-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

Robust mixed H2/Hoo filtering with regional pole assignment for

fliltle uncertain discrete-time systems

Author(s) Yang, F; Hung, YS

Citation leee Transactions On Circuits And Systems |: Fundamental
Theory And Applications, 2002, v. 49 n. 8, p. 1236-1241

Issued Date | 2002

URL http://hdl.handle.net/10722/42942

©2002 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Rights



https://core.ac.uk/display/37882249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1236 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 49, NO. 8, AUGUST 2002

10 [5] J. U. Vosper and M. Heima, “Comparison of single and dual element
8 - frequency control in a CClI based sinusoidal oscillat&igctron. Lett,
6 | vol. 32, no. 25, pp. 2293-2294, 1996.
[6] A. Fabre, O. Saaid, F. Fiest, and C. Boucheron, “Current controlled
4 bandpass filter based on translinear conveydggttron. Lett, vol. 31,
5 no. 20, pp. 1727-1728, 1995.
s 2]
572
> 4
-6 ~ . S . .
8 u Robust Mixed H,/H . Filtering With Regional Pole
) Assignment for Uncertain Discrete-Time Systems
-10
-12 4R gooq 16000 1600Q  800Q Fuwen Yang and Y. S. Hung
14 1vcC 8V |8V | 12v | 12v
- T T
0,0 0.1 0.2 0.3 04 Abstract—This paper deals with the robust mixed H, / H, filtering

time (ms) problem with regional pole assignment for linear uncertain discrete-time
systems in the presence of two sets of exogenous disturbance inputs. A gen-
Fig. 11. SPICE results obtained on the AD844-bdsedinusoidal oscillator eral framework for solving this problem is established using a linear matrix
described in Fig. 10. inequality (LMI) approach in conjunction with regional pole constraints,
and H, and H,, optimization characterization. Necessary and sufficient
conditions for the solvability of the problem are given in terms of a set of
still increased, the oscillation magnitude also increases but the sigfeasible LMIs. A numerical example is provided to illustrate the effective-
shape is less and less sinusoidal. WhenZhealue is decreased, the "€ss of the proposed design algorithm.
oscillation suddenly stops whe is equal to 807%2. Just before the  Index Terms—tinear matrix inequality, quadratically D-stable,
oscillator stops oscillating, the oscillation magnitude was still equal tegional pole assignment, robust mixedH ; / H.., filtering.
5.5 V. So, this experimental study confirms that the oscillator described
in Fig. 9 cannot stabilize the magnitude of its oscillation signal. The os-
cillation magnitude value is only controlled by the power supply. So,
an external nonlinear network will be required to stabilize the magni- State estimation of dynamic systems in the presence of both process
tude of the oscillation signal. and measurement noises is a very important problem in engineering ap-
2) Results Obtained With SPICEDnce again SPICE confirms the plications. One landmark design approach is the Kalman filtering (also
results obtained on the real device. Fig. 11 displays the response of¢hied H, filtering), which minimizes theHf. norm of the estimation
oscillator described in Fig. 10 for two values of resisto(R = 800  error under the assumption that the noise processes have known power
{2 andR = 1600 2) and two values of the power suppliés{c =8  spectral densities [1], [14]. In practice, however, the noise processes
V and Voo = 12 V) in the following sequence: & < t < 150 uS  often have unknown or uncertain spectral densities. This difficulty has
R =3800Q andVoo =8V, b) 150ps <t < 225us R = 160022 peen overcome by reformulating the estimation problem ifanfil-
andVeo =8V, ¢) 225us <t < 340ps R = 16002 andVoe = tering framework during the last few years [10], [13], [23].

|. INTRODUCTION

12 V and finally d) 340us < t < 400 s R = 800§} and Voo = H.. filtering offers robustness performance that is significantly
12 V._This figure confirms that the power supply alone determine thgstter thanH, filtering. But H.. filtering is so conservative as to
amplitude. lead to a large intolerable estimation error variance when the system
is driven by white noise signals [15]. The mixé#,/H . filtering
V. CONCLUSION problem that simultaneously considers the presence of two sets of

Using a nonlinear analysis, it was shown that OTA-based and CFO xogenous signals (i.e., the determln_lstlc dlsturt_)ance 'T‘p“t with
ounded energy and the stochastic disturbance input with known

b_ased_C oscillators hgve n_otthe same_t_)ehawor. Fothe OTA-based .o?étistics), was first introduced in [3] as an attempt to capture the
cillator, the OTA nonlinearity can stabilize the magnitude of the OSCIEeneﬁts of both burdl. and ... filters. It allows us to make trade-offs
lation signal whereas, for the CFOA-based oscillator, the CFOA no P 2 ot ’

linearity prevents the stabilization phenomenon. Experimental resu etwgen the performan_ce of i, filter and t_he performance of the
) . . ~ filter. However, unlike theH. and H . filtering problems that
confirm the theoretical analysis.
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have computable solutions, there is no compact solution to the mixeterex(k) € R" is the statey(k) € RP is the measured output,

So far, there have been several approaches to solve the mieith respect taf...-norm constraints), anek (k) € R™? represents
H,/H., filtering problem. In [3], Bernstein and Haddad firstanother combination of the states to be estimated (with respect to
transformed the mixedd,/H., filtering problem into an auxiliary H»-norm constraints)w (k) € RP' is a disturbance input with
technique gave the solution which led to an upper bound on thendv(k) € RP? is a zero-mean Gaussian white noise process with
H, filtering error variance by solving a set of coupled Riccati andnit covariance.A, C, By, B2, Dy, D2, Lo, and L, are known
Lyapunov equations. In [5], [24], ime domain game approackas real matrices with appropriate dimensions, wherasandAC' are
of coupled Riccati equations. Khargonelatral. [17] and Rotstein assume that A andAC are time-invariant of the form
et al. [21] have used a&onvex optimization approado obtain the
solutions involving affine symmetric matrix inequalities. [Hl
concerned with optimal performance (corresponding tafheerfor- He
mance) and robustness (corresponding taffhe performance) of the ) ) )
filter, and does not explicitly consider the transient property of the é¥hereH, H. and E are known constant matrices of appropriate di-
is related to the location of its poles. By constraining the filter’s poles
to lie inside a prescribed region of the open unit disk, the filter de- rr<r. 3
signhed would have the expected transient performance. It is worth em-

. . . . . 7fnwill be assumed that the initial stat¢0) is known, and without loss
with regional pole assignment has been extensively studied. In par [ . . _

of generality, we will taker(0) = 0.
output-feedbacl ., controllers that satisfy additional constraints on. )
. . . 1 NSAA. 1
the regional pole location, and the results were further extended in . L .
. . . Now consider the following filter for the system (1):

to uncertain systems described by a polytopic state-space model. In
was considered for deterministic continuous-time systems. It should ":‘(k,"" D= Ff(k) +Gy(k)
be pointed out that, comparing to the controller design case, the corre- Zoo (k) = ALOCf”(k) (4)
sponding filter design problem with pole assignment in a desired region Zo(k) = La(k)
and/orH ., filtering problem [9], [10], [12], [25], [26]. A primary re- wherei(k) € R" is the estimated staté,. (k) € R™ is an estimate
sult obtained for robust ., filtering with specialpole constraints has for -, (k), 52(k) € R™? is an estimate fot, (%), andF, G, Lo and
been given in [20]. This situation motivates our present investigation.,, are filter parameters to be determined. Notice that the filter structure
with regional pole assignment. The approach developed in this paper iDefine
different from that proposed in [2], where the Lagrange multiplier tech-
nigue was used. Instead, the linear matrix inequality (LMI) approach _
timality, they tend to offer more flexibility for combining several con-
straints. Specifically, we transform all the performance specificatioAsstate-space model describing the augmented system formed from the
into unified LMI formulations. Therefore, the overall problem remainsystem (1) and the filter (4) is expressed as

problem. z-o(k) € R™' represents a combination of the states to be estimated
minimization problem, and then by usingagrange multiplier bounded energy and stationary power, which belong&f®, o],
proposed to solve the mixell./ H.. filtering problem through a set perturbation matrices representing parameter uncertainties. We will
On the other hand, the mixeH-/H.. filter design is primarily
timation dynamics. As is well known, the dynamics of a linear systefi€nsions, an@l € R is a perturbation matrix which satisfies
phasizing that, in the past few years, the controller design probl
ular, Chilali and Gahinet [6] studied in detail the design of state- or Assumption 1: The system (1) is stable for all admissible perturba-
[2], the mixedH / H.. control problem with regional pole assignment
has gained much less attention, not to mention the case of the ibust
In this paper, we study the robust mixé&t / H . filtering problem  (4) is not dependent upon the parameter uncertainties.
. ) R ) me(,—[()} (5)
is adopted. Since LMIs intrinsically reflect constraints rather than op- 2(k)
convex, and the desired filter parameters can be directly obtained by

solving the LMIs using the existing LMI Toolbox. re(k+1) = (Ac + Ado)zc (k) + Baw(k) + Beov(k)
The notation used here is fairly standarddenotes the Kronecker Coc(k) = oo (k) = 200 (k) = Cocre(k) (6)
product.|| - ||, stands fo,-norm in Hardy spacelr(M ) represents ea(k) = za(k) — 5o(k) = Cox. (k)

the trace of matrix}/. In symmetric block matrices; is used as an
ellipsis for terms induced by symmetry.means the conjugate of
diag{M, M, ...} denotes a block diagonal matrix whose diagonal
blocks are given by/,, M-, etc. The dimension of an identity matrix

here

will be omitted in the analysis when no confusion can arise. A, = 40
GC F
Il. PROBLEM STATEMENT AA. = 'E 0]=:HTE.
GH,
Consider a linear discrete-time system with parameter uncertainty B
described by B, = (1)
GD,
B,
z(k+1)= (A+ AA)x(k) + Biw(k) + Bav(k) B =
y(k) = (C'+ ACYz(k) + Diw(k) + Dao(k) O GD-
Zoo(k) = Locx(k) Coo =[Low —Li]
Zz(l{) = Lg.’l?(k) Cg = [L_g —Lz]
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Let Proof: The results are obtained directly from [8], [19] by Schur
. complement. 1
{T%(Z) = Coo(2l — Ac — AA) 7 Bey (8) In the light of Definition 1, Lemmas 1 and 2, our filtering problem
To(z) = Co(z] — Ac — AA)™'Beo can be cast as the following optimization problem:

be, respectively, the transfer function from(%) to the error state min ~ Tr(Q) subjectto (10)—(12) (14)

es (k) (corresponding to theH..-norm consideration), and the X>0,Q>0,I" G, Lg, Lo

transfer function fromv() to the error state, (k) (corresponding to  The problem (14) is to find the filter (4) to minimize the upper bound

the H>-norm consideration). of the H, performance subject to thé.. performance constraint and

For the purpose of regional pole assignment, we now recall the cqRe poles constraints for the uncertain system (6), which will be referred
cept of LMI region proposed in [7]. An LMI region is any subset g as the robust mixed,/Ho. filtering problem with regional pole

inside the open unit disk that can be described as follows: assignment. Note that at this stage, such a problem is not a convex
. one yet, since the parameter uncertainties andAC are involved in
D= {>\ EC:fp(M)=L+IM+IM" < 0} (9)  the conditions (10)—(12), which make the problem more complicated.

Our goal in the next section will be to derimecessary and sufficient
whereL andAM are real matrices suchthef = L. The matrix-valued conditions, in the form of LMIs, for the solutions of the aforementioned
function fp () is called the characteristic function bf. As explained filter design problem.
in [7], with different choices of the matricdsand i/, the LMI region
D defined in (9) can be used to represent many kinds of popular pdle THE SOLUTION TO ROBUSTMIXED H:/H .. FILTERING PROBLEM
regions, such as disk, vertical strips, horizontal strips, conic sector, etc. WITH REGIONAL POLE ASSIGNMENT

Now, we are in the position to introduce the notiomofdratically
D-stablefor the uncertain system (6).

Definition 1 [7]: The uncertain system (6) is said to geadrati-
cally D-stableif there exists a symmetric positive-definite matfix
such that for all admissible perturbationsd and AC, the following
matrix inequality

In this section, we will give the solution to the robust mixeég/ H ..
filtering problem with regional pole assignment based on an LMI ap-
proach. The following lemma will be required for developing the main
results.

Lemma 3 [4], [27]: Let M = MT, H andE be real matrices of
appropriate dimensions, wifh satisfying (3), then
LOX+Mo(X(A+AAN+MY ((Ae + AAE)TX> <0 (10) M+ HTE+E'T"H" <0 (15)
is true, where the LMI regio is defined in (9). if and only if there exists a positive scakar> 0 such that

Remark 1: Ithas beenrevealed in[7] that, if (10) is satisfied, then all
poles of the uncertain time-invariant matrlx + A A, are constrained
to lie within the specified LMI regiorD. I

The following well-known lemmas for characterizinf>- and
H_.-norm constraints, are needed in the derivation of our main results. M H <ET

Lemma1l[11],[18]: Letthe constant > 0 be given. The uncertain H' —oI 0 <0 7)
system (6) is quadratically stable afffl.. (z)||- < -, if and only if B ’
there exists a symmetric positive-definite matAx such that for all cE 0 —el
admissible perturbations A andA (', the following matrix inequality:

M+:E'E+1HHE <0 (16)
)

or equivalently

Proof: The proof of the first conclusion can be found in [4],

-X 0 X(A.+AA) XB., [27]. The equivalence between (16) and (17) follows immediately
from Schur complement. O
0 -1 Cos <0 (11 Theorem 1: Let D be an arbitrary LMI region contained inside the
(A + AAC)TX cr -X 0 open unit disk and let (9) be its characteristic function. The problem
BT X 0 0 1 (14) is solvable, if and only if there exist symmetric po_s_,ltlve-deflnlte
¢ matricesR, S, @), and matrice$)., @2, @3, Q4 and positive scalars
is satisfied. IR and=3 such that the LMIs in (18)—(20), shown at the bottom of

Lemma 2 [8], [19]: Letthe constant > 0 be given. The uncertain the next page, are feasible, where

system (6) is quadratically stable afi@(z)|| < 3, if and only if SA SA
there exist symmetric positive-definite matricésand@ such thatfor Z:=L ® + M@
all admissible perturbations A andA (', the following three inequal- RA+ Q204+ Q1 RA+ Q2C
ities: sS4 SA ’
—i—ﬂ/[r @ (22)
-X X(A.+AA.) XB.:T RA+ Q0+ Q1 RAHQC
(Ac + AA. T x -X 0 <0 and the constant matricéd;, M. are obtained from the factorization
BLX 0 _I M = M M,. Here, M, and M- have full column rank. Moreover,
° ) if the LMIs (18)—(20) are feasible, the desired filter parameters can be
X C7 determined by
>0 (12)
Co Q| F=X3'Qi(S—R) "X
Q) <3 (13) G=X3'Q 22)

Lo@ = Qs(S—R)"'Xio
hold. L= Qu(S—R) 'Xi»
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where the matrixX;» comes from the factorizatioh — RS~ = Again define the change of filter parameters
X12Y5 < 0.
Proof: Factorizing the matri¥/ asiM = M M, and using the Q) := X1.FYLs
property of the Kronecker product thad C) @ (BD) = (A® B)(C® Q2 := X12G
. Ay (30)
D), (10) can be rewritten as Qs = L.YLS

v . T vT
LoX+Mo(XA)+ M o AX)" Qui= L2V S.
+ (M’f ® (XHC)) (I T)( M@ E.) By applying the congruence transformatiohag{I @ Ti, I, I}
S o to (24), diag{Ty, I, T\, I, I, I} to (25), diag{Ty. T1, I, I, I} to
+(M; ©E;)TT) (M1 @ (H. X)) <0. (23)  (26), diag{T, I} to (27) first, and then the congruence transforma-
. L tions diag{diag{I @ S, I}, I, I} to (24), diag{diag{S, I}, I,
By applying Lemma 3 to (23), (11) and (12) to eliminate the uncelr; . ,(s. I}, I, I, I} to (25), diag{diag{s, I},
tainty I', we obtain the following LMIs on the positive-definite matrixqu{s’ [} I I I} to (26), diag{diag{S, 1}, 1} to ’(27)’
A > 0 and the positive scalar parameteis <z, andsy as shownin 16y >0) follow directly from (24)—(27). Furthermore, if the LMIs
(24)—(27) at the bottom of the next page. (18)~(20) are feasible, they imply that
Recall that our goal is to derive the expressions of the filter parame-

ters from (24)—(27). To do this, we partitiod and X ! as _§ _S sl 7
0, ie, 0.
X- B )(12 . 571 f12 (28) |:_ _ < ) l.e |: I R} >
TUXL X T [V Ya

It follows directly fromX X ! = I that] — RS~ = X,Y75 < 0.
where the partitioning off and X ~' is compatible with that off.  Hence, one can always find square and nonsingtilarandY’ [22].

defined in (7). Therefore, (22) is obtained from (30), which concludes the proaf.
Now define It follows from Theorem 1 that, the problem (14) can now be suc-
g1 7 I R cessfully recast as the following convex optimization problem:
= v 0} =1, x7, (29) min THQ)
R>0,5>0,Q>0,Q1,Q2,Q3,Q4,51,52,53
which imply thatX T, = T, andT{ XT, = T'TT5. subject to (18)—(20) (31)
1 -
= ME® { R Hlsf clgz HJ MY ® {154
My [HYS (RH: + Qo Hy)'] —al 0 <0 (18)
M, @ [z1E 21 F] 0 —1 ]
r-S =S 0 SA SA SBy SH; 0 7
x* —R 0 RA+Q:C+Q: RA+Q.C RB\+Q:D, RH, +(Q:H; 0
o« —~I Leo — Qs Lo 0 0 0
ok % -S -S 0 0 B!
% % * * —R 0 0 e ET <0 (19)
* * * * * —~I 0 0
* * * * * * —eol 0
L * * * * * * * —eal |
r-S =S SA SA SBs SH, 0 7
* —R RA4+Q.C+Q: RA+Q,C RBy+Q:D; RH\+Q:H» 0
% -S -S 0 0 s3B!
% * -R 0 0 5ET | <0
* * * * -1 0 0
* % * % * —=31 0
L * % * * * * —egl |
-S =S Li-Qi7
-5 -R LY <0 (20)
Ly — Qs L -Q
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On the other hand, in view of (22), we make the linear transformation 0.1
on the state estimate AA=H,ITN=|0 [T[01 0 03]
F(t) = X122(t) (32) 0.2
and then obtain a new representation of the filter as follows: [ 07
B =|-2
Fk+1) = Qi(S— R)T'&(k) + Qay(k) 1
Zoo(k) = Q3(S — R)™'#(k) (33) N 1:
(k) = Qa(S — R) & (k).
) . By = 10.2
We can now see from (33) that, the filter parameters can be obtained
directly by solving the problem (31). L 0
Remark 2: The problem (31) is a standard LMI problem. It can be C=[1 -06 2]

solved efficiently via the interior point method [4], [11], [16]. Note that
LMIs (18)—(20) are affine in the scalar positive parameters:», and

¢3. Hence, they can be defined as LMI variables in order to increase D, =02
the possibility of the solutions and decrease conservatism with respect

AC =H,TN =0.1T[0.1 0 0.3]

. D> =0.3
to the perturbatiod’. I 2 7
Remark 3: LMI regions are often specified as the intersection of Lo=[1 0 05]
elementary regions, such as vertical strips, horizontal strips, disks or I=[1 0 2]

conic sectors. Given LMI region®+, D-, ..., Dy, the intersection
D = D, N D;nN---N Dx has characteristic functiofip(\) =
diag{fo,(N), fo, (M), ..., fo,(A)} and is still a LMI region [6], wherel is a perturbation matrix satisfying (3). We wish to design a

[7]. Therefore, the LMIS 0f p, (A), fn,(A), ..., fn,(X),whichcan filter such that the upper bourt(() of || 72 (z)||3 is minimized sub-
be derived from (9), must be feasible so that the corresponding LMI figct to|| 7 (2)||« < v = 15.6, and the poles are restricted in the inter-
the intersection of the regiord3,, D-, ..., Dy is solvable. This will section of the disk centered at 4, 0) with radiusr, the vertical strip
be illustrated by an example in the next section. ] Re(\) < —aq and the vertical strifRe(A) > —as,. wherea = 0,
r = 0.8, «; = —0.5, az = 0.5. The pole constraints for the disk cen-
IV. AN ILLUSTRATIVE EXAMPLE tered at {«, 0) with radiusr can be expressed in terms of LMI as (18)

N oo , . ith L =[ " %], M =[g Y], My =[1 0]andM; = [0 1], which
Consider linear uncertain discrete-time system described by (1) WYV\WI be de[n%téa as LMI&O Flc])r th(la vel['tical] strfpé(;\) <[ —cx]1 it can

—0.3 0.3 —06 be expressed as (18) with= 2ay, M =1, M; = 1 andM; = 1,

which will be denoted as LMI2. For the vertical stiife(\) > —as,

A= 0 0 0.1 it can also be expressed as (18) with= —2a, M = -1, M, = -1
0.2 0.8 04 andM, = 1, which will be denoted as LMI3.

LOX+Mo(XA)+M" 0 (AX)T M{ @ (XH.) e M] @ E!
My @ (HYX) —eid 0 <0 (24)
e1My @ E. 0 —e I ]
r-X 0 XA, XB., XH. 0 7
0 -1 Cs 0 0 0
ATx ¢ -x 0 0 =ET
o <0 (25)
BLX 0 0 —~I 0 0
H'X 0 0 0 —eI 0
L 0 0 E. 0 ((—
-X XA, XB, XH. 0 7
ATxX  —-Xx 0 0 =3ET
BLX 0 -I 0 0 |[<o (26)
HT'X 0 0 —eI 0
0 eE. 0 0 —esT ]
X 9]
>0 (27)
C: Q
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According to (31) and Remark 3, the desired filter design problem [7]
can transformed into the convex problem

0,500,008 @1 g ey ) o
subject to (19)—(20) and LMI1-LMI3 (34)
By using the Matlab LMI toolbox, the optimal solution to the convex [
problem (34) is given bifr(Q) = 2.0312 with the filter parameters
0.0743 0.2486 0.0435 1ol
F:=Qi(S—-R) "= |-04962 0.3117  0.0925 [11]
0.0369 0.6424 —0.1164
0.19287 [12]
G:=Qs= | -0.2653
~0.0626 ] [13]
Lo :=Qs(S—R) ' =[—2.0884 1.0063 0.6934] [14]
L,:=Q4(S—R) ' =[-0.5616 0.2581 —0.7350]. s

If v = 9.8, the optimal solution is given bffr(Q) = 3.0623. It
is evident from this example that the proposed LMIs allow much flexi-[16]
bility in making compromise between tiig, performance and thH .,
performance.

Furthermore, if no pole constraint is applied to design the filter, the17]
filter poles are changed frofm2486 + j0.3032, 0.2486 — j0.3032,
—0.2276 to 0.6549, 0.1333, —0.1515. We can see that one of the 18]
filter poles goes outside the region. The filter will not guarantee the
expected transient performance. This illustrates the necessity of poles
constraints. (19]

V. CONCLUSION [20]

In this paper, we have considered the robust miffed H ., filtering
problem with regional pole assignment for uncertain discrete-tim 21
systems. Necessary and sufficient conditions for the solvability o
the problem have been given. The design LMI approach has been
proposed to overcome the computational difficulty for the mixed[22]
H,/H.. filtering problem. The approach presented in this paper can
be extended to design robust filters for more complex systems such ?233
sampled-data systems and stochastic parameter systems. ]

[24]
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