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Fig. 11. SPICE results obtained on the AD844-basedLC sinusoidal oscillator
described in Fig. 10.

still increased, the oscillation magnitude also increases but the signal
shape is less and less sinusoidal. When theR-value is decreased, the
oscillation suddenly stops whenR is equal to 807
. Just before the
oscillator stops oscillating, the oscillation magnitude was still equal to
5.5 V. So, this experimental study confirms that the oscillator described
in Fig. 9 cannot stabilize the magnitude of its oscillation signal. The os-
cillation magnitude value is only controlled by the power supply. So,
an external nonlinear network will be required to stabilize the magni-
tude of the oscillation signal.

2) Results Obtained With SPICE:Once again SPICE confirms the
results obtained on the real device. Fig. 11 displays the response of the
oscillator described in Fig. 10 for two values of resistorR (R = 800


 andR = 1600 
) and two values of the power supplies (VCC = 8

V andVCC = 12 V) in the following sequence: a)0 < t < 150 �s
R = 800 
 andVCC = 8 V, b) 150�s< t < 225�sR = 1600

andVCC = 8 V, c) 225�s< t < 340�sR = 1600
 andVCC =

12 V and finally d) 340�s < t < 400�s R = 800
 andVCC =

12 V. This figure confirms that the power supply alone determine the
amplitude.

V. CONCLUSION

Using a nonlinear analysis, it was shown that OTA-based and CFOA-
basedLCoscillators have not the same behavior. For the OTA-based os-
cillator, the OTA nonlinearity can stabilize the magnitude of the oscil-
lation signal whereas, for the CFOA-based oscillator, the CFOA non-
linearity prevents the stabilization phenomenon. Experimental results
confirm the theoretical analysis.
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Robust Mixed Filtering With Regional Pole
Assignment for Uncertain Discrete-Time Systems

Fuwen Yang and Y. S. Hung

Abstract—This paper deals with the robust mixed filtering
problem with regional pole assignment for linear uncertain discrete-time
systems in the presence of two sets of exogenous disturbance inputs. A gen-
eral framework for solving this problem is established using a linear matrix
inequality (LMI) approach in conjunction with regional pole constraints,
and and optimization characterization. Necessary and sufficient
conditions for the solvability of the problem are given in terms of a set of
feasible LMIs. A numerical example is provided to illustrate the effective-
ness of the proposed design algorithm.

Index Terms—Linear matrix inequality, quadratically -stable,
regional pole assignment, robust mixed filtering.

I. INTRODUCTION

State estimation of dynamic systems in the presence of both process
and measurement noises is a very important problem in engineering ap-
plications. One landmark design approach is the Kalman filtering (also
calledH2 filtering), which minimizes theH2 norm of the estimation
error under the assumption that the noise processes have known power
spectral densities [1], [14]. In practice, however, the noise processes
often have unknown or uncertain spectral densities. This difficulty has
been overcome by reformulating the estimation problem in anH1 fil-
tering framework during the last few years [10], [13], [23].
H1 filtering offers robustness performance that is significantly

better thanH2 filtering. But H1 filtering is so conservative as to
lead to a large intolerable estimation error variance when the system
is driven by white noise signals [15]. The mixedH2=H1 filtering
problem that simultaneously considers the presence of two sets of
exogenous signals (i.e., the deterministic disturbance input with
bounded energy and the stochastic disturbance input with known
statistics), was first introduced in [3] as an attempt to capture the
benefits of both pureH2 andH1 filters. It allows us to make trade-offs
between the performance of theH2 filter and the performance of the
H1 filter. However, unlike theH2 andH1 filtering problems that
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have computable solutions, there is no compact solution to the mixed
problem.

So far, there have been several approaches to solve the mixed
H2=H1 filtering problem. In [3], Bernstein and Haddad first
transformed the mixedH2=H1 filtering problem into an auxiliary
minimization problem, and then by usingLagrange multiplier
technique, gave the solution which led to an upper bound on the
H2 filtering error variance by solving a set of coupled Riccati and
Lyapunov equations. In [5], [24], atime domain game approachwas
proposed to solve the mixedH2=H1 filtering problem through a set
of coupled Riccati equations. Khargonekaret al. [17] and Rotstein
et al. [21] have used aconvex optimization approachto obtain the
solutions involving affine symmetric matrix inequalities.

On the other hand, the mixedH2=H1 filter design is primarily
concerned with optimal performance (corresponding to theH2 perfor-
mance) and robustness (corresponding to theH1 performance) of the
filter, and does not explicitly consider the transient property of the es-
timation dynamics. As is well known, the dynamics of a linear system
is related to the location of its poles. By constraining the filter’s poles
to lie inside a prescribed region of the open unit disk, the filter de-
signed would have the expected transient performance. It is worth em-
phasizing that, in the past few years, the controller design problem
with regional pole assignment has been extensively studied. In partic-
ular, Chilali and Gahinet [6] studied in detail the design of state- or
output-feedbackH1 controllers that satisfy additional constraints on
the regional pole location, and the results were further extended in [7]
to uncertain systems described by a polytopic state-space model. In
[2], the mixedH2=H1 control problem with regional pole assignment
was considered for deterministic continuous-time systems. It should
be pointed out that, comparing to the controller design case, the corre-
sponding filter design problem with pole assignment in a desired region
has gained much less attention, not to mention the case of the robustH2

and/orH1 filtering problem [9], [10], [12], [25], [26]. A primary re-
sult obtained for robustH1 filtering with specialpole constraints has
been given in [20]. This situation motivates our present investigation.

In this paper, we study the robust mixedH2=H1 filtering problem
with regional pole assignment. The approach developed in this paper is
different from that proposed in [2], where the Lagrange multiplier tech-
nique was used. Instead, the linear matrix inequality (LMI) approach
is adopted. Since LMIs intrinsically reflect constraints rather than op-
timality, they tend to offer more flexibility for combining several con-
straints. Specifically, we transform all the performance specifications
into unified LMI formulations. Therefore, the overall problem remains
convex, and the desired filter parameters can be directly obtained by
solving the LMIs using the existing LMI Toolbox.

The notation used here is fairly standard.
 denotes the Kronecker
product.k � kp stands forHp-norm in Hardy space.Tr(M) represents
the trace of matrixM . In symmetric block matrices,� is used as an
ellipsis for terms induced by symmetry.� means the conjugate of�.
diagfM1; M2; . . .g denotes a block diagonal matrix whose diagonal
blocks are given byM1; M2, etc. The dimension of an identity matrix
will be omitted in the analysis when no confusion can arise.

II. PROBLEM STATEMENT

Consider a linear discrete-time system with parameter uncertainty
described by

x(k + 1) = (A+�A)x(k) +B1w(k) +B2v(k)

y(k) = (C +�C)x(k) +D1w(k) +D2v(k)

z1(k) = L1x(k)

z2(k) = L2x(k)

(1)

wherex(k) 2 Rn is the state,y(k) 2 Rp is the measured output,
z1(k) 2 Rm1 represents a combination of the states to be estimated
(with respect toH1-norm constraints), andz2(k) 2 Rm2 represents
another combination of the states to be estimated (with respect to
H2-norm constraints).w(k) 2 Rp1 is a disturbance input with
bounded energy and stationary power, which belongs toL2[0; 1],
andv(k) 2 Rp2 is a zero-mean Gaussian white noise process with
unit covariance.A, C, B1, B2, D1, D2, L1, andL2 are known
real matrices with appropriate dimensions, whereas�A and�C are
perturbation matrices representing parameter uncertainties. We will
assume that�A and�C are time-invariant of the form

�A

�C
=

H1

H2

�E (2)

whereH1, H2 andE are known constant matrices of appropriate di-
mensions, and� 2 Ri�j is a perturbation matrix which satisfies

�T� � I: (3)

It will be assumed that the initial statex(0) is known, and without loss
of generality, we will takex(0) = 0.

Assumption 1:The system (1) is stable for all admissible perturba-
tions�A. []

Now consider the following filter for the system (1):

x̂(k + 1) = F x̂(k) +Gy(k)

ẑ1(k) = L̂1x̂(k)

ẑ2(k) = L̂2x̂(k)

(4)

wherex̂(k) 2 Rn is the estimated state,ẑ1(k) 2 Rm1 is an estimate
for z1(k), ẑ2(k) 2 Rm2 is an estimate forz2(k), andF , G, L̂1 and
L̂2 are filter parameters to be determined. Notice that the filter structure
(4) is not dependent upon the parameter uncertainties.

Define

xe(k) =
x(k)

x̂(k)
: (5)

A state-space model describing the augmented system formed from the
system (1) and the filter (4) is expressed as

xe(k + 1) = (Ae +�Ae)xe(k) +Be1w(k) +Be2v(k)

e1(k) = z1(k)� ẑ1(k) = C1xe(k)

e2(k) = z2(k)� ẑ2(k) = C2xe(k)

(6)

where

Ae =
A 0

GC F

�Ae =
H1

GH2

� [E 0 ] =: He�Ee

Be1 =
B1

GD1

Be2 =
B2

GD2

C1 = [L1 �L̂1 ]

C2 = [L2 �L̂2 ] :

(7)
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Let

T1(z) = C1(zI �Ae ��Ae)
�1Be1

T2(z) = C2(zI � Ae ��Ae)
�1Be2

(8)

be, respectively, the transfer function fromw(k) to the error state
e1(k) (corresponding to theH1-norm consideration), and the
transfer function fromv(k) to the error statee2(k) (corresponding to
theH2-norm consideration).

For the purpose of regional pole assignment, we now recall the con-
cept of LMI region proposed in [7]. An LMI region is any subsetD
inside the open unit disk that can be described as follows:

D = � 2 C: fD(�) = L+ �M + �MT < 0 (9)

whereL andM are real matrices such thatLT = L. The matrix-valued
functionfD(�) is called the characteristic function ofD. As explained
in [7], with different choices of the matricesL andM , the LMI region
D defined in (9) can be used to represent many kinds of popular pole
regions, such as disk, vertical strips, horizontal strips, conic sector, etc.

Now, we are in the position to introduce the notion ofquadratically
D-stablefor the uncertain system (6).

Definition 1 [7]: The uncertain system (6) is said to bequadrati-
cally D-stableif there exists a symmetric positive-definite matrixX
such that for all admissible perturbations�A and�C, the following
matrix inequality

L
X+M
(X(Ae+�Ae))+M
T
 (Ae +�Ae)

TX < 0 (10)

is true, where the LMI regionD is defined in (9). []
Remark 1: It has been revealed in [7] that, if (10) is satisfied, then all

poles of the uncertain time-invariant matrixAe+�Ae are constrained
to lie within the specified LMI regionD. []

The following well-known lemmas for characterizingH2- and
H1-norm constraints, are needed in the derivation of our main results.

Lemma 1 [11], [18]: Let the constant
 > 0 be given. The uncertain
system (6) is quadratically stable andkT1(z)k1 < 
, if and only if
there exists a symmetric positive-definite matrixX such that for all
admissible perturbations�A and�C, the following matrix inequality:

�X 0 X(Ae +�Ae) XBe1

0 �
I C1 0

(Ae +�Ae)
TX CT

1
�X 0

BTe1X 0 0 �
I

< 0 (11)

is satisfied. []
Lemma 2 [8], [19]: Let the constant� > 0 be given. The uncertain

system (6) is quadratically stable andkT2(z)k2 < �, if and only if
there exist symmetric positive-definite matricesX andQ such that for
all admissible perturbations�A and�C, the following three inequal-
ities:

�X X(Ae +�Ae) XBe2

(Ae +�Ae)
TX �X 0

BTe2X 0 �I

< 0

X CT2

C2 Q
> 0 (12)

Tr(Q) <�2 (13)

hold.

Proof: The results are obtained directly from [8], [19] by Schur
complement. []

In the light of Definition 1, Lemmas 1 and 2, our filtering problem
can be cast as the following optimization problem:

min
X>0;Q>0; F;G; L̂ ; L̂

Tr(Q) subject to (10)–(12): (14)

The problem (14) is to find the filter (4) to minimize the upper bound
of theH2 performance subject to theH1 performance constraint and
the poles constraints for the uncertain system (6), which will be referred
to as the robust mixedH2=H1 filtering problem with regional pole
assignment. Note that at this stage, such a problem is not a convex
one yet, since the parameter uncertainties�A and�C are involved in
the conditions (10)–(12), which make the problem more complicated.
Our goal in the next section will be to derivenecessary and sufficient
conditions, in the form of LMIs, for the solutions of the aforementioned
filter design problem.

III. T HE SOLUTION TO ROBUSTMIXED H2=H1 FILTERING PROBLEM

WITH REGIONAL POLE ASSIGNMENT

In this section, we will give the solution to the robust mixedH2=H1
filtering problem with regional pole assignment based on an LMI ap-
proach. The following lemma will be required for developing the main
results.

Lemma 3 [4], [27]: Let M = MT , H andE be real matrices of
appropriate dimensions, with� satisfying (3), then

M +H�E +ET�THT < 0 (15)

if and only if there exists a positive scalar" > 0 such that

M + "ETE +
1

"
HHT < 0 (16)

or equivalently

M H "ET

HT �"I 0

"E 0 �"I

< 0: (17)

Proof: The proof of the first conclusion can be found in [4],
[27]. The equivalence between (16) and (17) follows immediately
from Schur complement.

Theorem 1: LetD be an arbitrary LMI region contained inside the
open unit disk and let (9) be its characteristic function. The problem
(14) is solvable, if and only if there exist symmetric positive-definite
matricesR; S; Q, and matricesQ1; Q2; Q3; Q4 and positive scalars
"1; "2, and"3 such that the LMIs in (18)–(20), shown at the bottom of
the next page, are feasible, where

� := L

S S

S R
+M 


SA SA

RA+Q2C +Q1 RA+Q2C

+MT 

SA SA

RA+Q2C +Q1 RA+Q2C

T

(21)

and the constant matricesM1; M2 are obtained from the factorization
M = MT

1 M2. Here,M1 andM2 have full column rank. Moreover,
if the LMIs (18)–(20) are feasible, the desired filter parameters can be
determined by

F = X�1
12
Q1(S �R)�1X12

G = X�1
12
Q2

L̂1 = Q3(S �R)�1X12

L̂2 = Q4(S �R)�1X12

(22)
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where the matrixX12 comes from the factorizationI � RS�1 =
X12Y

T

12 < 0.
Proof: Factorizing the matrixM asM =MT

1 M2 and using the
property of the Kronecker product that(AC)
(BD) = (A
B)(C

D), (10) can be rewritten as

L
X +M 
 (XAe) +M
T 
 (AeX)T

+ M
T
1 
 (XHe) (I 
 �)(M2 
 Ee)

+ (MT
2 
 E

T
e )(I 
 �T ) M1 
 (HT

e X) < 0: (23)

By applying Lemma 3 to (23), (11) and (12) to eliminate the uncer-
tainty�, we obtain the following LMIs on the positive-definite matrix
X > 0 and the positive scalar parameters"1, "2, and"3 as shown in
(24)–(27) at the bottom of the next page.

Recall that our goal is to derive the expressions of the filter parame-
ters from (24)–(27). To do this, we partitionX andX�1 as

X =
R X12

XT
12 X22

X
�1 =

S�1 Y12

Y T
12 Y22

(28)

where the partitioning ofX andX�1 is compatible with that ofAe
defined in (7).

Now define

T1 =
S�1 I

Y T
12 0

T2 =
I R

0 XT
12

(29)

which imply thatXT1 = T2 andT T1 XT1 = T T1 T2.

Again define the change of filter parameters

Q1 := X12FY
T
12S

Q2 := X12G

Q3 := L̂1Y
T
12S

Q4 := L̂2Y
T
12S:

(30)

By applying the congruence transformationsdiagfI 
 T1; I; Ig
to (24), diagfT1; I; T1; I; I; Ig to (25), diagfT1; T1; I; I; Ig to
(26), diagfT1; Ig to (27) first, and then the congruence transforma-
tions diagfdiagfI 
 S; Ig; I; Ig to (24), diagfdiagfS; Ig; I ,
diagfS; Ig; I; I; Ig to (25), diagfdiagfS; Ig,
diagfS; Ig; I; I; Ig to (26), diagfdiagfS; Ig; Ig to (27),
(18)–(20) follow directly from (24)–(27). Furthermore, if the LMIs
(18)–(20) are feasible, they imply that

�S �S

�S �R
< 0; i.e.,

S�1 I

I R
> 0:

It follows directly fromXX�1 = I thatI � RS�1 = X12Y
T
12 < 0.

Hence, one can always find square and nonsingularX12 andY12 [22].
Therefore, (22) is obtained from (30), which concludes the proof.

It follows from Theorem 1 that, the problem (14) can now be suc-
cessfully recast as the following convex optimization problem:

min
R>0;S>0;Q>0;Q ;Q ;Q ;Q ;" ;" ;"

Tr(Q)

subject to (18)–(20): (31)

� MT
1 


SH1

RH1 +Q2H2

MT
2 


"1E
T

"1E
T

M1 
 HT
1 S (RH1 +Q2H2)

T �"1I 0

M2 
 ["1E "1E] 0 �"1I

< 0 (18)

�S �S 0 SA SA SB1 SH1 0

� �R 0 RA+Q2C+Q1 RA+Q2C RB1+Q2D1 RH1 +Q2H2 0

� � �
I L1 �Q3 L1 0 0 0

� � � �S �S 0 0 "2E
T

� � � � �R 0 0 "2E
T

� � � � � �
I 0 0

� � � � � � �"2I 0

� � � � � � � �"2I

< 0 (19)

�S �S SA SA SB2 SH1 0

� �R RA+Q2C+Q1 RA+Q2C RB2+Q2D2 RH1+Q2H2 0

� � �S �S 0 0 "3E
T

� � � �R 0 0 "3E
T

� � � � �I 0 0

� � � � � �"3I 0

� � � � � � �"3I

< 0

�S �S LT2 �QT
4

�S �R LT2

L2 �Q4 L2 �Q

< 0 (20)
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On the other hand, in view of (22), we make the linear transformation
on the state estimate

~x(t) = X12x̂(t) (32)

and then obtain a new representation of the filter as follows:

~x(k + 1) = Q1(S �R)�1~x(k) +Q2y(k)

ẑ1(k) = Q3(S �R)�1~x(k)

ẑ2(k) = Q4(S �R)�1~x(k):

(33)

We can now see from (33) that, the filter parameters can be obtained
directly by solving the problem (31).

Remark 2: The problem (31) is a standard LMI problem. It can be
solved efficiently via the interior point method [4], [11], [16]. Note that
LMIs (18)–(20) are affine in the scalar positive parameters"1; "2, and
"3. Hence, they can be defined as LMI variables in order to increase
the possibility of the solutions and decrease conservatism with respect
to the perturbation�. []

Remark 3: LMI regions are often specified as the intersection of
elementary regions, such as vertical strips, horizontal strips, disks or
conic sectors. Given LMI regionsD1; D2; . . . ; DN , the intersection
D = D1 \ D2 \ � � � \ DN has characteristic functionfD(�) =
diagffD (�); fD (�); . . . ; fD (�)g and is still a LMI region [6],
[7]. Therefore, the LMIs offD (�); fD (�); . . . ; fD (�), which can
be derived from (9), must be feasible so that the corresponding LMI for
the intersection of the regionsD1; D2; . . . ; DN is solvable. This will
be illustrated by an example in the next section. []

IV. A N ILLUSTRATIVE EXAMPLE

Consider linear uncertain discrete-time system described by (1) with

A =

�0:3 0:3 �0:6

0 0 0:1

0:2 0:8 0:4

�A =H1�N =

0:1

0

0:2

� [ 0:1 0 0:3 ]

B1 =

0

�2

1

B2 =

�1

0:2

0

C = [ 1 �0:6 2 ]

�C =H2�N = 0:1� [ 0:1 0 0:3 ]

D1 =0:2

D2 =0:3

L1 = [ 1 0 0:5 ]

L2 = [ 1 0 2 ]

where� is a perturbation matrix satisfying (3). We wish to design a
filter such that the upper boundTr(Q) of kT2(z)k22 is minimized sub-
ject tokT1(z)k1 < 
 = 15:6, and the poles are restricted in the inter-
section of the disk centered at (��; 0) with radiusr, the vertical strip
Re(�) < ��1 and the vertical stripRe(�) > ��2;: where� = 0,
r = 0:8, �1 = �0:5, �2 = 0:5. The pole constraints for the disk cen-
tered at (��; 0) with radiusr can be expressed in terms of LMI as (18)
with L = [�r �

� �r
], M = [ 0 0

0 1
], M1 = [1 0] andM2 = [0 1], which

will be denoted as LMI1. For the vertical stripRe(�) < ��1, it can
be expressed as (18) withL = 2�1, M = 1; M1 = 1 andM2 = 1,
which will be denoted as LMI2. For the vertical stripRe(�) > ��2,
it can also be expressed as (18) withL = �2�2,M = �1,M1 = �1
andM2 = 1, which will be denoted as LMI3.

L
X +M 
 (XAe) +MT 
 (AeX)T MT
1 
 (XHe) "1M

T
2 
ET

e

M1 
 (HT
e X) �"1I 0

"1M2 
 Ee 0 �"1I

< 0 (24)

�X 0 XAe XBe1 XHe 0

0 �
I C1 0 0 0

AT
e X CT

1
�X 0 0 "2E

T
e

BT
e1X 0 0 �
I 0 0

HT
e X 0 0 0 �"2I 0

0 0 "2Ee 0 0 �"2I

< 0 (25)

�X XAe XBe2 XHe 0

AT
e X �X 0 0 "3E

T
e

BT
e2X 0 �I 0 0

HT
e X 0 0 �"3I 0

0 "3Ee 0 0 �"3I

< 0 (26)

X CT
2

C2 Q
> 0 (27)
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According to (31) and Remark 3, the desired filter design problem
can transformed into the convex problem

min
R>0;S>0;Q>0;Q ;Q ;Q ;Q ;" ;" ;" ;" ;"

Tr(Q)

subject to (19)–(20) and LMI1–LMI3: (34)

By using the Matlab LMI toolbox, the optimal solution to the convex
problem (34) is given byTr(Q) = 2:0312 with the filter parameters

F :=Q1(S �R)�1 =

0:0743 0:2486 0:0435

�0:4962 0:3117 0:0925

0:0369 0:6424 �0:1164

G :=Q2 =

0:1928

�0:2653

�0:0626

L1 :=Q3(S �R)�1 = [�2:0884 1:0063 0:6934 ]

L2 :=Q4(S �R)�1 = [�0:5616 0:2581 �0:7350 ] :

If 
 = 9:8, the optimal solution is given byTr(Q) = 3:0623. It
is evident from this example that the proposed LMIs allow much flexi-
bility in making compromise between theH2 performance and theH1
performance.

Furthermore, if no pole constraint is applied to design the filter, the
filter poles are changed from0:2486 + j0:3032, 0:2486 � j0:3032,
�0:2276 to 0:6549, 0:1333, �0:1515. We can see that one of the
filter poles goes outside the region. The filter will not guarantee the
expected transient performance. This illustrates the necessity of poles
constraints.

V. CONCLUSION

In this paper, we have considered the robust mixedH2=H1 filtering
problem with regional pole assignment for uncertain discrete-time
systems. Necessary and sufficient conditions for the solvability of
the problem have been given. The design LMI approach has been
proposed to overcome the computational difficulty for the mixed
H2=H1 filtering problem. The approach presented in this paper can
be extended to design robust filters for more complex systems such as
sampled-data systems and stochastic parameter systems.
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