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1. Introduction 

In the last twenty some years, much attention has been paid to the problem of fault-tolerant 
control in satellite attitude control systems and many methods have been developed and 
proven to be capable of tolerating certain types of system faults (see e.g., [1~5] and the 
references therein). However, these solutions focused mainly on keeping stability of the faulty 
systems and in less consideration of other performance indices. Actually, the performance 
requirements of practical satellite control systems are usually multi-objective even in faulty 
cases and it is desirable for fault tolerant systems to keep the required performance indices in a 
satisfactory and admissible region rather than the optimization of single index [6~7]. 
As is well known, in many practical applications, it is desirable to construct systems to 
achieve better transient property, strong anti-disturbance ability and adequate level of cost 
function performance. To this end, optimal controllers have been designed by assigning pole 
in a desired region (see e.g., [8] and [9]), using H∞ norm-bound constraint on disturbance 
attenuation [10, 11] and the guaranteed cost control (see [12] and [13]), respectively. 
Unfortunately, few results have been considered such performance indices simultaneously. 
Meanwhile, once some components of satellite attitude control systems go wrong, it is 
difficult to confirm desired multiple performances by the existing fault-tolerant control. 
Thus, it is necessary to investigate the problem of fault-tolerant control with multiple 
performance constraints. 
Therefore, it is our motivation to investigate the quadratic D stabilizable satisfactory fault-
tolerant control problem with consistent indices constraints for a class of satellite attitude 
control uncertain discrete-time systems subject to actuator failures. In view of possible 
actuator failure as well as uncertainties which do not satisfy matching conditions existing in 
both the state and control input matrices, we first derive the existence conditions of 
satisfactory fault-tolerant state-feedback control law. Then by LMI technique, a convex 
optimization problem is formulated to find the corresponding controller. The state-feedback 
controller is designed to guarantee the closed-loop system satisfying the pre-specified 
quadratic D stabilizability index, H∞ norm-bound constraint on disturbance attenuation and 
having the quadratic cost performance simultaneously, for all admissible value-bounded 
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uncertainties and possible actuator failures. Furthermore, the consistency of the 
performance indices mentioned earlier is discussed for fault-tolerant control. Finally, 
simulative example is provided to illustrate the validity of the proposed method and the 
necessity of such a satisfactory fault-tolerant control. 

2. Problem formulation 

The systems considered in this paper can be described as follows: 

 
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 f

f

k k k k

k k k

+ = + Δ + + Δ +

= +

x A A x B B u Dω

z Cx Eu
 (1) 

where ( ) nk ∈ℜx  is the state vector, ( )f pk ∈ℜu  is the control input from the actuator that 

may be fault, ( ) kk ∈ℜz  is the controlled output, ( ) qk ∈ℜω  is the input disturbance and 

2|| ( )||k β≤ω , A , B , C  and D  are known real constant matrices with appropriate 

dimensions, ΔA  and ΔB  are unknown matrices representing parameter uncertainties in the 

state matrix and input matrix, respectively. 

In much literature, time-varying matrices of uncertain parameters are assumed to be of the 

form [ ] ( )[ ]a bkΔ Δ =A B HF E E , where H , aE  and bE  are known real constant matrices 

with appropriate dimensions, ( )kF  is an unknown real matrix satisfying 
*( ) : { ( ) | ( ) ( ) }i j Tk k k k∈Ω = ∈ℜ ≤F F F F I . However, the uncertainty is often value bounded 

which is more universal and need not satisfy the so-called matching conditions in practical 

engineering. Thus, ΔA  and ΔB  denote value bounded uncertainties in this paper, i.e., 

|| || aΔ ≤A , || || bΔ ≤B . 
Suppose the states are available for state-feedback. 

 ( ) ( )k k=u Kx  (2) 

where *p n∈ℜK  is the feedback gain matrix. For the control input, the following failure 
model in [18] is adopted for this study: 

 ( ) ( )f k k=u Mu  (3) 

 1 2, , , pdiag m m m⎡ ⎤= ⎣ ⎦M A  (4) 

where M  denotes the actuator faults function matrix, 0 il i ium m m≤ ≤ ≤ , 1ilm < , 1ium ≥ , 
1,2, ,i p= A . 

Remark 1: In the above fault matrix M , if 1im = , it corresponds to the normal case 
( ) ( )f k k=u u . If 0im = , outage of actuator control signal occurs. If 0 il i ium m m< < < , 1ilm < , 

1ium ≥  and 1im ≠ , the corresponding actuator would be in partial failure case. Hence, let 
( )f ku  denote the control input vector both in normal and actuator failures cases for fault-

tolerant control research in this paper. 
The decomposition of fault function M  is given below with a similar manner in [7], which 
will be used for our main results. Define 

0 01 02 0[ , , , ]pdiag m m m=M A , 1 2[ , , , ]pdiag j j j=J A , 1 2| | [| |,| |, ,| |]pdiag l l l=L A , 
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where 0 ( ) / 2i il ium m m= + , ( ) /( )i iu il iu ilj m m m m= − + , 0 0( ) /i i i il m m m= − . So, we then have 

 ( )0= +         ≤ ≤M M I L L J I  (5) 

The faulty closed-loop system is given by 

 
( ) ( ) ( )
( ) ( )

1 C

C

k k k

k k

+ = +

=

x A x Dω
z C x

 (6) 

where C C C= + ΔA A A , C = +A A BMK , CΔ = Δ + ΔA A BMK , C = +C C EMK . 
The cost function associated with system (1) considered possible actuator faults (3) is 

 ( ) ( ) ( )( ) ( )
0

TT

k

J k x k
∞

=
= +∑ x Q MK R MK  (7) 

where 0T= >Q Q , 0T= >R R  are given weighting matrices.  
Definition 1: For system (1), if there exists state-feedback controller, such that the faulty 
closed-loop system (6) will meet the following indices constraints simultaneously, 

a. The closed-loop system is quadratic D stabilizable with constraint ( , )q rΦ , ( , )q rΦ  

denotes the disc with centre 0q j+  and the radius r , where r  and q  are known 

constants with | | 1q r+ < . 
b. The H∞ norm of the closed-loop transfer function is strictly less than a given positive 

scalar γ , 
c. The closed-loop value of the cost function (7) exists an upper bound satisfying J J∗≤ , 
then for all admissible uncertainties and possible faults, the given indices, quadratic D 
stabilizability index ( , )q rΦ , H∞ norm bound 0γ >  and cost function performance * 0J >  
are said to be consistent, state-feedback controller ( ) ( )k k=u Kx  is said to be satisfactory 
fault-tolerant controller. 
Now, the satisfactory fault-tolerant control problem considered in this paper is stated in the 
following. 

Problem: For the system (1) with actuator failure, given the quadratic D stabilizability index 
( , )q rΦ , H∞ norm bound 0γ >  and the cost function (7), determine a control law 
( ) ( )k k=u Kx  so that the closed-loop system satisfies criteria (a), (b) and (c) simultaneously. 

3. Main results 

Lemma 1: Consider the actuator fault model (3), for any matrix 0
T= >R R  and scalar 0ε > , 

if 0
1 ε− − >R I  then  

 ( ) 11 1
0 0 0 0ε ε

−− −≤ − +MRM M R I M M JJM  (8) 

Lemma 2: Consider the system (1) subject to faults, given index ( , )q rΦ , if there exists gain 
matrix K  and symmetric positive matrix P  such that the following matrix inequality 

 
( )

0

1

2

C

T

C

q

q r

−⎡ ⎤− −
⎢ ⎥ <
⎢ ⎥− −⎣ ⎦

P A I

A I P
 (9) 
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holds for all admissible uncertainties and possible faults, then the system (1) is quadratically 
D stabilizable. 

Remark 2: It can be easily shown that in the case when 0q = , 1r = , the definition of 
quadratic D stabilizability is reduced to quadratic stabilizability where no closed-loop pole 
constraints is considered. Therefore, Lemma 2 shows that if the uncertain system (1) is 
quadratic D stabilizable, then for some state feedback controllers both quadratic 
stabilizability and pole assignment constraints of the faulty closed-loop system are enforced 
simultaneously. 
Theorem 1: Consider the system (1), for the given index ( , )q rΦ , if there exists symmetric 
positive matrix X , matrix Y  and scalars 0( 1 ~ 3)i iε > =  such that the following linear 
matrix inequality 

 

0 0

0 0 0

0

11 3

2

1

2 3

1
3

*

* *

* * *

* * * *

T T

q

r

ε

ε
ε ε

ε −

+ −⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥− <
⎢ ⎥

− +⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

Σ AX BY X BJ

X X Y Y

I

I J

J

 (10) 

holds, where 11 1 2 3
Ta bε ε ε= − + + +Σ X I I BJB . Then for all admissible uncertainties and 

possible faults M , the faulty closed-loop system (6) with satisfactory fault-tolerant 
controller 1

0( ) ( )k k −= =u Kx M Y  1 ( )k−X x  is quadratically D stabilizable. 
Remark 3: Theorem 1 shows us LMI with X  and Y , which can be tested with convex 
optimization to decide whether it is solvable, and Matlab LMI Control Toolbox can be 
utilized to solve it. If LMI (13) holds, there must exist state-feedback controller assigning the 
closed-loop poles within ( , )q rΦ , namely, the constraint (a) is met. In this case the system (1) 
is said to be robust fault-tolerant state feedback assignable for actuator faults case. 
Lemma 3: Consider the system (1) in fault case and the cost function (7) as well as square 
integrable disturbance ( )kω , if there exists gain matrix K  and symmetric positive matrix P  
such that the following matrix inequality  

 ( ) 0
12T T T T T T

C C C C C Cγ
−

− + + + + − <A PA P C C Q K MRMK A PD I D PD D PA  (11) 

holds for all admissible uncertainties and possible faults M , then the faulty closed-loop 
system is asymptotically stable with an H∞ norm-bound γ , and the cost function (7) has an 
upper bound 

 2 2
0 0
TJ γ β< +x Px  (12) 

Remark 4: In some literature on the guaranteed cost control with regional pole constraint 

such as [12], the upper bound of cost function J is that 2(0) /J V r≤  2
0 0 /T r= x Px . For 

0 1r< < , it is certainly larger than the one in (12) when 0( )t =ω . So the result here provides 

an improved performance bound. 
Remark 5: Note this upper bound in (12) which depends on the initial condition 0x . To 
remove the dependence on the initial state, suppose 0x  is arbitrary but belongs to the set 

0 0{ : , 1}n TW = ∈ℜ = ≤x x Uv v v , where U  is a given matrix. The cost bound in (12) then 
leads to 
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( )2 2 2 2
0 0 max
T TJ γ β λ γ β< + ≤ +x Px U PU  

Theorem 2: Consider the system (1) and the cost function (7), for the given index ( , )q rΦ  
and H∞ norm-bound index γ , if there exists symmetric positive matrix X , matrix Y and 
scalars 0( 4 ~ 9)i iε > =  such that the following linear matrix inequality 

 

( )0

0
0

0

21

2

4 5 6

22

*

* *

* * *

T

T

Ta b

γ

ε ε ε

⎡ ⎤− +
⎢ ⎥
⎢ ⎥− <⎢ ⎥

− + + +⎢ ⎥
⎢ ⎥
⎣ ⎦

X AX BY Σ
I D

X I I BJB

Σ

 (13) 

holds, where ( )21 [ , , , , , , , , ]
T T T T T T T= +Σ CX EY X X Y Y Y Y Y Y J , 1

22 7 4[ , , ,Tdiag ε ε−= − + − −Σ I EJE Q I  

1 1 1 1
5 8 6 7 8 9 9, , , , , ]ε ε ε ε ε ε ε− − − −− + − − − − −I J J J J I R I . Then for all admissible uncertainties and 

possible faults M , the faulty closed-loop system (6) with satisfactory fault-tolerant 

controller ( ) ( )k k= =u Kx  1 1
0 ( )k− −M YX x  is asymptotically stable with an H∞ norm-bound γ , 

and the corresponding closed-loop cost function (7) is with 1 2 2
max( )TJ λ γ β−≤ +U X U . 

According to Theorem 1 and 2, the consistency of the quadratic D stabilizability constraint, 
H∞ performance and cost function indices for fault-tolerant control is deduced as the 
following optimization problem. 

Theorem 3: Given quadratic D stabilizability index ( , )q rΦ , suppose the system (1) is robust 
fault-tolerant state feedback assignable for actuator faults case, then LMIs (10), (13) have a 
feasible solution. Thus, the following minimization problem is meaningful. 

 ( ) ( )min : , , , iγ γ ε  X Y  S.t. LMIs (10), (13) (14) 

Proof: Based on Theorem 1, if the system (1) is robust fault-tolerant state feedback 
assignable for actuator faults case, then inequality 

0
T
C C − <A PA P  

has a feasible solution P , K . And existing 0λ > , 0δ > , the following inequality holds 

 0
T T T
C C C Cλ δ⎡ ⎤− + + + + <⎣ ⎦A PA P C C Q K MRMK I  (15) 

Then existing a scalar 0γ , when 0γ γ> , it can be obtained that 

( ) 12
1 1 1

T T T
C Cγ δ

−
− <A P D I D P D D P A I  

where 1 λ=P P . Furthermore, it follows that 

( ) 0
12

1 1 1 1 1
T T T T T T
C C C C C Cγ

−
− + + + + − <A P A P C C Q K MRMK A P D I D P D D P A  

Using Schur complement and Theorem 2, it is easy to show that the above inequality is 
equivalent to linear matrix inequality (13), namely, 1P , K , γ  is a feasible solution of LMIs 
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(10), (13). So if the system (1) is robust fault-tolerant state feedback assignable for actuator 
faults case, the LMIs (10), (13) have a feasible solution and the minimization problem (14) is 
meaningful. The proof is completed. 
Suppose the above minimization problem has a solution LX , LY , iLε , Lγ , and then any 
index Lγ γ> , LMIs (10), (13) have a feasible solution. Thus, the following optimization 
problem is meaningful. 
Theorem 4: Consider the system (1) and the cost function (7), for the given quadratic D 
stabilizability index ( , )q rΦ  and H∞ norm-bound index Lγ γ> , if there exists symmetric 
positive matrix X , matrix Y  and scalars 0( 1 ~ 9)i iε > =  such that the following 
minimization 

 2 2min λ γ β   +  (16) 

S.t. (i)   (10), (13) 

                 (ii)  0

Tλ⎡ ⎤−
<⎢ ⎥

−⎢ ⎥⎣ ⎦

I U

U X
 

has a solution min min min min, , ,iε λX Y , then for all admissible uncertainties and possible faults 

M , 1 1
0 min min( ) ( ) ( )k k k− −= =u Kx M Y X x  is an optimal guaranteed cost satisfactory fault-tolerant 

controller, so that the faulty closed-loop system (6) is quadratically D stabilizable with an H∞ 
norm-bound γ , and the corresponding closed-loop cost function (7) satisfies 

2 2
minJ λ γ β≤ + . 

According to Theorem 1~4, the following satisfactory fault-tolerant controller design 
method is concluded for the actuator faults case. 

Theorem 5: Given consistent quadratic D stabilizability index ( , )q rΦ , H∞ norm index 

Lγ γ>  and cost function index * 2 2
minJ λ γ β> + , suppose that the system (1) is robust fault-

tolerant state feedback assignable for actuator faults case. If LMIs (10), (13) have a feasible 

solution X , Y , then for all admissible uncertainties and possible faults M , 
1 1

0( ) ( ) ( )k k k− −= =u Kx M YX x  is satisfactory fault-tolerant controller making the faulty closed-

loop system (6) satisfying the constraints (a), (b) and (c) simultaneously. 
In a similar manner to the Theorem 5, as for the system (1) with quadratic D stabilizability, 
H∞ norm and cost function requirements in normal case, i.e., =M I , we can get the 
satisfactory normal controller without fault tolerance. 

4. Simulative example 

Consider a satellite attitude control uncertain discrete-time system (1) with parameters as 
follows: 

[ ]2 2 1 1 0.1 1 0 1 0
,  ,  0.2 0.3 ,  ,  ,  ,  0.1,  0.2 .

2 4 0 1 0.5 0 1 0 1
a b

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = = = = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
A B C D Q R  

Suppose the actuator failure parameters {0.4, 0.6}l diag=  M , {1.3, }u diag=  1.1M . Given the 

quadratic D stabilizability index (0.5,0.5)Φ , we can obtain state-feedback satisfactory fault-

tolerant controller (SFTC), such that the closed-loop systems will meet given indices 

constraints simultaneously based on Theorem 5.  
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SFTC

0.5935 3.0187

6.7827 5.6741

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

K  

In order to compare, we can obtain the state-feedback satisfactory normal controller (SNC) 
without fault-tolerance. 

SNC

0.4632 2.4951

5.4682 4.9128

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

K  

Through simulative calculation, the pole-distribution of the closed-loop system by 
satisfactory fault-tolerant controller and normal controller are illustrated in Figure 1, 2 and 3 
for normal case and the actuator faults case respectively. It can be concluded that the poles 
of closed-loop system driven by normal controller lie in the circular disk Φ(0.5,0.5) for 
normal case (see Fig. 1). However, in the actuator failure case, the closed-loop system with 
normal controller is unstable; some poles are out of the given circular disk (see Fig. 2). In the 
contrast, the performance by satisfactory fault-tolerant controller still satisfies the given pole 
index (see Fig. 3). Thus the poles of closed-loop systems lie in the given circular disk by the 
proposed method. 
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-0.1

0

0.1

0.2
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0.4

0.5

 

Fig. 1. Pole-distribution under satisfactory normal control without faults 

5. Conclusion 

Taking the guaranteed cost control in practical systems into account, the problem of 
satisfactory fault-tolerant controller design with quadratic D stabilizability and H∞ norm-
bound constraints is concerned by LMI approach for a class of satellite attitude systems 
subject to actuator failures. Attention has been paid to the design of state-feedback controller 
that guarantees, for all admissible value-bounded uncertainties existing in both the state and 
control input matrices as well as possible actuator failures, the closed-loop system to satisfy 
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the pre-specified quadratic D stabilizability index, meanwhile the H∞ index and cost 
function are restricted within the chosen upper bounds. So, the resulting closed-loop system 
can provide satisfactory stability, transient property, H∞ performance and quadratic cost 
performance despite of possible actuator faults. The similar design method can be extended 
to sensor failures case. 
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Fig. 2. Pole-distribution under satisfactory normal control with faults 
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Fig. 3. Pole-distribution under satisfactory fault-tolerant control with faults 
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next years in the research area.
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