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Error-Constrained Filtering for a Class of Nonlinear
Time-Varying Delay Systems With Non-Gaussian Noises

Guoliang Wei, Zidong Wang, and Bo Shen

Abstract—In this technical note, the quadratic error-constrained fil-
tering problem is formulated and investigated for discrete time-varying
nonlinear systems with state delays and non-Gaussian noises. Both the
Lipschitz-like and ellipsoid-bounded nonlinearities are considered. The
non-Gaussian noises are assumed to be unknown, bounded, and confined
to specified ellipsoidal sets. The aim of the addressed filtering problem is
to develop a recursive algorithm based on the semi-definite programme
method such that, for the admissible time-delays, nonlinear parameters
and external bounded noise disturbances, the quadratic estimation error
is not more than a certain optimized upper bound at every time step k.
The filter parameters are characterized in terms of the solution to a convex
optimization problem that can be easily solved by using the semi-definite
programme method. A simulation example is exploited to illustrate the
effectiveness of the proposed design procedures.

Index Terms—Non-Gaussian noises, nonlinear filtering, quadratic error
constraints, semi-definite programme method, time delays, time-varying
systems.

1. INTRODUCTION

Filtering problem is a widely studied research topic in the areas of
control and signal processing. The main objective of the filtering prob-
lems is to estimate the unavailable state information or remove all kinds
of noise signals from the noisy measurement information. During the
past decades, various filtering problems have been extensively investi-
gated and a large amount of results have been available, see, e.g., [6],
[17], [21], [24], [29], [33], [34]. According to the types of noise signals
and the performance criteria, several important filtering approaches
have been developed in the literature including the Kalman filtering
[12], [14], [15], [31], [33], Hw filtering [4], [5], [7], [21], [29], [30],
[32], optimal filtering [1]-[3] and variance-constrained filtering [11],
[24], [35].

As is well known, time delays are often encountered in many prac-
tical systems, such as engineering system, network system, nuclear
reactor, biological system, chemical system and electrical networks
system. Therefore, the past few decades have witnessed significant
progress on filtering and control for linear/nonlinear systems with
various types of delays, and a great deal of literature has appeared on
the general topic of time-delay systems, see, e.g. [5], [7], [12], [17],
[27]. In particular, the filtering problem has been considered for the
discrete time-varying systems with time-delays for its popular appli-
cations in digital signal processing, and some results have recently
been published, see, e.g., [12].
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Non-Gaussian noises and nonlinearities exist universally in nature.
First, the non-Gaussian noises are a kind of more general signals
than the widely studied Gaussian noises [9], [10], [18]-[20], [26],
[35]. Among others, the bounded noises are an important type of
non-Gaussian noises that have stirred considerable research attention.
In particular, the filtering problems have been extensively consid-
ered for systems with bounded noises, see, e.g., [8], [13], [23]. The
nonlinear filtering problems, on the other hand, have been attracting
constant research interests from many researchers in the past few
decades, see [4], [15], [22], [27], [28] for some examples. Unfor-
tunately, when the nonlinearities and non-Gaussian noises come
together for time-varying systems with time-delays, the filtering
problem has become quite involved due primarily to the degree of
mathematical complexity where existing filtering techniques cannot
be simply applied, despite its significance in engineering applications.
For example, the Kalman filtering and variance-constrained filtering
methods are based on the statistical assumptions on Gaussian-type
noises, hence are no longer effective for systems with non-Gaussian
noise disturbances. The H, filter has proven to be less sensitive to
non-Gaussian noise. However, the traditional H . filtering approach
does not take into account the estimation error bound that is an
important performance index, and therefore H ., filtering may lead to
unnecessarily large conservatism in certain situations. It is, therefore,
the aim of this technical note to develop a novel approach to handling
the recursive filtering problems for nonlinear time-delay time-varying
systems with bounded noises by a numerically appealing algorithm.

In this technical note, we introduce the quadratic error-constrained
filtering problem for discrete time-varying nonlinear systems with state
delays and non-Gaussian noises, and aim to develop an effective recur-
sive filtering algorithm. The main contributions of this technical note
can be summarized as follows: 1) both the Lipschitz-like and ellipsoid-
bounded nonlinearities are investigated for the addressed time-varying
delay systems; 2) the quadratic estimation error is enforced on the re-
cursive process at every time step; and 3) a semi-definite programme
method is developed to deal with the recursive filtering problem for
online applications. The filter parameters are characterized in terms
of the solution to a convex optimization problem that can be easily
solved by using the semi-definite programme method. A simulation ex-
ample is exploited to illustrate the effectiveness of the proposed design
procedures.

Notation: In this technical note, R™, R™*™, ZT denote, respec-
tively, the n-dimensional Euclidean space, the set of all n X m real
matrices, the set of all positive integers. | - | refers to the Euclidean
norm in R™. I denotes the identity matrix of compatible dimension.
The notation X' > Y (respectively, X > Y), where X and Y are sym-
metric matrices, means that X — Y is positive semi-definite (respec-
tively, positive definite). For a matrix M, M and M ™" represent its
transpose and inverse, respectively. If M is a square matrix, trace( M)
denotes the trace of M. The shorthand diag{ M, M>,..., M, } de-
notes a block diagonal matrix with diagonal blocks being the matrices
My, Ms, ..., M,. Matrices, if they are not explicitly stated, are as-
sumed to have compatible dimensions.

II. PROBLEM FORMULATION

Consider the following discrete time-varying nonlinear systems with
time-delays and bounded noises:

2(k+1)=f(x(k)+g(x(k—71))+ Dk)w(k) (e8]
y(k) =C(k)x(k) + E(k)w(k) )
w(k)=¢, Vk=-7,---,0
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where z(k) € R" is the state, y(k) € R? is the measurement output,
7 € Z is a constant delay. f(-) and g(-) are nonlinear functions with
7(0) = 0 and g(0) = 0. For a given time step k, C(k), D(k) and
E(k) are constant matrices with appropriate dimensions. w(k) is the
disturbance noise, which is unknown, bounded and confined to the fol-
lowing specified ellipsoidal sets:

U (w(k)) = {w(k‘) W (B)S ™ (k)w(k) < 1} 3)

where S (k) is a known positive-definite matrix sequence with com-
patible dimensions, which denotes the “shape” of the ellipsoids with O
being the center of the ellipsoids. The initial state vector ¢ satisfies the
following quadratic error constraints:

coeq = (0 — ¢p) (o —oy)" <o )

where ¢ is the given estimate of ¢, eq is the initial error between ¢
and ¢ ¢, and =g > 0 is the given initial upper bound on the quadratic
error eged .

Remark 1: In many practical systems, the disturbance noises are
known to be non-Gaussian due to man-made electromagnetic interfer-
ence and other natural sources, see, e.g., [9], [10], [26], [35]. Most ex-
isting filtering approaches, however, are based on the assumption that
the noises are Gaussian [11], [24], [31]. Therefore, most conventional
filtering methods are no longer applicable to the filtering problems sub-
ject to non-Gaussian noises and there is an urgent need to develop new
filtering algorithms. In (3), the noises w (k) are assumed to be unknown,
bounded, deterministic but reside within in ellipsoidal sets.

In this technical note, we consider two kinds of descriptions for the
nonlinear functions f(-) and g(-). In both cases, the quadratic error-
constrained filtering problem for (1), (2) will be investigated. For pre-
sentation convenience, we denote

Dy (a(k). o (k) := £ (a(k) + o (k) = f (2(h))

— A(R)o(k) )
D, (@(k).a(k)) i= g ((k) + o(k)) — g (x(k))
— B(k)a(k). (6)

Case 1: The nonlinear functions f(x(k)) and g(x(k)) satisfy the
following Lipschitz-like conditions [22], [25]:

|Ds (w(k), o (k)| <alk)lo(F)],
|Dy (w(k), o (k)| <b(k) |o (k)] ©)

where A(k) and B(k) in (5), (6) are known matrices, and a(k) and
b(k) are known positive scalars at every time step k.

Remark 2: The nonlinearity description in (7) quantifies the “dis-
tance” nature between the nonlinear systems (1), (2) and the corre-
sponding linear systems with matrices A(k), B(k). Note that the fil-
tering problems have already been discussed for nonlinear systems with
such a description, see [22], [25].

Case 2: The nonlinear functions f(x(k)) and g(x(k)) are con-
strained within the following ellipsoidal sets:

(A, A(k)) = { (2(k) D] (2(k), o (k) A" (k)
<Dy (e(k), 7 (k) < 1}
T (B(k), B(k) = {g (@(k)) D] (2(k). 0 (k) B (k)
XDy (x(k).o(k)) < 1} ®
where A(k), B(k), (k) > 0 and B(k) > 0 are known matrices.
Note that A(k)o (k) and B(k)a (k) can be understood as the centers of

ellipsoids, and (%) and B (%) are therefore the corresponding “shape”
matrices.
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Remark 3: The description in (8) is referred to as the confidence
ellipsoid description. The so-called confidence ellipsoid has been
extensively utilized to account for certain noises and filtering perfor-
mance index, see e.g. [8], [16], [35]. Note that the distance between the
nonlinear systems and the “nominal” linear models could be adjusted
according to engineering requirements by changing the ellipsoidal
“center” vectors and “shape” matrices. To the best of our knowledge,
such a description represents the first of few attempts that uses confi-
dence ellipsoids to define the nonlinear systems in a filtering problem.

In this technical note, we aim to construct the following time-varying
filter for (1), (2):

wp(k+1) = f(ap(k) +g(xp(k— 1))
+L(k) (y(k) — C(k)zs(k)) (9

where L(k) are the filter parameters to be designed.

The objective of this technical note is to design an optimal nonlinear
filter (9) for the discrete time-varying nonlinear systems (1), (2) in the
sense that the sequence of quadratic error constraint matrices Z(k) is
minimized. The detailed problem is formulated as follows: find the se-
quence L(k) of the filter parameters as well as a sequence of posi-
tive-definite matrices Z(k + 1) to solve the optimization problem:

in trace (2(k+1 10

= iy T B D) o
subject to

e(k4+ e (k+1)<E(k+1) (11)

and (3), (4) and (7) (or (8)), where e(k) = x(k) — x (k) is the state
estimation error corresponding to time step k.

Remark 4: The quadratic error-constrained filtering problem de-
fined in (10) and (11) turns out to be an optimization filter design
problem, where the optimized filter parameters L(k%) can be calculated
by minimizing the matrix sequence Z(k + 1) in the sense of matrix
trace. Note that Z(k + 1) serves as the upper bound on the state esti-
mation error matrix sequences. Another feature of such a filter design
algorithm, as will be seen later, is its recursive nature that facilitates
the online applications for the discrete time-varying systems with de-
terministic non-Gaussian noises.

For convenience of representation, we give the following notations
as in [25]:

s1(k) = f (2(k) = f (zr (k) = A(k)e(k)  (12)
so(k = 7) =g (k= 7)) = g (a;(k = 7))
—Bk—7)e(k—1) (13)

and then the error dynamics can be obtained from (1), (2) and (9) that

e(k+1)=A(k)e(k)+ B(k —7)e(k— 1)+ s1(k) + s2(k — 1)
—L(E)C(R)e(k)+ (D(k) — LK) E(R)) w(k). (14)

If the quadratic estimation error at time step k satisfies [z(k) —
xp(k)][z(k) — x5 (k)]" < Z(k), then there exists a vector r (|| < 1)
such that

x(k)=as(k)+ M (k)r (15)

where M, (k) is a factorization of Z(k), i.e. Z(k) = M, (k) M{ (k).
It follows from (14) and (15) that
e(k+1)=[A(k) — L(k)C (k)] Ma(k)r + s1(k)
+ B(k—7)Mi(k—7)r+ s2(k —7)

+ (D(k) = L(k)E(k)) w(k). (16)
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In the rest of this technical note, we will develop a semi-definite pro-
gramme method for the recursive filtering problem with the quadratic
estimation error being enforced on the recursive process at every time
step.

III. MAIN RESULTS

The following lemma will be used in the proofs of our main results
in this technical note.

Lemma 1: Let go(+),g1(+),- -, g4(+) be quadratic functions of the
variable { € R™: g;(¢) 2 'Ti¢ (i = 0,---,q), where T, = T . If
there exist e; > 0,-+-,¢, > Osuch that Ty — Y% . &7, > 0, then
the following is true:

=1

91(0) 2 0.4+ gg(¢) 2 0 — go(¢) > 0. 17

In the following theorem, a semi-definite programme approach is de-
veloped to deal with the quadratic error-constrained filtering problem
for the discrete time-varying nonlinear systems (1), (2) with bounded
noises and time-delays. The nonlinearities described in Case 1 is con-
sidered in this theorem, and those in Case 2 will be discussed later. A
sufficient condition is derived to guarantee the solvability of the desired
filtering problem by solving a convex optimization problem.

Theorem 1: For Case 1, consider the discrete time-varying nonlinear
systems (1), (2) with time-delays, bounded noises and nonlinearities
described in (7). If there exist positive-definite matrix sequence = (k) >
0, matrix sequence L(%) and scalar sequences ; (k) (i = 1,2, 3, 4) to
solve the following convex optimization problem:

(41 L1 (B e ek caty T S ()
subject to
—Z(k+1) Qk)
Q) —Ak) <0 (19)
where
Qk) == [ O (k) D(k)—L(k)E(k) I 1]
szl (k) := (A(k) = L(k)C (k) My (k)+B(k — )M, (k — 7)
(k) :=diag {1 — 21 (k) — e2(k), A1 (k), 22(k)S ™ (k),

es(k)I,eq(k)I}
A (k) =2y (k)T — =5(k)a® (k)M (k)M (k)
— ea (k) (k — )My (k —7)My (k — 1) (20)
then the optimization problem (10) subject to (11) and (3), (4), (7) is
solvable, and the desired filter can be obtained as follows:

wp(k)=f(p(k) + g (wp(k=7)) + L(k) (y(k) = C(k)as(k)).
(21)

Proof: Defining the following augmented vector:

[1, r

we have from (16) and (22) that w(k + 1) — oy (k + 1) = Q(k)E(k),
where €2(%) is defined in (20), and then the quadratic error constraint
(11) can be rewritten as

£(k) = W (k), s (k), sL(k - T)]T 22)

QRE(R)ET ()QT (k) < Z(k +1) (23)
which, by Schur Complement, is equivalent to
QT ()= (k + 1D)QR)E(R)—
¢7 (k)diag{1,0,0,0,0}¢(k) < 0. (24)

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 12, DECEMBER 2010

Similarly, |r| < 1 or =1 4+ #%» < 0, by (22), is equivalent to

¢¥ (k)diag{—1.1,0,0,0}¢(k) < 0. (25)
Furthermore, it follows from (3) that:
¢ (k)diag {~1,0, 57" (k),0,0} £(k) < 0 (26)
From (7), (12) and (13), it is easy to see
st (k)s1(k) <a(k)el (k)e(k)
= a?(k)r" MY (k) My (),
sé(k —71)s2(k—7) < bz(k - T)(’l(k —1)e(k—7)
=b*(k=7)r" M{ (k=)
x My(k—7)r 27
which can be rewritten by
T o 298 25T )
¢ (k) diag {o,—a (k) MT (k)M (k), 0,1, ()}g(k) <0 (28
¢ (k) diag {0, —b*(k — )M, (k — )My (k — 1),
0,0.1}€(k) < 0. (29)
From Lemma 1, (24) holds if there exist scalars ¢;(k) (0 = 1, 2, 3,

4) such that the following inequality is true:

e HQT (=T (R + D)QUE)E(R)
—¢" (k)diag{1,0,0,0,0}¢(k)

) [gT(k)diag{—u, 0.0, o}g(k,)]

—eal)[¢"( ).0.0}¢ (k)]

—53@:)[5 (L:)diag{(),—cﬁ(kz)Ml (k)My(k).0.1. 0}5(k)]
)[ET(k)diag{O,—bQ(k—T)JL[lT(k—T)zM](k—T),

dlag{ 1,0,5

—64(1.’7

0,0, T} (k)] < 0. (30)
For £(k) # 0, the inequality (30) holds if and only if
QY (=" (k+ 1)Q(k)
+ diag {—14¢e1(k) + eg(k), —e1(k)I
+ e3(k)a” (k)M (k)M (k)
+ ea(k)b? (b — )M (k — 7)M, (k — 7).
—e2(k)ST k), —e3 (k) I, —2a(k)I} <0 (31)

which, by Schur Complement, is equivalent to (19). The proof of this
theorem is thus complete. |

Next, let us consider the Case 2 where the nonlinear functions f(-)
and g(-) satisfy (8). We like to derive a computationally feasible algo-
rithm for the desired filtering problem.

Theorem 2: For Case 2, consider the discrete time-varying nonlinear
systems (1), (2) with time-delays, bounded noises and nonlinearities
described in (8). If there exist positive-definite matrix sequence =(k) >
0, matrix sequence L(k) and scalar sequences &; (k) (i = 1,2, 3, 4)
such that the following convex optimization problem is feasible:

min trace (Z(k + 1)) (32)
E(k41),L(k),61(k),b62(k),65(k),64(k)
subject to
Sk+1)  Qk)
<0
OT(k)  —Ti(k)| = 33)
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where

(k) := diag {II, (k 61(k)I, 62(k)S™
51(K) B (k— )}
=1 = 61(k) — 62(k) — 83(k) — 64(k)

k), 83 (k) (k).
(34)

I, (k) (35)

and Q(k) is defined in (20), then the optimization problem (10) subject
to (11), (3), (4) and (8) is solvable and the desired filter in (21) can be
obtained.

Proof: From (8) and (12), (13), one has

st (A (k)sy (k) <1,
sa(k—7)B Nk —1)s2(k—7) <1 (36)
which can also be represented as
¢ (k)diag {—1,0,0, %" (k),0} &(k) <0
" (k)diag {~1,0,0,0, 87" (k — 1)} (k) <O0. (37)

Again, it follows from Lemma 1 that (24) holds if there exist scalars
8:(k) (i = 1,2, 3, 4) such that the following inequality:

£T(k)QT(k)E’1(k T+ 1)Q(k)ER)
— &' (k)diag{1,0,0,0,0}¢(k)
—81(k) [g (k)diag{~1.1. o,o,o}g(k)]
—52(/1)[ (k)diag {~1,0,5~ (k).o,o}g(k)]
— 63(k) [g (k)diag {—1,070,2[—‘(1;),0}5(1;)]
[ k)diag {—1,0,0,0, B~ k—r)}g(k)]go

holds. For £(k) # 0, the above inequality holds if and only if the
inequality

QE) =7k + 1)Q(k)

+ diag { =1+ 81 (k) + 82 (k) + b3 (k) + ba(k), —61 (k)1
— 82(k)ST (k) =3 (B)A (),
—54(k)B N k—7)} <0 (38)

holds which, again from the Schur Complement, is equivalent to (33).
This ends the proof. ]

Remark 5: In Theorem 1 and Theorem 2, the optimized filter (21)
is obtained for the discrete time-varying systems with deterministic
bounded noises (1), (2) at every time step k. Both the Lipschitz-like
and ellipsoid-bounded nonlinearities are considered. Specifically, the
optimization problem (10), (11) is solved by using a recursive matrix
inequality approach.

As discussed in the introduction, time delays exist inherently in many
practical systems which often lead to poor performance or even insta-
bility. Therefore, the time delays have been considered in (1), (2) in
order to make our model more comprehensive. Nevertheless, in the case
that there are no time-delays (i.e., the time-delay term g(«(k — 7)) is
dropped out), the corresponding results for Case 1 and Case 2 can be
readily obtained, respectively, from Theorem 1 and Theorem 2, which
are given in the following two corollaries without proof.

Corollary 1: For Case 1, consider the discrete nonlinear systems (1),
(2) without time-delays. If there exist positive-definite matrix sequence
=(k) > 0, matrix sequence L(k) and scalar sequences ;(k) (i = 1,
2, 3) to solve the following convex optimization problem:

trace (2(k + 1)) (39)

) min )
E(k+1),L(k),e1(k),e2(k),e5(k)
subject to
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—Z(k+1) (k)
oT(k)  —Ak)| Y (40)
where
B(k) = [0 (A(k)— L(k)C(k)) M, (k)
D(k) — L(k)E(k) 1]
A(k) :=diag {1 — &1 (k) — e2(k), A1 (F)
e2(k) ST (k) es(R) I}
Ai(k) =1 (k)T = =3(k)a® (k)M (B)M (k) (41)

then the optimization problem (10) subject to (11) and (3), (4), (7) is
solved and the desired filter can be obtained as follows:
wp(k+1) = f (e(0) + LK) (y(k) = CR)ayp(k)).  (42)
Corollary 2: For Case 2, consider the discrete nonlinear systems (1),
(2) without time-delays. If there exist positive-definite matrix sequence
(k) > 0, matrix sequence L(k) and scalar sequences &, (k) (i = 1,
2, 3) such that the following convex optimization problem is feasible:

min trace (Z(k + 1 43

E(k+1),L(k),61(k),62(k),83(k) (=( ) “3)
subject to
—E(k+1 D(k

(k+1) (k) <0 44)

&7 (k) —T(k)

where

Y (k) :=diag {1 (k), 8 (k)L 62(k)S™" (), 65(k)A™" (k) }
Yi(k):=1—61(k) — 62(k) — 83(k) (45)

and ®(k) is defined in (41), then the optimization problem (10) subject
to (11), (3), (4) and (8) is solvable and the desired filter in (42) can be
obtained.

In the following, we will show that a semi-definite programme
method can be developed by using the available Matlab YALMIP
toolbox and an algorithm is shown that the main results given in
Theorem 1 and Theorem 2 can be converted into a computationally
appealing recursive algorithm, which can help facilitating the real-time
applications.

Algorithm 1: Quadratic error-constrained filter design algorithm.

Step 1: Set the initial values for the positive integer IV, the
state ¢, the parameters 7, A(k), B(k),---, E(k) and
positive-definite matrix sequence S(k), positive scalars
a(k) > 0andb(k —7) > 0 (A(k) > 0 and B(k) > 0)
(k=0,---,N). Select appropriate initial state estimate
¢ s and quadratic error constraint matrix =o to satisfy the
conditions (3) and (4) and set & = 0.

Step 2: Solve the convex optimization problem (18), (19) (or
(32), (33)) to obtain the quadratic error constraint matrix
sequence Z(k + 1), filter parameter sequence L(k) and
the scalars £;(k)(6;(k)) (i = 1, 2, 3, 4). From (21), derive
the state estimate x¢(k 4 1) that satisfies the constraint
inequality (11) and then set k = k + 1.

Step 3: If £ < IV, then go to Step 2, otherwise go to Step 4.

Step 4: Stop.

Remark 6: In the Algorithm 1, a recursive filter design scheme is
presented. At each step, an upper bound for the quadratic state esti-
mation error is obtained and minimized in the sense of matrix trace.
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It is shown that the desired filter can be obtained in terms of the so-
lutions to a discrete matrix difference inequality, which is of a form
suitable for recursive computation in online applications. Note that the
time-varying model addressed is comprehensive that takes into account
two kinds of nonlinearities, constant time-delays as well as bounded
non-Gaussian noises. Therefore, the developed algorithm can be ap-
plied to a wide range of systems. In the next section, a simulation ex-
ample is presented to show the effectiveness of the proposed approach.
Remark 7: From an engineering viewpoint, the error-constrained re-
cursive filter is efficient because only the estimated state and the output
measurement from the previous time step are needed to compute the
estimate for the current state. In fact, the main aim of this technical
note is to develop a "non-Gaussian analogy" of the traditional Kalman
filtering approach over a finite-horizon for nonlinear time-varying sys-
tems, where the quadratic error constraints in the non-Gaussian case
are similar to the error-variance constraints in the Gaussian case. Based
on the semi-definite programme method, an efficient algorithm is de-
signed such that, for the admissible time-delays, nonlinear parame-
ters and external bounded noise disturbances, the quadratic estimation
error is not more than a certain optimized upper bound at every time
step. On the other hand, it would be interesting to deal with the cor-
responding steady-state filtering problem when the system parameters
become time-invariant. This is one of our future research topics.

IV. ILLUSTRATIVE EXAMPLE
Consider the following discrete-time nonlinear systems with time
delay and bounded noises:
x1(k+ 1) = (0.56 + 0.05 sin(k)) x1 (k) + 0.0222 (k)
+0.12sin (@1 (k) + 0.1z (k — 1)

+ 0.3 5in(20k) (46)
ok + 1) = 0.032, (k) + 0.542s (k) + 0.182(k — 1)
+0.1cos (z2(k — 1)) 4 0.28sin(20k) 47)
y(k) = (14 0.05sin(k)) z1 (k) + 0.4522 (k)
+ 0.665in(20k). (48)

Let the bounded noises w(k) be sin(20k) and set S(k) = 4. Also,
select the initial state and its estimate, initial quadratic error constraints
as follows:

2] ali) =[5 2

For Case 1, we first consider the nonlinearities described in (7).
Based on (46)—(48), we let a(k) = 0.2 and b(k) = 0.12. According to
Theorem 1 and the designed algorithm, the filter parameters and state
estimate at every time step & can be calculated as in Table I by using
the YALMIP toolbox.

Fig. 1 simulates the numerical results for the Case 1. The simulation
results have illustrated our theoretical analysis.

For Case 2, we now deal with the ellipsoid nonlinearities given in
(8). Assume from (46)—(48) that

m(k):<062 0[.)2>’ Q3(“:(0(.)2 0?2)‘

By using the YALMIP toolbox, it follows from Theorem 2 and Algo-
rithm 1 that the filter parameters and state estimate at every time step
k can be calculated as in Table II. Similar to Case 1, the simulation re-
sults can be found in Fig. 2, which verify our desired results.

(49)

(50)

V. CONCLUSION

In this technical note, we have investigated the quadratic error-con-
strained filtering problem for discrete time-varying nonlinear systems
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TABLE 1
RECURSIVE RESULTS
k ) =(k) ] ] L(k)_ zf(k)
0 15 0 0.4570 0]
10 15] 10.4212] 10]
1 [13.3200 0 [0.4546] [0.1110]
I 13.1200 10.4242] 10.1213]
5 [ 5.1554 —4.3740] [0.4546] [0.4953]
| —4.3740  13.4636 | 10.4242] 10.5627 |
3 [ 5.2457  —4.2214] [0.4545] [0.5953]
| —4.2214  12.1202 | 10.4243] 10.6540]
4 [ 4.4778  —3.7371] [0.4545] [0.3836]
| —3.7371  12.5196 | 10.4243 ] 10.4810]
5
4 : : : : :
N 2
35_\ — = = Upper Bound ofe1(k) |
ik —e— (k)
3r Estimation of x1(k)
1 ‘
250 x®
RN
2 L ~
1.5} T
1q T Ry
0.5
0
-0.5
-1 . . . ‘ . .
0 10 15 20 25 30 35
k
4 - : . : :
2
\ - - = = Upper bound of ez(k)
35r A% —e—el(k)
S Estimation of x,(k)
3 ~ J
£ —a— x,(k)

Fig. 1. Simulation results for Case 1.

with time-delays and unknown but bounded noises. The nonlinearities
are described in two different ways, and the noises are constrained to
reside within specified ellipsoidal sets. A recursive filter has been de-
signed based on semi-definite programme method such that, for all
admissible time delays, nonlinear parameters and external bounded
noises, the quadratic error matrix is less than a minimized upper bound
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TABLE II
RECURSIVE RESULTS

k ] =(k) L(k) ] x[(k)
0 15 0] [0.4570 0]
|0 15] 10.4212] 10]
1 [13.3200 0 | [0.4546] [0.1110]
| 0 13.1200] 10.4242| 10.1213]
9 [ 4.9172  —4.3013] [0.4546] [0.4969]
|—4.3013  13.0873 | 10.4241 | 10.5615|
3 [ 4.9795  —4.0455] [0.4546] [0.6032]
| —4.0455  11.5070 | 10.4242] 10.6472]
4 [ 4.2421 —3.5663] [0.4545] [0.3880]
| —3.5663  11.9044 | 10.4243] 10.4742|
5
4 - : ; ; : -
N 2
357\ - = = Upper Bound ofe1(k) |
Bk —e— (k)
3r Estimation of x, (k) |
1
25F | —xK 1
LEN
2+ T Sy S SV S . R e S
15F -
1q 1
0.5 4
0
-0.5 J
-1 L | | | I L I
0 5 10 15 20 25 30 35 40
k
4 - : ; -
\ hY
35F \a J
~ Y g _ _— .
3 L
55| — = = Upper bound of eg(k)
—o—el(k)
Estimation of xz(k)
——,(K)

Fig. 2. Simulation results for Case 2.

in the sense of matrix trace at every time step k. It has been shown that
the addressed filter design problem is solvable if a convex optimization
problem is feasible by using the semi-definite programme method. A
simulation example has been exploited in order to illustrate the effec-
tiveness of the proposed design procedures.
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D-Stability and Delay-Independent Stability
of Homogeneous Cooperative Systems

Vahid Samadi Bokharaie, Oliver Mason, and Mark Verwoerd

Abstract—We introduce a nonlinear definition of D-stability, extending
the usual concept for positive linear time-invariant systems. We show that
globally asymptotically stable, cooperative systems, homogeneous of any
order with respect to arbitrary dilation maps are D-stable. We also prove
a strong stability result for delayed cooperative homogeneous systems. Fi-
nally, we show that both of these results also hold for planar cooperative
systems without the restriction of homogeneity.

Index Terms—Globally asymptotically stable (GAS), linear time-in-
variant (LTI).

[. INTRODUCTION

Due to their practical importance, Positive Systems have been the
focus of a significant research effort in the Engineering, Applied Math-
ematics and Computational Sciences communities. The theory of pos-
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itive linear time-invariant (LTI) systems is now well understood; how-
ever, for many applications of positive systems, factors such as non-
linearities, uncertainties and delays need to be taken into account. The
work of this note is concerned with extending aspects of the stability
theory of positive LTI systems to classes of nonlinear and delayed sys-
tems. Specifically, we shall show that two key stability properties of
positive LTI systems extend directly to cooperative systems defined by
vector fields that are homogeneous with respect to an arbitrary dilation
map.

The LTI system @(¢) = Axz(t) is positive if and only if the matrix A
is Metzler, meaning that all of its off-diagonal elements are nonnega-
tive. It is well known [7] that a positive LTI system is globally asymp-
totically stable (GAS) if and only if &(¢) = D Ax(t) is asymptotically
stable for any diagonal matrix D with positive diagonal entries. This
latter property is usually referred to as D-stability.

For positive time-delayed systems, it was shown in [4] that the de-
layed positive linear system #(#) = Ax(t) + Bx(t — 7), where A is
Metzler and B is nonnegative, is GAS for all values of the delay 7 > 0
provided the system with zero delay &(t) = (A + B)ax(t) is GAS. In
this regard, interesting results providing similar stability conditions for
classes of positive systems defined by functional and integrodifferen-
tial equations have recently appeared in [8], [9].

Recently, it was shown in [2] that the results for positive LTI systems
mentioned in the previous paragraph also hold for cooperative systems
that are homogeneous of degree zero with respect to the standard di-
lation map on R"™. The principal contribution of the current note is to
further extend these results to cooperative systems that are homoge-
neous of any degree with respect to an arbitrary dilation map. It should
be noted that the definition of D-stability considered here is consider-
ably more general than that investigated in [2]. In particular, this allows
the results of the current paper to be applied to cooperative systems that
are not necessarily homogeneous. In the same vein, we show that the
assumption of homogeneity is not necessary for planar cooperative sys-
tems. Removing this assumption for higher dimensional systems is the
subject of ongoing work by the authors.

The layout of the note is as follows. In Section II we introduce nota-
tion, standard definitions and the key results needed for our later anal-
ysis. In Section III we introduce a nonlinear extension of the concept of
D-stability and demonstrate that GAS homogeneous cooperative sys-
tems have this property. A strong stability result for delayed systems is
then given in Section IV. In Section V we show that the homogeneity
assumption is not required for planar systems and finally, in Section VI
we present our conclusions.

II. MATHEMATICAL BACKGROUND

Throughout the paper, R and R™ denote the field of real numbers and
the vector space of all n-tuples of real numbers, respectively. R"*™
denotes the space of n X n matrices with real entries. For z € R"
and : = 1,...,n, x; denotes the it" coordinate of . Similarly, for
A € R"™", a,; denotes the (i,j)th entry of A. Also, for z € R",
diag(x) is the n X n diagonal matrix in which d;; = ;.

Throughout the paper, we shall be concerned with positive systems
and with the stability properties of the equilibrium at the origin. For this
reason, when we say that a system is Globally Asymptotically Stable,
GAS for short, we mean that the origin is a GAS equilibrium of the
system with respect to initial conditions in the non-negative orthant
Ry :={z€eR":2; >0,1 <i<n}

The interior of R is denoted by int(R’) and its boundary by
bd(R7) := RT\int (R}). For vectors z, y € R", we write: © > y
ife; >yiforl <i<mnye>yife >yande # y; 2 > yif
>y, 1 <1 < n.
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