Title	Robust mixed H2／Ho filtering with regional pole assignment for uncertain discrete－time systems
Author（s）	Yang，F；Hung，Ys
Citation	leee Transactions On Circuits And Systems I：Fundamental Theory And Applications，2002，v．49 n．8，p．1236－1241
Issued Date	2002
URL	http：／／hdI．handle．net／10722／42942
Rights	O2002 IEEE．Personal use of this material is permitted．However， permission to reprint／republish this material for advertising or promotional purposes or for creating new collective works for resale red redistribution to servers or lists，or to reuse any copprighted component of this work in other works must be obtained from the IEEE．

Fig. 11. SPICE results obtained on the AD844-based $L C$ sinusoidal oscillator described in Fig. 10.
still increased, the oscillation magnitude also increases but the signal shape is less and less sinusoidal. When the R-value is decreased, the oscillation suddenly stops when R is equal to 807Ω. Just before the oscillator stops oscillating, the oscillation magnitude was still equal to 5.5 V . So, this experimental study confirms that the oscillator described in Fig. 9 cannot stabilize the magnitude of its oscillation signal. The oscillation magnitude value is only controlled by the power supply. So, an external nonlinear network will be required to stabilize the magnitude of the oscillation signal.
2) Results Obtained With SPICE: Once again SPICE confirms the results obtained on the real device. Fig. 11 displays the response of the oscillator described in Fig. 10 for two values of resistor $R(R=800$ Ω and $R=1600 \Omega$) and two values of the power supplies ($V_{C C}=8$ V and $V_{C C}=12 \mathrm{~V}$) in the following sequence: a) $0<t<150 \mu \mathrm{~s}$ $R=800 \Omega$ and $V_{C C}=8 \mathrm{~V}$, b) $150 \mu \mathrm{~s}<t<225 \mu \mathrm{~s} R=1600 \Omega$ and $V_{C C}=8 \mathrm{~V}$, c) $225 \mu \mathrm{~s}<t<340 \mu \mathrm{~s} R=1600 \Omega$ and $V_{C C}=$ 12 V and finally d) $340 \mu \mathrm{~s}<t<400 \mu \mathrm{~s} R=800 \Omega$ and $V_{C C}=$ 12 V . This figure confirms that the power supply alone determine the amplitude.

V. Conclusion

Using a nonlinear analysis, it was shown that OTA-based and CFOAbased $L C$ oscillators have not the same behavior. For the OTA-based oscillator, the OTA nonlinearity can stabilize the magnitude of the oscillation signal whereas, for the CFOA-based oscillator, the CFOA nonlinearity prevents the stabilization phenomenon. Experimental results confirm the theoretical analysis.

REFERENCES

[1] P. A. Martinez, J. Sabadell, and C. Aldea, "Grounded resistor controlled sinusoidal oscillator using CFOAs," Electron. Lett., vol. 33, no. 5, pp. 346-348, 1997.
[2] T. Serrano-Gotarredona and B. Linares-Barranco, "7-decade tuning range CMOS OTA-C sinusoidal VCO," Electron. Lett., vol. 35, no. 17, pp. 1621-1622, 1998.
[3] M. T. Abuelma'atti and M. A. Al-Qahtani, "A new current-controlled multiphase oscillator using translinear current conveyors," IEEE Trans. Circuits Syst. II, vol. 45, pp. 881-885, July 1998.
[4] W. Kirano, J. Kesorn, and J. Wardkein, "Current controlled oscillator based on translinear conveyors," Electron. Lett., vol. 32, no. 15, pp. 1330-1331, 1996.
[5] J. U. Vosper and M. Heima, "Comparison of single and dual element frequency control in a CCII based sinusoidal oscillator," Electron. Lett., vol. 32, no. 25, pp. 2293-2294, 1996.
[6] A. Fabre, O. Saaid, F. Fiest, and C. Boucheron, "Current controlled bandpass filter based on translinear conveyors," Electron. Lett., vol. 31, no. 20, pp. 1727-1728, 1995.

Robust Mixed $\boldsymbol{H}_{2} / \boldsymbol{H}_{\infty}$ Filtering With Regional Pole Assignment for Uncertain Discrete-Time Systems

Fuwen Yang and Y. S. Hung

Abstract

This paper deals with the robust mixed H_{2} / H_{∞} filtering problem with regional pole assignment for linear uncertain discrete-time systems in the presence of two sets of exogenous disturbance inputs. A general framework for solving this problem is established using a linear matrix inequality (LMI) approach in conjunction with regional pole constraints, and H_{2} and H_{∞} optimization characterization. Necessary and sufficient conditions for the solvability of the problem are given in terms of a set of feasible LMIs. A numerical example is provided to illustrate the effectiveness of the proposed design algorithm.

Index Terms-Linear matrix inequality, quadratically D-stable, regional pole assignment, robust mixed $\boldsymbol{H}_{2} / \boldsymbol{H}_{\infty}$ filtering.

I. Introduction

State estimation of dynamic systems in the presence of both process and measurement noises is a very important problem in engineering applications. One landmark design approach is the Kalman filtering (also called H_{2} filtering), which minimizes the H_{2} norm of the estimation error under the assumption that the noise processes have known power spectral densities [1], [14]. In practice, however, the noise processes often have unknown or uncertain spectral densities. This difficulty has been overcome by reformulating the estimation problem in an H_{∞} filtering framework during the last few years [10], [13], [23].
H_{∞} filtering offers robustness performance that is significantly better than H_{2} filtering. But H_{∞} filtering is so conservative as to lead to a large intolerable estimation error variance when the system is driven by white noise signals [15]. The mixed H_{2} / H_{∞} filtering problem that simultaneously considers the presence of two sets of exogenous signals (i.e., the deterministic disturbance input with bounded energy and the stochastic disturbance input with known statistics), was first introduced in [3] as an attempt to capture the benefits of both pure H_{2} and H_{∞} filters. It allows us to make trade-offs between the performance of the H_{2} filter and the performance of the H_{∞} filter. However, unlike the H_{2} and H_{∞} filtering problems that

[^0]have computable solutions, there is no compact solution to the mixed problem.
So far, there have been several approaches to solve the mixed H_{2} / H_{∞} filtering problem. In [3], Bernstein and Haddad first transformed the mixed H_{2} / H_{∞} filtering problem into an auxiliary minimization problem, and then by using Lagrange multiplier technique, gave the solution which led to an upper bound on the H_{2} filtering error variance by solving a set of coupled Riccati and Lyapunov equations. In [5], [24], a time domain game approach was proposed to solve the mixed H_{2} / H_{∞} filtering problem through a set of coupled Riccati equations. Khargonekar et al. [17] and Rotstein et al. [21] have used a convex optimization approach to obtain the solutions involving affine symmetric matrix inequalities.
On the other hand, the mixed H_{2} / H_{∞} filter design is primarily concerned with optimal performance (corresponding to the H_{2} performance) and robustness (corresponding to the H_{∞} performance) of the filter, and does not explicitly consider the transient property of the estimation dynamics. As is well known, the dynamics of a linear system is related to the location of its poles. By constraining the filter's poles to lie inside a prescribed region of the open unit disk, the filter designed would have the expected transient performance. It is worth emphasizing that, in the past few years, the controller design problem with regional pole assignment has been extensively studied. In particular, Chilali and Gahinet [6] studied in detail the design of state- or output-feedback H_{∞} controllers that satisfy additional constraints on the regional pole location, and the results were further extended in [7] to uncertain systems described by a polytopic state-space model. In [2], the mixed $\mathrm{H}_{2} / \mathrm{H}_{\infty}$ control problem with regional pole assignment was considered for deterministic continuous-time systems. It should be pointed out that, comparing to the controller design case, the corresponding filter design problem with pole assignment in a desired region has gained much less attention, not to mention the case of the robust H_{2} and/or H_{∞} filtering problem [9], [10], [12], [25], [26]. A primary result obtained for robust H_{∞} filtering with special pole constraints has been given in [20]. This situation motivates our present investigation.
In this paper, we study the robust mixed H_{2} / H_{∞} filtering problem with regional pole assignment. The approach developed in this paper is different from that proposed in [2], where the Lagrange multiplier technique was used. Instead, the linear matrix inequality (LMI) approach is adopted. Since LMIs intrinsically reflect constraints rather than optimality, they tend to offer more flexibility for combining several constraints. Specifically, we transform all the performance specifications into unified LMI formulations. Therefore, the overall problem remains convex, and the desired filter parameters can be directly obtained by solving the LMIs using the existing LMI Toolbox.

The notation used here is fairly standard. \otimes denotes the Kronecker product. $\|\cdot\|_{p}$ stands for \mathbf{H}_{p}-norm in Hardy space. $\operatorname{Tr}(M)$ represents the trace of matrix M. In symmetric block matrices, $*$ is used as an ellipsis for terms induced by symmetry. $\bar{\lambda}$ means the conjugate of λ. $\operatorname{diag}\left\{M_{1}, M_{2}, \ldots\right\}$ denotes a block diagonal matrix whose diagonal blocks are given by M_{1}, M_{2}, etc. The dimension of an identity matrix will be omitted in the analysis when no confusion can arise.

II. Problem Statement

Consider a linear discrete-time system with parameter uncertainty described by

$$
\left\{\begin{array}{l}
x(k+1)=(A+\Delta A) x(k)+B_{1} w(k)+B_{2} v(k) \tag{1}\\
y(k)=(C+\Delta C) x(k)+D_{1} w(k)+D_{2} v(k) \\
z_{\infty}(k)=L_{\infty} x(k) \\
z_{2}(k)=L_{2} x(k)
\end{array}\right.
$$

where $x(k) \in R^{n}$ is the state, $y(k) \in R^{p}$ is the measured output, $z_{\infty}(k) \in R^{m 1}$ represents a combination of the states to be estimated (with respect to H_{∞}-norm constraints), and $z_{2}(k) \in R^{m 2}$ represents another combination of the states to be estimated (with respect to H_{2}-norm constraints). $w(k) \in R^{p 1}$ is a disturbance input with bounded energy and stationary power, which belongs to $L_{2}[0, \infty]$, and $v(k) \in R^{p 2}$ is a zero-mean Gaussian white noise process with unit covariance. $A, C, B_{1}, B_{2}, D_{1}, D_{2}, L_{\infty}$, and L_{2} are known real matrices with appropriate dimensions, whereas ΔA and ΔC are perturbation matrices representing parameter uncertainties. We will assume that ΔA and ΔC are time-invariant of the form

$$
\left[\begin{array}{l}
\Delta A \tag{2}\\
\Delta C
\end{array}\right]=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right] \Gamma E
$$

where H_{1}, H_{2} and E are known constant matrices of appropriate dimensions, and $\Gamma \in R^{i \times j}$ is a perturbation matrix which satisfies

$$
\begin{equation*}
\Gamma^{T} \Gamma \leq I \tag{3}
\end{equation*}
$$

It will be assumed that the initial state $x(0)$ is known, and without loss of generality, we will take $x(0)=0$.
Assumption 1: The system (1) is stable for all admissible perturbations ΔA.
Now consider the following filter for the system (1):

$$
\left\{\begin{array}{l}
\hat{x}(k+1)=F \hat{x}(k)+G y(k) \tag{4}\\
\hat{z}_{\infty}(k)=\hat{L}_{\infty} \hat{x}(k) \\
\hat{z}_{2}(k)=\hat{L}_{2} \hat{x}(k)
\end{array}\right.
$$

where $\hat{x}(k) \in R^{n}$ is the estimated state, $\hat{z}_{\infty}(k) \in R^{m 1}$ is an estimate for $z_{\infty}(k), \hat{z}_{2}(k) \in R^{m 2}$ is an estimate for $z_{2}(k)$, and F, G, \hat{L}_{∞} and \hat{L}_{2} are filter parameters to be determined. Notice that the filter structure (4) is not dependent upon the parameter uncertainties.

Define

$$
x_{e}(k)=\left[\begin{array}{c}
x(k) \tag{5}\\
\hat{x}(k)
\end{array}\right]
$$

A state-space model describing the augmented system formed from the system (1) and the filter (4) is expressed as

$$
\left\{\begin{array}{l}
x_{e}(k+1)=\left(A_{e}+\Delta A_{e}\right) x_{e}(k)+B_{e 1} w(k)+B_{e 2} v(k) \tag{6}\\
e_{\infty}(k)=z_{\infty}(k)-\hat{z}_{\infty}(k)=C_{\infty} x_{e}(k) \\
e_{2}(k)=z_{2}(k)-\hat{z}_{2}(k)=C_{2} x_{e}(k)
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
A_{e}=\left[\begin{array}{cc}
A & 0 \\
G C & F
\end{array}\right] \tag{7}\\
\Delta A_{e}=\left[\begin{array}{c}
H_{1} \\
G H_{2}
\end{array}\right] \Gamma\left[\begin{array}{ll}
E & 0
\end{array}\right]=: H_{e} \Gamma E_{e} \\
B_{e 1}=\left[\begin{array}{c}
B_{1} \\
G D_{1}
\end{array}\right] \\
B_{e 2}=\left[\begin{array}{c}
B_{2} \\
G D_{2}
\end{array}\right] \\
C_{\infty}=\left[L_{\infty}\right. \\
C_{2}=\left[\hat{L}_{\infty}\right]
\end{array}\right.
$$

Let

$$
\left\{\begin{array}{l}
T_{\infty}(z)=C_{\infty}\left(z I-A_{e}-\Delta A_{e}\right)^{-1} B_{e 1} \tag{8}\\
T_{2}(z)=C_{2}\left(z I-A_{e}-\Delta A_{e}\right)^{-1} B_{e 2}
\end{array}\right.
$$

be, respectively, the transfer function from $w(k)$ to the error state $e_{\infty}(k)$ (corresponding to the H_{∞}-norm consideration), and the transfer function from $v(k)$ to the error state $e_{2}(k)$ (corresponding to the H_{2}-norm consideration).

For the purpose of regional pole assignment, we now recall the concept of LMI region proposed in [7]. An LMI region is any subset D inside the open unit disk that can be described as follows:

$$
\begin{equation*}
D=\left\{\lambda \in C: f_{D}(\lambda)=L+\lambda M+\bar{\lambda} M^{T}<0\right\} \tag{9}
\end{equation*}
$$

where L and M are real matrices such that $L^{T}=L$. The matrix-valued function $f_{D}(\lambda)$ is called the characteristic function of D. As explained in [7], with different choices of the matrices L and M, the LMI region D defined in (9) can be used to represent many kinds of popular pole regions, such as disk, vertical strips, horizontal strips, conic sector, etc.

Now, we are in the position to introduce the notion of quadratically D-stable for the uncertain system (6).
Definition 1 [7]: The uncertain system (6) is said to be quadratically D-stable if there exists a symmetric positive-definite matrix X such that for all admissible perturbations ΔA and ΔC, the following matrix inequality
$L \otimes X+M \otimes\left(X\left(A_{e}+\Delta A_{e}\right)\right)+M^{T} \otimes\left(\left(A_{e}+\Delta A_{e}\right)^{T} X\right)<0$
is true, where the LMI region D is defined in (9).
[]
Remark 1: It has been revealed in [7] that, if (10) is satisfied, then all poles of the uncertain time-invariant matrix $A_{e}+\Delta A_{e}$ are constrained to lie within the specified LMI region D.

The following well-known lemmas for characterizing H_{2} - and H_{∞}-norm constraints, are needed in the derivation of our main results.

Lemma 1 [11], [18]: Let the constant $\gamma>0$ be given. The uncertain system (6) is quadratically stable and $\left\|T_{\infty}(z)\right\|_{\infty}<\gamma$, if and only if there exists a symmetric positive-definite matrix X such that for all admissible perturbations ΔA and ΔC, the following matrix inequality:

$$
\left[\begin{array}{cccc}
-X & 0 & X\left(A_{e}+\Delta A_{e}\right) & X B_{e 1} \tag{11}\\
0 & -\gamma I & C_{\infty} & 0 \\
\left(A_{e}+\Delta A_{e}\right)^{T} X & C_{\infty}^{T} & -X & 0 \\
B_{e 1}^{T} X & 0 & 0 & -\gamma I
\end{array}\right]<0
$$

is satisfied.
Lemma 2 [8], [19]: Let the constant $\beta>0$ be given. The uncertain system (6) is quadratically stable and $\left\|T_{2}(z)\right\|_{2}<\beta$, if and only if there exist symmetric positive-definite matrices X and Q such that for all admissible perturbations ΔA and ΔC, the following three inequalities:

$$
\begin{align*}
{\left[\begin{array}{ccc}
-X & X\left(A_{e}+\Delta A_{e}\right) & X B_{e 2} \\
\left(A_{e}+\Delta A_{e}\right)^{T} X & -X & 0 \\
B_{e 2}^{T} X & 0 & -I
\end{array}\right] } & <0 \\
& {\left[\begin{array}{cc}
X & C_{2}^{T} \\
C_{2} & Q
\end{array}\right] } \tag{12}
\end{align*}>0
$$

hold.

Proof: The results are obtained directly from [8], [19] by Schur complement.

In the light of Definition 1, Lemmas 1 and 2, our filtering problem can be cast as the following optimization problem:

$$
\begin{equation*}
\min _{X>0, Q>0, F, G, \hat{L}_{2}, \hat{L}_{\infty}} \operatorname{Tr}(Q) \quad \text { subject to (10)-(12). } \tag{14}
\end{equation*}
$$

The problem (14) is to find the filter (4) to minimize the upper bound of the H_{2} performance subject to the H_{∞} performance constraint and the poles constraints for the uncertain system (6), which will be referred to as the robust mixed H_{2} / H_{∞} filtering problem with regional pole assignment. Note that at this stage, such a problem is not a convex one yet, since the parameter uncertainties ΔA and ΔC are involved in the conditions (10)-(12), which make the problem more complicated. Our goal in the next section will be to derive necessary and sufficient conditions, in the form of LMIs, for the solutions of the aforementioned filter design problem.

III. The Solution to Robust Mixed H_{2} / H_{∞} Filtering Problem With Regional Pole Assignment

In this section, we will give the solution to the robust mixed H_{2} / H_{∞} filtering problem with regional pole assignment based on an LMI approach. The following lemma will be required for developing the main results.

Lemma 3 [4], [27]: Let $M=M^{T}, H$ and E be real matrices of appropriate dimensions, with Γ satisfying (3), then

$$
\begin{equation*}
M+H \Gamma E+E^{T} \Gamma^{T} H^{T}<0 \tag{15}
\end{equation*}
$$

if and only if there exists a positive scalar $\varepsilon>0$ such that

$$
\begin{equation*}
M+\varepsilon E^{T} E+\frac{1}{\varepsilon} H H^{T}<0 \tag{16}
\end{equation*}
$$

or equivalently

$$
\left[\begin{array}{ccc}
M & H & \varepsilon E^{T} \tag{17}\\
H^{T} & -\varepsilon I & 0 \\
\varepsilon E & 0 & -\varepsilon I
\end{array}\right]<0 .
$$

Proof: The proof of the first conclusion can be found in [4], [27]. The equivalence between (16) and (17) follows immediately from Schur complement.

Theorem 1: Let D be an arbitrary LMI region contained inside the open unit disk and let (9) be its characteristic function. The problem (14) is solvable, if and only if there exist symmetric positive-definite matrices R, S, Q, and matrices $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ and positive scalars $\varepsilon_{1}, \varepsilon_{2}$, and ε_{3} such that the LMIs in (18)-(20), shown at the bottom of the next page, are feasible, where

$$
\begin{array}{r}
\Xi:=L \otimes\left[\begin{array}{ll}
S & S \\
S & R
\end{array}\right]+M \otimes\left[\begin{array}{cc}
S A & S A \\
R A+Q_{2} C+Q_{1} & R A+Q_{2} C
\end{array}\right] \\
+M^{T} \otimes\left[\begin{array}{cc}
S A & S A \\
R A+Q_{2} C+Q_{1} & R A+Q_{2} C
\end{array}\right]^{T} \tag{21}
\end{array}
$$

and the constant matrices M_{1}, M_{2} are obtained from the factorization $M=M_{1}^{T} M_{2}$. Here, M_{1} and M_{2} have full column rank. Moreover, if the LMIs (18)-(20) are feasible, the desired filter parameters can be determined by

$$
\left\{\begin{array}{l}
F=X_{12}^{-1} Q_{1}(S-R)^{-1} X_{12} \tag{22}\\
G=X_{12}^{-1} Q_{2} \\
\hat{L}_{\infty}=Q_{3}(S-R)^{-1} X_{12} \\
\hat{L}_{2}=Q_{4}(S-R)^{-1} X_{12}
\end{array}\right.
$$

where the matrix X_{12} comes from the factorization $I-R S^{-1}=$ $X_{12} Y_{12}^{T}<0$.

Proof: Factorizing the matrix M as $M=M_{1}^{T} M_{2}$ and using the property of the Kronecker product that $(A C) \otimes(B D)=(A \otimes B)(C \otimes$ $D),(10)$ can be rewritten as

$$
\begin{align*}
& L \otimes X+M \otimes\left(X A_{e}\right)+M^{T} \otimes\left(A_{e} X\right)^{T} \\
& \quad+\left(M_{1}^{T} \otimes\left(X H_{e}\right)\right)(I \otimes \Gamma)\left(M_{2} \otimes E_{e}\right) \\
& \quad+\left(M_{2}^{T} \otimes E_{e}^{T}\right)\left(I \otimes \Gamma^{T}\right)\left(M_{1} \otimes\left(H_{e}^{T} X\right)\right)<0 . \tag{23}
\end{align*}
$$

By applying Lemma 3 to (23), (11) and (12) to eliminate the uncertainty Γ, we obtain the following LMIs on the positive-definite matrix $X>0$ and the positive scalar parameters $\varepsilon_{1}, \varepsilon_{2}$, and ε_{3} as shown in (24)-(27) at the bottom of the next page.

Recall that our goal is to derive the expressions of the filter parameters from (24)-(27). To do this, we partition X and X^{-1} as

$$
X=\left[\begin{array}{cc}
R & X_{12} \tag{28}\\
X_{12}^{T} & X_{22}
\end{array}\right] \quad X^{-1}=\left[\begin{array}{cc}
S^{-1} & Y_{12} \\
Y_{12}^{T} & Y_{22}
\end{array}\right]
$$

where the partitioning of X and X^{-1} is compatible with that of A_{e} defined in (7).

Now define

$$
T_{1}=\left[\begin{array}{cc}
S^{-1} & I \tag{29}\\
Y_{12}^{T} & 0
\end{array}\right] \quad T_{2}=\left[\begin{array}{cc}
I & R \\
0 & X_{12}^{T}
\end{array}\right]
$$

which imply that $X T_{1}=T_{2}$ and $T_{1}^{T} X T_{1}=T_{1}^{T} T_{2}$.

Again define the change of filter parameters

$$
\left\{\begin{array}{l}
Q_{1}:=X_{12} F Y_{12}^{T} S \tag{30}\\
Q_{2}:=X_{12} G \\
Q_{3}:=\hat{L}_{\infty} Y_{12}^{T} S \\
Q_{4}:=\hat{L}_{2} Y_{12}^{T} S
\end{array}\right.
$$

By applying the congruence transformations $\operatorname{diag}\left\{I \otimes T_{1}, I, I\right\}$ to (24), $\operatorname{diag}\left\{T_{1}, I, T_{1}, I, I, I\right\}$ to (25), $\operatorname{diag}\left\{T_{1}, T_{1}, I, I, I\right\}$ to (26), $\operatorname{diag}\left\{T_{1}, I\right\}$ to (27) first, and then the congruence transformations $\operatorname{diag}\{\operatorname{diag}\{I \otimes S, I\}, I, I\}$ to (24), $\operatorname{diag}\{\operatorname{diag}\{S, I\}, I$, $\operatorname{diag}\{S, I\}, I, I, I\} \quad$ to (25), $\operatorname{diag}\{\operatorname{diag}\{S, I\}$, $\operatorname{diag}\{S, I\}, I, I, I\}$ to (26), $\operatorname{diag}\{\operatorname{diag}\{S, I\}, I\}$ to (27), (18)-(20) follow directly from (24)-(27). Furthermore, if the LMIs (18)-(20) are feasible, they imply that

$$
\left[\begin{array}{cc}
-S & -S \\
-S & -R
\end{array}\right]<0, \quad \text { i.e., }\left[\begin{array}{cc}
S^{-1} & I \\
I & R
\end{array}\right]>0
$$

It follows directly from $X X^{-1}=I$ that $I-R S^{-1}=X_{12} Y_{12}^{T}<0$. Hence, one can always find square and nonsingular X_{12} and Y_{12} [22]. Therefore, (22) is obtained from (30), which concludes the proof.
It follows from Theorem 1 that, the problem (14) can now be successfully recast as the following convex optimization problem:
$\min _{R>0, S>0, Q>0, Q_{1}, Q_{2}, Q_{3}, Q_{4}, \varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}} \operatorname{Tr}(Q)$
subject to (18)-(20).

On the other hand, in view of (22), we make the linear transformation on the state estimate

$$
\begin{equation*}
\vec{x}(t)=X_{12} \hat{x}(t) \tag{32}
\end{equation*}
$$

and then obtain a new representation of the filter as follows:

$$
\left\{\begin{array}{l}
\vec{x}(k+1)=Q_{1}(S-R)^{-1} \vec{x}(k)+Q_{2} y(k) \tag{33}\\
\hat{z}_{\infty}(k)=Q_{3}(S-R)^{-1} \vec{x}(k) \\
\hat{z}_{2}(k)=Q_{4}(S-R)^{-1} \vec{x}(k)
\end{array}\right.
$$

We can now see from (33) that, the filter parameters can be obtained directly by solving the problem (31).

Remark 2: The problem (31) is a standard LMI problem. It can be solved efficiently via the interior point method [4], [11], [16]. Note that LMIs (18)-(20) are affine in the scalar positive parameters $\varepsilon_{1}, \varepsilon_{2}$, and ε_{3}. Hence, they can be defined as LMI variables in order to increase the possibility of the solutions and decrease conservatism with respect to the perturbation Γ.

Remark 3: LMI regions are often specified as the intersection of elementary regions, such as vertical strips, horizontal strips, disks or conic sectors. Given LMI regions $D_{1}, D_{2}, \ldots, D_{N}$, the intersection $D=D_{1} \cap D_{2} \cap \cdots \cap D_{N}$ has characteristic function $f_{D}(\lambda)=$ $\operatorname{diag}\left\{f_{D_{1}}(\lambda), f_{D_{2}}(\lambda), \ldots, f_{D_{N}}(\lambda)\right\}$ and is still a LMI region [6], [7]. Therefore, the LMIs of $f_{D_{1}}(\lambda), f_{D_{2}}(\lambda), \ldots, f_{D_{N}}(\lambda)$, which can be derived from (9), must be feasible so that the corresponding LMI for the intersection of the regions $D_{1}, D_{2}, \ldots, D_{N}$ is solvable. This will be illustrated by an example in the next section.

IV. An Illustrative Example

Consider linear uncertain discrete-time system described by (1) with

$$
A=\left[\begin{array}{ccr}
-0.3 & 0.3 & -0.6 \\
0 & 0 & 0.1 \\
0.2 & 0.8 & 0.4
\end{array}\right]
$$

$$
\begin{aligned}
\Delta A & =H_{1} \Gamma N=\left[\begin{array}{c}
0.1 \\
0 \\
0.2
\end{array}\right] \Gamma\left[\begin{array}{lll}
0.1 & 0 & 0.3
\end{array}\right] \\
B_{1} & =\left[\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right] \\
B_{2} & =\left[\begin{array}{r}
-1 \\
0.2 \\
0
\end{array}\right] \\
C & =\left[\begin{array}{ll}
1 & -0.6
\end{array}\right] \\
\Delta C & =H_{2} \Gamma N=0.1 \Gamma\left[\begin{array}{lll}
0.1 & 0 & 0.3
\end{array}\right] \\
D_{1} & =0.2 \\
D_{2} & =0.3 \\
L_{\infty} & =\left[\begin{array}{lll}
1 & 0 & 0.5
\end{array}\right] \\
L_{2} & =\left[\begin{array}{lll}
1 & 0 & 2
\end{array}\right]
\end{aligned}
$$

where Γ is a perturbation matrix satisfying (3). We wish to design a filter such that the upper bound $\operatorname{Tr}(Q)$ of $\left\|T_{2}(z)\right\|_{2}^{2}$ is minimized subject to $\left\|T_{\infty}(z)\right\|_{\infty}<\gamma=15.6$, and the poles are restricted in the intersection of the disk centered at $(-\alpha, 0)$ with radius r, the vertical strip $\operatorname{Re}(\lambda)<-\alpha_{1}$ and the vertical strip $\operatorname{Re}(\lambda)>-\alpha_{2, .}$ where $\alpha=0$, $r=0.8, \alpha_{1}=-0.5, \alpha_{2}=0.5$. The pole constraints for the disk centered at $(-\alpha, 0)$ with radius r can be expressed in terms of LMI as (18) with $L=\left[\begin{array}{cc}-r & \alpha \\ \alpha & -r\end{array}\right], M=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], M_{1}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $M_{2}=\left[\begin{array}{ll}0 & 1\end{array}\right]$, which will be denoted as LMI1. For the vertical strip $\operatorname{Re}(\lambda)<-\alpha_{1}$, it can be expressed as (18) with $L=2 \alpha_{1}, M=1, M_{1}=1$ and $M_{2}=1$, which will be denoted as LMI2. For the vertical strip $\operatorname{Re}(\lambda)>-\alpha_{2}$, it can also be expressed as (18) with $L=-2 \alpha_{2}, M=-1, M_{1}=-1$ and $M_{2}=1$, which will be denoted as LMI3.

$$
\begin{align*}
& {\left[\begin{array}{ccc}
L \otimes X+M \otimes\left(X A_{e}\right)+M^{T} \otimes\left(A_{e} X\right)^{T} & M_{1}^{T} \otimes\left(X H_{e}\right) & \varepsilon_{1} M_{2}^{T} \otimes E_{e}^{T} \\
M_{1} \otimes\left(H_{e}^{T} X\right) & -\varepsilon_{1} I & 0 \\
\varepsilon_{1} M_{2} \otimes E_{e} & 0 & -\varepsilon_{1} I
\end{array}\right]<0} \tag{24}\\
& {\left[\begin{array}{cccccc}
-X & 0 & X A_{e} & X B_{e 1} & X H_{e} & 0 \\
0 & -\gamma I & C_{\infty} & 0 & 0 & 0 \\
A_{e}^{T} X & C_{\infty}^{T} & -X & 0 & 0 & \varepsilon_{2} E_{e}^{T} \\
B_{e 1}^{T} X & 0 & 0 & -\gamma I & 0 & 0 \\
H_{e}^{T} X & 0 & 0 & 0 & -\varepsilon_{2} I & 0 \\
0 & 0 & \varepsilon_{2} E_{e} & 0 & 0 & -\varepsilon_{2} I
\end{array}\right]<0} \tag{25}\\
& {\left[\begin{array}{ccccc}
-X & X A_{e} & X B_{e 2} & X H_{e} & 0 \\
A_{e}^{T} X & -X & 0 & 0 & \varepsilon_{3} E_{e}^{T} \\
B_{e 2}^{T} X & 0 & -I & 0 & 0 \\
H_{e}^{T} X & 0 & 0 & -\varepsilon_{3} I & 0 \\
0 & \varepsilon_{3} E_{e} & 0 & 0 & -\varepsilon_{3} I
\end{array}\right]<0} \tag{26}\\
& {\left[\begin{array}{cc}
X & C_{2}^{T} \\
C_{2} & Q
\end{array}\right]>0} \tag{27}
\end{align*}
$$

According to (31) and Remark 3, the desired filter design problem can transformed into the convex problem

By using the Matlab LMI toolbox, the optimal solution to the convex problem (34) is given by $\operatorname{Tr}(Q)=2.0312$ with the filter parameters

$$
\begin{aligned}
& \bar{F}:=Q_{1}(S-R)^{-1}=\left[\begin{array}{rrr}
0.0743 & 0.2486 & 0.0435 \\
-0.4962 & 0.3117 & 0.0925 \\
0.0369 & 0.6424 & -0.1164
\end{array}\right] \\
& \bar{G}:=Q_{2}=\left[\begin{array}{r}
0.1928 \\
-0.2653 \\
-0.0626
\end{array}\right] \\
& \bar{L}_{\infty}:=Q_{3}(S-R)^{-1}=\left[\begin{array}{lll}
-2.0884 & 1.0063 & 0.6934
\end{array}\right] \\
& \bar{L}_{2}:=Q_{4}(S-R)^{-1}=\left[\begin{array}{lll}
-0.5616 & 0.2581 & -0.7350
\end{array}\right] .
\end{aligned}
$$

If $\gamma=9.8$, the optimal solution is given by $\operatorname{Tr}(Q)=3.0623$. It is evident from this example that the proposed LMIs allow much flexibility in making compromise between the H_{2} performance and the H_{∞} performance.
Furthermore, if no pole constraint is applied to design the filter, the filter poles are changed from $0.2486+j 0.3032,0.2486-j 0.3032$, -0.2276 to $0.6549,0.1333,-0.1515$. We can see that one of the filter poles goes outside the region. The filter will not guarantee the expected transient performance. This illustrates the necessity of poles constraints.

V. Conclusion

In this paper, we have considered the robust mixed $\mathrm{H}_{2} / H_{\infty}$ filtering problem with regional pole assignment for uncertain discrete-time systems. Necessary and sufficient conditions for the solvability of the problem have been given. The design LMI approach has been proposed to overcome the computational difficulty for the mixed H_{2} / H_{∞} filtering problem. The approach presented in this paper can be extended to design robust filters for more complex systems such as sampled-data systems and stochastic parameter systems.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their valuable suggestions and comments.

REFERENCES

[1] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall, 1979.
[2] R. Bambang, E. Shimemura, and K. Uchida, "Mixed $\boldsymbol{H}_{2} / \boldsymbol{H}_{\infty}$ control with pole placement in a class of regions," Optim. Contr. Appl. Methods, vol. 15, no. 3, pp. 151-173, 1994.
[3] D. S. Bernstein and W. M. Haddad, "Steady-state Kalman filtering with an \boldsymbol{H}_{∞} error bounded," Syst. Contr. Lett., vol. 12, no. 1, pp. 9-16, 1989.
[4] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, "Linear matrix inequalities in system and control theory," in Studies in Applied Mathematics. Philadelphia, PA: SIAM, 1994.
[5] X. Chen and K. Zhou, "Multiobjective filtering design," in Proc. IEEE Canadian Conf. Electrical Computer Engineering, Alberta, Canada, 1999, pp. 708-713.
[6] M. Chilali and P. Gahinet, " \boldsymbol{H}_{∞} design with pole placement constraints: An LMI approach," IEEE Trans. Automat. Contr., vol. 41, pp. 358-367, Mar. 1996.
[7] M. Chilali, P. Gahinet, and P. Apkarian, "Robust pole placement in LMI regions," IEEE Trans. Automat. Contr., vol. 44, pp. 2257-2270, Dec. 1999.
[8] M. C. de Oliveira, J. C. Geromel, and J. Bernussou, "An LMI optimization approach to multiobjective controller design for discrete-time systems," in Proc. IEEE Conf. Decision Control, Phoenix, AZ, 1999, pp. 3611-3616.
[9] C. E. de Souza and U. Shaked, "Robust \boldsymbol{H}_{2} filtering for uncertain systems with measurable inputs," IEEE Trans. Signal Processing, vol. 47, pp. 2286-2292, Aug. 1999.
[10] C. E. de Souza, U. Shaked, and M. Fu, "Robust \boldsymbol{H}_{∞} filtering for continuous time varying uncertain systems with deterministic input signals," IEEE Trans. Signal Processing, vol. 43, pp. 709-719, Mar. 1995.
[11] P. Gahinet and P. Apkarian, "A linear matrix inequality approach to \boldsymbol{H}_{∞} control," Int. J. Robust Nonlinear Contr., vol. 4, no. 4, pp. 421-448, 1994.
[12] J. C. Geromel and M. C. De Oliveira, " $\boldsymbol{H}_{2} / \boldsymbol{H}_{\infty}$ robust filtering for convex bounded uncertain systems," IEEE Trans. Automat. Contr., vol. 46, pp. 100-107, Jan. 2001.
[13] Y. S. Hung, "A model matching approach to \boldsymbol{H}_{∞} filtering," Proc. IEE Control Theory and Applications, vol. 140, no. 2, pp. 133-139, 1993.
[14] Y. S. Hung and H. T. Ho, "A Kalman filter approach to direct depth estimation incorporating surface structure," IEEE Trans. Pattern Anal. Machine Intell., vol. 21, pp. 570-575, June 1999.
[15] Y. S. Hung and F. Yang, " \boldsymbol{H}_{∞} versus Kalman filtering for depth estimation," in Proc. Int. Conf. Signal Processing and Intelligent System, Guangzhou, China, 1999, pp. 276-281.
[16] T. Iwasaki and R. E. Skelton, "All controllers for the general \boldsymbol{H}_{∞} control problem: LMI existence conditions and state space formulas," $A u$ tomatica, vol. 30, no. 8, pp. 1307-1317, 1994.
[17] P. P. Khargonekar, M. A. Rotea, and E. Baeyens, "Mixed $\boldsymbol{H}_{2} / \boldsymbol{H}_{\infty}$ filtering," Int. J. Robust Nonlinear Contr., vol. 6, no. 4, pp. 313-330, 1996.
[18] H. Li and M. Fu, "A linear matrix inequality approach to robust \boldsymbol{H}_{∞}-filtering," IEEE Trans. Signal Processing, vol. 45, pp. 2338-2350, Sept. 1997.
[19] I. Masubuchi, A. Ohara, and N. Suda, "LMI-based controller synthesis: A unified formulation and solution," Int. J. Robust Nonlinear Contr., vol. 8, no. 8, pp. 669-686, 1998.
[20] R. M. Palhares and P. L. D. Peres, "Robust \boldsymbol{H}_{∞} filtering design with pole constraints for discrete-time systems: An LMI approach," in Proc. American Control Conf., San Diego, CA, 1999, pp. 4418-4422.
[21] H. Rotstein, M. Sznaier, and M. Idan, "Mixed $\boldsymbol{H}_{2} / \boldsymbol{H}_{\infty}$ filtering theory and an aerospace application," Int. J. Robust Nonlinear Contr., vol. 6, no. 4, pp. 347-366, 1996.
[22] C. Scherer, P. Gahient, and M. Chilali, "Multiobjective output-feedback control via LMI optimization," IEEE Trans. Automat. Contr., vol. 42, pp. 896-911, July 1997.
[23] U. Shaked and Y. Theodor, " \boldsymbol{H}_{∞}-optimal estimation: A tutorial," in Proc. IEEE Conf. Decision Control, Tucson, AZ, 1992, pp. 2278-2286.
[24] Y. Theodor and U. Shaked, "A dynamic game approach to mixed $\boldsymbol{H}_{2} / \boldsymbol{H}_{\infty}$ estimation," Int. J. Robust Nonlinear Contr., vol. 6, no. 4, pp. 331-345, 1996.
[25] Z. Wang and B. Huang, "Robust $\boldsymbol{H}_{2} / \boldsymbol{H}_{\infty}$ filtering for linear systems with error variance constraints," IEEE Trans. Signal Processing, vol. 48, pp. 2463-2467, Aug. 2000.
[26] Z. Wang and H. Shu, "Variance-constrained multiobjective filtering for uncertain continuous stochastic systems," Int. J. Syst. Sci., vol. 31, no. 9, pp. 1175-1183, 2000.
[27] L. Xie, M. Fu, and C. E. de Souza, " \boldsymbol{H}_{∞} control and quadratic stabilization of systems with parameter uncertainty via output feedback," IEEE Trans. Automat. Contr., vol. 37, pp. 1253-1256, Aug. 1992.
[28] L. Xie and Y. C. Soh, "Robust Kalman filtering for uncertain systems," Syst. Contr. Lett., vol. 22, pp. 123-129, 1994.

[^0]: Manuscript received August 29, 2001; revised January 20, 2002. This work was supported in part by the Research Grants Council of Hong Kong under Grant HKU7043/98E, in part by the National Science Foundation of China under Grant 69974010, in part by the Foundation for University Key Teacher by the Ministry of Education of China, and in part by the Fujian Provincial Natural Science Foundation. The work of F. Yang was performed while he visited the Department of Electrical and Electronic Engineering, The University of Hong Kong. This paper was recommended by Associate Editor G. Chen.
 F. Yang is with the Department of Electrical Engineering, Fuzhou University, Fuzhou, Fujian 350002, China (e-mail: fwyang@fzu.edu.cn).
 Y. S. Hung is with the Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong (e-mail: yshung @eee.hku.hk).

 Publisher Item Identifier 10.1109/TCSI.2002.801267.

