system, which has to be mounted on a SCARA manipulator. The design concerned both electrical and mechanical part, with focus on the choices of each selected component making up the overall system. The final tool is a pneumatic gripper whose opening/closing actions are controlled by a pneumatic valve driven via Arduino and a suitable electric circuit. In the end a camera-based application was develope

    Bond graph model based control of robotic manipulators

    Get PDF
    The performance of robotic manipulators is critical to their widespread use in industry. As manipulators become faster, their potential productivity can rise thus improving the return on the investment required to purchase them. Improving accuracy, on the other hand, increases the range of tasks for which the manipulator is suitable. The speed and accuracy of a manipulator is partly determined by the capability of the algorithm used to control it. Whilst being a highly non-linear multiple input, multiple output device, however, most industrial controllers are derived on the basis that the robot is a series of independent, linear actuator+ link subsystems. The resulting independent joint controller is simple to design and implement but is limited in its performance as link interactions and the non-linear effects of centrifugal and Coriolis forces degrade the accuracy at high manipulator velocities. Improvements in the control of manipulators may be made by incorporating a mathematical model of the manipulator in the control algorithm. Control schemes such as `computed torque' incorporate an inverse model of the manipulator to calculate the input torques required to force the end-effector to follow a desired trajectory. The equations of motion required to implement these controllers are large and complex even for relatively simple manipulators. This thesis explores how bond graph representations of robotic manipulators may be used to automate the implementation of model based controllers. To provide a practical basis for this research the bond graph derived controllers are tested on an experimental rigid, planar, direct drive two-link manipulator. It is shown how the bondgraph for this manipulator, including d.c. motor actuators, can be constructed and used to derive the equations of motion of the manipulator automatically. The bond graph model is then validated by comparing simulations obtained using these equations of motion with experimental data
    • …
    corecore