6,541 research outputs found

    Variance-constrained multiobjective control and filtering for nonlinear stochastic systems: A survey

    Get PDF
    The multiobjective control and filtering problems for nonlinear stochastic systems with variance constraints are surveyed. First, the concepts of nonlinear stochastic systems are recalled along with the introduction of some recent advances. Then, the covariance control theory, which serves as a practical method for multi-objective control design as well as a foundation for linear system theory, is reviewed comprehensively. The multiple design requirements frequently applied in engineering practice for the use of evaluating system performances are introduced, including robustness, reliability, and dissipativity. Several design techniques suitable for the multi-objective variance-constrained control and filtering problems for nonlinear stochastic systems are discussed. In particular, as a special case for the multi-objective design problems, the mixed H 2 / H ∞ control and filtering problems are reviewed in great detail. Subsequently, some latest results on the variance-constrained multi-objective control and filtering problems for the nonlinear stochastic systems are summarized. Finally, conclusions are drawn, and several possible future research directions are pointed out

    Robust mixed H2/H∞ filtering with regional pole assignment for uncertain discrete-time systems

    Get PDF
    This paper deals with the robust mixed H2/H∞ filtering problem with regional pole assignment for linear uncertain discrete-time systems in the presence of two sets of exogenous disturbance inputs. A general framework for solving this problem is established using a linear matrix inequality (LMI) approach in conjunction with regional pole constraints, and H2 and H∞ optimization characterization. Necessary and sufficient conditions for the solvability of the problem are given in terms of a set of feasible LMIs. A numerical example is provided to illustrate the effectiveness of the proposed design algorithm.published_or_final_versio

    Error-constrained filtering for a class of nonlinear time-varying delay systems with non-gaussian noises

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the quadratic error-constrained filtering problem is formulated and investigated for discrete time-varying nonlinear systems with state delays and non-Gaussian noises. Both the Lipschitz-like and ellipsoid-bounded nonlinearities are considered. The non-Gaussian noises are assumed to be unknown, bounded, and confined to specified ellipsoidal sets. The aim of the addressed filtering problem is to develop a recursive algorithm based on the semi-definite programme method such that, for the admissible time-delays, nonlinear parameters and external bounded noise disturbances, the quadratic estimation error is not more than a certain optimized upper bound at every time step. The filter parameters are characterized in terms of the solution to a convex optimization problem that can be easily solved by using the semi-definite programme method. A simulation example is exploited to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Leverhulme Trust of the U.K., the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. under Grant GR/S27658/01, the Royal Society of the U.K., the National Natural Science Foundation of China under Grant 61028008 and Grant 61074016, the Shanghai Natural Science Foundation of China under Grant 10ZR1421200, and the Alexander von Humboldt Foundation of Germany. Recommended by Associate Editor E. Fabre

    Robust mixed H-2/H∞ control for a class of nonlinear stochastic systems

    Get PDF
    The problem of mixed H2/H∞ control is considered for a class of uncertain discrete-time nonlinear stochastic systems. The nonlinearities are described by statistical means of the stochastic variables and the uncertainties are represented by deterministic norm-bounded parameter perturbations. The mixed H2/H∞ control problem is formulated in terms of the notion of exponentially mean-square quadratic stability and the characterisations of both the H2 control performance and the H∞ robustness performance. A new technique is developed to deal with the matrix trace terms arising from the stochastic nonlinearities and the well-known S-procedure is adopted to handle the deterministic uncertainities. A unified framework is established to solve the addressed mixed H2/H∞ control problem using a linear matrix inequality approach. Within such a framework, two additional optimisation problems are discussed, one is to optimise the H∞ robustness performance, and the other is to optimise the H2 control performance. An illustrative example is provided to demonstrate the effectiveness of the proposed method.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Nuffield Foundation of the UK under Grant NAL/00630/G and the Alexander von Humboldt Foundation of Germany, the National Natural Science Foundation of China under Grant 60474049 and the Fujian provincial Natural Science Foundation of China under Grant A0410012
    corecore