263 research outputs found

    Anti-Fall: A Non-intrusive and Real-time Fall Detector Leveraging CSI from Commodity WiFi Devices

    Full text link
    Fall is one of the major health threats and obstacles to independent living for elders, timely and reliable fall detection is crucial for mitigating the effects of falls. In this paper, leveraging the fine-grained Channel State Information (CSI) and multi-antenna setting in commodity WiFi devices, we design and implement a real-time, non-intrusive, and low-cost indoor fall detector, called Anti-Fall. For the first time, the CSI phase difference over two antennas is identified as the salient feature to reliably segment the fall and fall-like activities, both phase and amplitude information of CSI is then exploited to accurately separate the fall from other fall-like activities. Experimental results in two indoor scenarios demonstrate that Anti-Fall consistently outperforms the state-of-the-art approach WiFall, with 10% higher detection rate and 10% less false alarm rate on average.Comment: 13 pages,8 figures,corrected version, ICOST conferenc

    Wi-Fi For Indoor Device Free Passive Localization (DfPL): An Overview

    Get PDF
    The world is moving towards an interconnected and intercommunicable network of animate and inanimate objects with the emergence of Internet of Things (IoT) concept which is expected to have 50 billion connected devices by 2020. The wireless communication enabled devices play a major role in the realization of IoT. In Malaysia, home and business Internet Service Providers (ISP) bundle Wi-Fi modems working in 2.4 GHz Industrial, Scientific and Medical (ISM) radio band with their internet services. This makes Wi-Fi the most eligible protocol to serve as a local as well as internet data link for the IoT devices. Besides serving as a data link, human entity presence and location information in a multipath rich indoor environment can be harvested by monitoring and processing the changes in the Wi-Fi Radio Frequency (RF) signals. This paper comprehensively discusses the initiation and evolution of Wi-Fi based Indoor Device free Passive Localization (DfPL) since the concept was first introduced by Youssef et al. in 2007. Alongside the overview, future directions of DfPL in line with ongoing evolution of Wi-Fi based IoT devices are briefly discussed in this paper

    Sensorless sensing with WiFi

    Get PDF
    Abstract: Can WiFi signals be used for sensing purpose? The growing PHY layer capabilities of WiFi has made it possible to reuse WiFi signals for both communication and sensing. Sensing via WiFi would enable remote sensing without wearable sensors, simultaneous perception and data transmission without extra communication infrastructure, and contactless sensing in privacy-preserving mode. Due to the popularity of WiFi devices and the ubiquitous deployment of WiFi networks, WiFi-based sensing networks, if fully connected, would potentially rank as one of the world’s largest wireless sensor networks. Yet the concept of wireless and sensorless sensing is not the simple combination of WiFi and radar. It seeks breakthroughs from dedicated radar systems, and aims to balance between low cost and high accuracy, to meet the rising demand for pervasive environment perception in everyday life. Despite increasing research interest, wireless sensing is still in its infancy. Through introductions on basic principles and working prototypes, we review the feasibilities and limitations of wireless, sensorless, and contactless sensing via WiFi. We envision this article as a brief primer on wireless sensing for interested readers to explore this open and largely unexplored field and create next-generation wireless and mobile computing applications. Key words: Channel State Information (CSI); sensorless sensing; WiFi; indoor localization; device-free human detection; activity recognition; wireless networks; ubiquitous computing

    An Approach to Finding Parking Space Using the CSI-based WiFi Technology

    Get PDF
    With ever-increasing number of vehicles and shortages of parking spaces, parking has always been a very important issue in transportation. It is necessary to use advanced intelligent technologies to help drivers find parking spaces, quickly. In this thesis, an approach to finding empty spaces in parking lots using the CSI-based WiFi technology is presented. First, the channel state information (CSI) of received WiFi signals is analyzed. The features of CSI data that are strongly correlated with the number of empty slots in parking lots are identified and extracted. A machine learning technique to perform multi-class classification that categorizes the input data into classes representing the number of empty slots is employed. A prototype system of the proposed approach is developed. Experiments are performed and it is shown that the system is feasible. Compared with traditional approaches based on magnetic sensors deployed on individual parking slots, the proposed approach is non-intrusive as it does not require to install specialized devices in a parking lot, and is cost-effective since it utilizes either existing WiFi infrastructure or only a pair of WiFi devices. As a result, the average classification accuracy of system is 80.8%, and the accuracy is improved to 93.8% with a tolerance of one empty slot

    A New Paradigm for Device-free Indoor Localization: Deep Learning with Error Vector Spectrum in Wi-Fi Systems

    Full text link
    The demand for device-free indoor localization using commercial Wi-Fi devices has rapidly increased in various fields due to its convenience and versatile applications. However, random frequency offset (RFO) in wireless channels poses challenges to the accuracy of indoor localization when using fluctuating channel state information (CSI). To mitigate the RFO problem, an error vector spectrum (EVS) is conceived thanks to its higher resolution of signal and robustness to RFO. To address these challenges, this paper proposed a novel error vector assisted learning (EVAL) for device-free indoor localization. The proposed EVAL scheme employs deep neural networks to classify the location of a person in the indoor environment by extracting ample channel features from the physical layer signals. We conducted realistic experiments based on OpenWiFi project to extract both EVS and CSI to examine the performance of different device-free localization techniques. Experimental results show that our proposed EVAL scheme outperforms conventional machine learning methods and benchmarks utilizing either CSI amplitude or phase information. Compared to most existing CSI-based localization schemes, a new paradigm with higher positioning accuracy by adopting EVS is revealed by our proposed EVAL system

    A Fast Deep Learning Technique for Wi-Fi-Based Human Activity Recognition

    Get PDF
    Despite recent advances, fast and reliable Human Activity Recognition in confined space is still an open problem related to many real-world applications, especially in health and biomedical monitoring. With the ubiquitous presence of Wi-Fi networks, the activity recognition and classification problems can be solved by leveraging some characteristics of the Channel State Information of the 802.11 standard. Given the well-documented advantages of Deep Learning algorithms in solving complex pattern recognition problems, many solutions in Human Activity Recognition domain are taking advantage of those models. To improve the time and precision of activity classification of time-series data stemming from Channel State Information, we propose herein a fast deep neural model encompassing concepts not only from state-of-the-art recurrent neural networks, but also using convolutional operators with added randomization. Results from real data in an experimental environment show promising results
    • …
    corecore