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1. Introduction      
 

A good performance of robot control requires the consideration of efficient dynamic models 
and sophisticated control approaches.  Traditionally, control law is designed based on a 
good understanding of system model and parameters.   Thus,  a  detailed and correct model 
of a robot manipulator is needed  for this approach [1, 2].  
A two-link planar nonlinear robotic system is a well-used robotic system, e.g., for welding in 
manufacturing and so on.  Generally, a dynamic model can be derived from the general 
Lagrange equation method.   The modeling of a two-link planar nonlinear robotic system 
with assumption of only masses in the two joints can be found in the literature, e.g., [3, 4].  
Here, the authors revise centrifugal and Coriolis force matrix in the literature [3, 4] as 
pointed out in the next section.  Furthermore, in practice, the robot arms have their mass 
distributed along their arms, not only masses in the joints as assumed.  Thus, it is desired to 
develop a detailed model for two-link planar robotic systems with the mass distributed 
along the arms.  Distributed mass along robot arms was discussed by inertia in SCARA 
robot [5].  Here, we present a new detailed consideration of any mass distributions along 
robot arms in addition to the joint mass.     
Moreover, it is also necessary to consider numerous uncertainties in parameters and 
modeling. Thus, robust control, robust adaptive control and learning control become 
important when knowledge of the system is limited. We need robust stabilization of 
uncertain robotic systems and furthermore robust performance of these uncertain robotic 
systems. Robust stabilization problem of uncertain robotic control systems has been 
discussed in [1-3, 5-6] and many others. Also, adaptive control methods have been discussed 
in [1, 7] and many others.  Because the closed-loop control system pole locations determine 
internal stability and dominate system performance, such as time responses for initial 
conditions, papers [6, 8] consider a robust pole clustering in vertical strip on the left half s-
plane to consider robust stability degree and degree of coupling effects of a slow subsystem 
(dominant model) and the other fast subsystem (non-dominant model) in a two-time-scale 
system.  A control design method to place the system poles robustly within a vertical strip 
has been discussed in [6, 8-10], especially [6] for robotic systems.  However, as mentioned 
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above, there is a need of a detailed and practical two-link planar robotic system modeling 
with the practically distributed robotic arm mass for control.   
Therefore, this chapter develops a practical and detailed two-link planar robotic systems 
modeling and a robust control design for this kind of nonlinear robotic systems with 
uncertainties via the authors’ developing robust control approach with both H∞ disturbance 
rejection and robust pole clustering in a vertical strip.  The design approach is based on the 
new developing two-link planar robotic system models, nonlinear control compensation, a 
linear quadratic regulator theory and Lyapunov stability theory. 

 
2. Modeling of Two-Link Robotic Systems  
 

The dynamics of a rigid revolute robot manipulator can be described as the following 
nonlinear differential equation [1, 2, 6, 10]:  
 

),(),()( qqNqqqVqqMFc                                         (1.a) 
)()(),( qFqFqGqqN sd                                      (1.b) 

 
where )(qM  is an nn  inertial matrix, ),( qqV   an nn   matrix containing centrifugal and 
coriolis terms, G(q) an 1n  vector containing gravity terms, q(t) an 1n  joint variable 
vector, cF  an 1n  vector of control input functions (torques, generalized forces), dF  an 

nn   diagonal matrix of dynamic friction coefficients, and )(qFs   an 1n  Nixon static 
friction vector.   
However,  the dynamics of the robotic system (1) in detail is needed for designing the 
control force, i.e., especially, what matrices )(qM , ),( qqV   and )(qG  are. 
Consider a general two-link planar robotic system in Fig. 1, where the system has its joint 
mass 1m  and 2m  of joints 1 and 2, respectively, robot arms mass rm1  and rm2  distributed 
along arms 1 and 2 with their lengths 1l  and 2l , generalized coordinates 1q  and 2q , i.e., 
their rotation angles, ][ 21  qqq , control torques (generalized forces) 1f  and 2f , 

][ 21  ffFc .   
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Fig. 1. A two-link manipulator 
 

 

Theorem 1. A general two-link planar robotic system has its dynamic model as in (1) with 
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where g is the gravity acceleration, 1m  and 2m  are joints 1 and 2 mass, respectively,  1rm  

and 2rm  are total mass of arms 1 and 2, which are distributed along their arm lengths of 1l  

and 2l , the scaling coefficients 1 , 2 , 1  and 2  are defined as follows: 
 

2
0

2 /)()( iri
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iii lmdlllSli  , iri
l

iii lmldllSsi /)()(0  , 

 il iiri dllSlm 0 )()( , 2,1i                                           (6) 
 
where )(1 l  and )(2 l  are the arm mass density functions along their length l, )(1 lS  and 

)(2 lS  are the arm cross-sectional area functions along the length l .   
Proof: The proof is via Lagrange method and dynamic motion equations. The mass 
distribution can be various by introducing the above new scaling coefficients.  Due to the 
page limit,  detail of the proof is omitted.  
Remark 1. From (2)–(4) in Theorem 1, ),()( qqVqM   . Theorem 1 is also different from the 
result in [3-6].  Especially, there are no corresponding items of i  in [3-6].  
Corollary 1.   A two-link planar robotic system with consideration of only joint mass has its 
dynamic model as in (1) and Theorem 1, but with  
 

0rim , 0i , 0i , 2,1i                                                   (7) 
 
It means that its inertia matrix )(qM  in (2), and  
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where g is the gravity acceleration, 1m  and 2m  are joints 1 and 2 mass, respectively,  1rm  

and 2rm  are total mass of arms 1 and 2, which are distributed along their arm lengths of 1l  
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where )(1 l  and )(2 l  are the arm mass density functions along their length l, )(1 lS  and 

)(2 lS  are the arm cross-sectional area functions along the length l .   
Proof: The proof is via Lagrange method and dynamic motion equations. The mass 
distribution can be various by introducing the above new scaling coefficients.  Due to the 
page limit,  detail of the proof is omitted.  
Remark 1. From (2)–(4) in Theorem 1, ),()( qqVqM   . Theorem 1 is also different from the 
result in [3-6].  Especially, there are no corresponding items of i  in [3-6].  
Corollary 1.   A two-link planar robotic system with consideration of only joint mass has its 
dynamic model as in (1) and Theorem 1, but with  
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Remark 2.  It is noticed that centrifugal and Coriolis matrix ),( qqV   in (26) is equivalent to: 
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in (1).  Note that the Coriolis matrix is different from some earlier literatures in [3, 4].   
Theorem 2.  Consider a two-link planar robotic system having its robot arms with uniform 
mass distribution along the arm length.  Thus, its dynamic model is as (1) – (6) of Theorem 1 
with its scaling factors as follows: 
 

3/121   , and 2/121                                        (12) 
 
Proof:  It can be proved by Theorem 1 and the uniform mass distribution in (6).  
Theorem 3.  Consider a two-link planar robotic system having its robot arms with linear 
tapered-shapes respectively along the arm lengths as: 
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where )(lri  in length is a general measure of the arm cross-section at the arm length l, e.g., 

as a radius for a disk, a side length for a square, ab for a rectangular with sides a and b, 
etc., )(lSi  is the cross-sectional area of arm i  at its length position l, i  is a constant, e.g., 
as  for a circle and 1 for a square.  Assume that arm 1 and arm 2 respectively have their two 
end cross-sectional areas as: 
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where tii SS 0 , 2,1i . Their density functions are constants as ii l  )( , 2,1i .  Then, 
its dynamic model is as in (1) – (6) of Theorem 1 with its scaling factors: 
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2,1i , and its arm mass: 

3/)( 00 tiitiiiiri SSSSlm   , 2,1i                                   (16) 
 

 

Proof:  It is proved by substituting (13) and (14) into (6) in Theorem 1 and further 
derivations.  
Remark 3.  The scaling factors (15) and the arm mass (16) in Theorem 3 may have other 
equivalent formulas, not listed here due to the page limit.  Here, we choose (15) and (16) 
because the two-end cross-sectional areas of each arm are easily found from the design 
parameters or measured in practice.  The arm cross-sectional shapes can be general in (13) in 
Theorem 3.   

 
3. Robust Control 
 

In view of possible uncertainties, the terms in (1) can be decomposed without loss of any 
generality into two parts, i.e., one is known parts and another is unknown perturbed parts 
as follows [2, 6]:  
 

MMM  0 ,   NNN  0 ,   VVV  0                                  (17) 
 
where 000 ,, VNM  are  known  parts,  VNM  ,,   are 
unknown parts.  Then, the models in Section 2 can be used not only for the total uncertain 
robotic systems with uncertain parameters, but also for a known part with their nominal 
parameters of the systems.  
Following our [6], we develop the torque control law as two parts as follows: 
 

uqMqqNqqqVqqMF dc )(),(),()( 0000                                      (18) 
 
where the first part consists of the first three terms in the right side of (18), the second part is 
the term of u that is to be designed for the desired disturbance rejection and pole clustering, 
dq  is the desired trajectory of q, however, the coefficient matrices are as (2) – (6) in Theorem 

1 with all nominal parameters of the system.  Define an error between the desired dq  and 
the actual q as: 
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From (1) and (17)–(19), it yields: 
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From [6], we can have the fact that their norms are bounded:  
 

ww  ,  eE  ,  fF                                               (22) 

 
Then, it leads to the state space equation as: 
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The last three terms denote the total uncertainties in the system. The desired trajectory dq  
for manipulators to follow is to be bounded functions of time. Its corresponding velocity dq  
and acceleration dq , as well as itself dq , are assumed to be within the physical and 
kinematic limits of manipulators. They may be conveniently generated by a model of the 
type: 

)()()()( trtqKtqKtq dpdvd                                           (25) 

 
where r(t) is a 2-dimensional driving signal and the matrices Kv and Kp are stable.  
The design objective is to develop a state feedback control law for control u in (18) as  
 

)()( tKxtu                                                              (26) 
 
such that the closed-loop system:  
 

  BwxBFKEBBKAx  )0(                                  (27) 
 
has its poles robustly lie within a vertical strip  :  
 

}0{)( 12   xjyxsAc                                 (28) 
 
and a -degree disturbance rejection from the disturbance w to the state x, i.e., 
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  BFKEBBKAAc  0                                                  (30) 
 
From [6], we derive the following robust control law to achieve this objective. 
Theorem 4.  Consider a given robotic manipulator uncertain system (27) with (1)–(6), (17)-
(22), (24), where the unstructured perturbations in (21) with the norm bounds in (22), the 
disturbance rejection index 0  in (29), the vertical strip   in (28) and a matrix Q>0.  
With the selection of the adjustable scalars 1  and 2 , i.e., 
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there always exists a matrix 0P  satisfying the following Riccati equation:  
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Then, a robust pole-clustering and disturbance rejection control law in (18) and (26) to 
satisfy (29) and (30) for all admissible perturbations E and F in (22) is as:  
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if the gain parameter r satisfies the following two conditions:  
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Proof:  Please refer to the approach developed in [6, 8] and utilizing the new model in 
Section 2.  
It is also noticed that:  
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It is evident that condition (i) is for the 1 -degree stability and  -degree disturbance 
rejection, and condition (ii) is for the 2 -degree decay, i.e., the left vertical bound of the 
robust pole-clustering.  
Remark 4.  There is always a solution for relative stability and disturbance rejection in the 
sense of above discussion.  It is because the Riccati equation (32) guarantees a positive 
definite solution matrix P, and thus there exists a Lyapunov function to guarantee the robust 
stability of the closed loop uncertain robotic systems. The nonlinear compensation part in 
(18) has a similar function to a feedback linearization.  The feature differences of the 
proposed method from other methods are the new nominal model, and the robust pole-
clustering and disturbance attenuation for the whole uncertain system family.  It is further 
noticed that the robustly controlled system may have a good Bode plot for the whole 
frequency range in view of Theorem 4, inequality (29) and its H-infinity norm upper bound.  
Remark 5.  The tighter robust pole-clustering vertical strip 21 )(Re   cA  has 
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4. Examples 
 

Example 1.  Consider a two-link planar manipulator example (Fig. 1).  First, only joint link 
masses are considered for simplicity, as the one in [3, 6].  However, we take the correct 
model in Corollary 1 and Remark 2 into account. The system parameters are: link mass 

kgm 21  , kgm 102  , lengths ml 11  , ml 12  , angular positions q1, q2 (rad), applied 
torques f1, f2 (Nm).  Thus, the nominal values of coefficient matrices for the dynamic 
equation (1) in Corollary 1 are:  
  

)(0 qM 










10)1(10
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10),( 220 qSqqV   

gqqN ),(0  

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


 

12

121
10

1012
C
CC

                                               (39) 

where ii qC cos , 2,1i , )cos( 2112 qqC  , 22 sin qS  , and g is the gravity accelera-
tion.   
The desired trajectory is )(tqd  in (25)  with  0vK ,  and  

IK p  , the signal   15.0)(tr , the initial values of the desired states   22)0(dq , 

0)0( dq , i.e.,  
5.0cos5.1)(1  ttqd ,     and    1cos)(2  ttqd                                 (40) 

 
The initial states are set as 2)0()0( 21  qq , and 0)0()0( 21  qq  , i.e., 4)0(1 e , 

4)0(2 e , 0)0(1 e , and 0)0(2 e .  The state variable is ][  eex   where qqe d  .  
The parametric uncertainties are assumed to satisfy (22) with 5.0f ,  40e , 10N .   

Select the adjustable parameters 012.01  , 0015.02   from (31), disturbance rejection 
index 1.0 , the relative stability index 1.01  , and the left bound of vertical strip 

20002   since we want a fast response. By Theorem 4, we solve the Riccati equation (32) 
to get the solution matrix P and the gain matrix as: 
 


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
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II
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P , ]7863.9851823.950[ 22 IIPBrK   

 

with 6.0r .  The eigenvalues of the closed-loop main system matrix BKA   are  
{-0.9648, -0.9648, -984.8215, -984.8215}.  Remark 5 gives the result 18732  .  The 

uncertain closed-loop system has its 12 )](Re[   cA  robustly.  
The total control input (law) is  
 

uMNqqqVqMFF dTc 0000 ),(    
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A simulation for this example is taken with )(4.0)( 0 qMqM  , i.e., 40% disturbance, 

5.02857.0)()(1 
fqMqM  ,  ),( qqVm   ),(2.0 0 qqVm   with 20% disturbance, and 

)(2.0)( 0 qNqN   with 20% disturbance. The simulation results by MATLAB and Simulink 
are shown in Figs. 2-3. 

     

 
Fig. 2. States and their desired states: (a) )(1 tq  & )(1 tq d , (b) )(2 tq  & )(2 tq d  in Example 1 
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Fig. 3. Error signals: (a) e1(t), (b) e2(t) in Example 1 
 
Example 2.  Consider a two-link planar robotic system example with the joint mass and the 
arm mass along the arm length.  The mass of joint 1 is 11 m kg, and the mass of joint 2 is 

5.02 m kg.  The dimensions of two robot arms are linearly reduced round rods. The two 
terminal radii of the arm rod 1 are 301 r cm and 21 tr cm.  The two terminal radii of the 
arm rod 2 are 202 r cm and 11 tr cm.  Their end cross-sectional areas are 901 S cm2, 

41 tS cm2, 402 S cm2, and 12 tS cm2.  The arm length and mass are 11 l m, 
12 l m, 2.51 rm kg, and 9.12 rm kg.  By Theorem 3, it leads to: 

 
2684.01  , 2286.02  , 4342.01  , 3929.02                        (42) 

By Theorem 3, the nominal model parameters are: 
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The desired trajectory )(tqd  is the same as in Example 1. The initial states are set as 
2)0(1 q , 0)0(2 q , )0(1q  0)0(2 q , i.e., 4)0(1 e , 2)0(2 e , 0)0(1 e , 0)0(2 e .   

The parametric uncertainties in practice are assumed to satisfy (22)  with  25.0f ,  

10e ,  10N .   Select the adjustable parameters 0375.01   and 0188.02   from 
(31), the disturbance rejection index 1.0 , the relative stability index 1.01  , and the 
left bound of vertical strip 1002  .  By Theorem 4, the solution matrix P to (32) and the 
gain matrix K are 
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with 8.4r .  The eigenvalues of the closed-loop main system matrix  BKA   are 
{ 1072.1 , 7587.58 , 1072.1 , 7587.58 }.  The uncertain system has 

12 )](Re[   cA  robustly.  
The total control input (law) is : 
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)(1.0)( 0 qNqN  .  The results are shown in Figs. 4-5.  It is noticed that the error may be 
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Fig. 3. Error signals: (a) e1(t), (b) e2(t) in Example 1 
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Fig. 5. Error signals: (a) e1(t), &  (b) e2(t) 

 
 

 

5. Conclusion 
 

The chapter develops the practical models of two-link planar nonlinear robotic systems with 
their arm distributed mass in addition to the joint-end mass.  The new scaling coefficients 
are introduced for solving this problem with the distributed mass along the arms.  In 
addition, Theorems 2 and 3 respectively present two special cases: a uniform arm shape (i.e., 
uniform distributed mass) and a linear reduction of arm shape along the arm length.   
Based on the presented new models, an approach to design a continuous nonlinear control 
law with a linear state-feedback control for the two-link planar robotic uncertain nonlinear 
systems is presented in Theorem 4.  The designed closed-loop systems possess the 
properties of robust pole-clustering within a vertical strip on the left half s-plane and 
disturbance rejection with an H -norm constraint.  The suggested robust control for the 
uncertain nonlinear robotic systems can guarantee the required robust stability and 
performance in face of parameter errors, state-dependent perturbations, unknown 
parameters, frictions, load variation and disturbances for all allowed uncertainties in (22).  
The presented robust control does always exist as pointed out in Remark 4.   The adjustable 
scalars i , i=1, 2, provide some flexibility in finding a solution of the algebraic Riccati 
equation. The designed uncertain system has 1 -degree robust stabilization and  -degree 
disturbance rejection.  The controller gain parameter r is selected such that the designed 
uncertain linear system achieves robust pole-clustering within a vertical strip.  The examples 
illustrate excellent results.  This design procedure may be used for designing other control 
systems, modeling, and simulation.   
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