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Sensorless Sensing with WiFi
Zimu Zhou, Chenshu Wu, Zheng Yang, and Yunhao Liu

School of Software and TNList, Tsinghua University
{zhouzimu, wu, yang, yunhao}@greenorbs.com

Abstract—Can WiFi signals be used for sensing purpose? The
growing PHY layer capabilities of WiFi has made it possible to
reuse WiFi signals for both communication and sensing. Sensing
via WiFi would enable remote sensing without wearable sensors,
simultaneous perception and data transmission without extra
communication infrastructure, and contactless sensing in privacy-
preserving mode. Due to the popularity of WiFi devices and the
ubiquitous deployment of WiFi networks, WiFi-based sensing
networks, if fully connected, would potentially rank as one of the
world’s largest wireless sensor networks. Yet the concept of wire-
less, sensorless and contactless sensing is no simple combination
of WiFi and radar. It seeks breakthroughs from dedicated radar
systems, and aims to balance between low cost and high accuracy,
to meet the rising demand for pervasive environment perception
in everyday life. Despite increasing research interest, wireless
sensing is still in its infancy. Through introductions on basic
principles and working prototypes, we review the feasibilities
and limitations of wireless, sensorless and contactless sensing
via WiFi. We envision this article as a brief primer on wireless
sensing for interested readers to explore this open and largely
unexplored field and create next-generation wireless and mobile
computing applications.

I. INTRODUCTION

Technological advances have extended the role of wireless
signals from a sole communication medium to a contactless
sensing platform, especially indoors. In indoor environments,
wireless signals often propagate via both the direct path and
multiple reflection and scattering paths, resulting in multiple
aliased signals superposing at the receiver. Since the physical
space constrains the propagation of wireless signals, the wire-
less signals in turn convey information that characterizes the
environment they pass through. Herein the environment refers
to the physical space where wireless signals propagate, which
includes both ambient objects (e.g. walls and furniture) and
humans (e.g. their locations and postures). As illustrated in
Figure 1, sensorless sensing with WiFi refers to characterize
the surrounding environments by analyzing received WiFi
signals, with increasing levels of sensing contexts.

It is no brand-new concept to exploit wireless signals for
contactless environment sensing. Aircraft radar systems, as a
representative, detect the presence of outdoor aircrafts and
determine their range, type and other motion information by
analyzing either the wireless signals emitted by the aircrafts
themselves or those broadcast by the radar transmitters and
reflected by the aircrafts afterwards. Recent research has also
explored to use Ultra-Wide Band (UWB) signals for indoor
radar systems [1]. Primarily designed for military context,
however, these techniques either rely on dedicated hardware
or extremely wide bandwidth to obtain high time resolution

and accurate range measurements, impeding their pervasive
deployment in daily life.

On the other hand, contactless sensing technology is of
rising demand in our everyday world. For instance, passive
human detection has attracted increasing research interest in
the past decade [2]–[6]. By passive human detection, (also
termed as device-free or non-invasive human detection), it
refers to detect or localize users via wireless signals, while
users carry no radio-enabled devices [2]. Such contactless
and privacy-preserving operation mode can stimulate various
applications including security surveillance, intrusion detec-
tion, elderly and children monitoring, remote health-care, and
innovative human-computer interaction.

One solution to passive human detection is to deploy extra
sensors like UWB indoor radar systems. Yet a more conve-
nient alternative is to reuse the ubiquitously deployed WiFi
infrastructure indoors to enable pervasive, cost-effective, and
easy-to-use passive human sensing. Such WiFi-based sensing
is challenging in two aspects: standard WiFi signals have
limited bandwidth and insufficient time resolution compared
with dedicated radar signals; commercial WiFi hardware is
often incapable of sophisticated radar signal processing. It is
thus urgent to breaks away from traditional radar systems and
develop theory and technology for high-resolution wireless
sensing with off-the-shelf WiFi infrastructure.

Although neither WiFi nor radar alone yields new concepts,
their combination sparks interesting innovation in mobile
and ubiquitous computing. Pioneer researchers have termed
this largely unexplored field as Wireless Sensing, Sensorless
Sensing or Radio Tomography Imaging [4], and we will use
the two picturesque terminologies of wireless sensing and
sensorless sensing throughout this paper. In this article, we
reviewed the emergence of wireless, sensorless and contactless
sensing via WiFi. We focus on the principles and the infras-
tructure advances that enable wireless and sensorless sensing
on commodity devices. Over the past five years researchers
have developed a series of WiFi-based contactless sensing
prototypes with increasing functionalities [7]–[11] and we
expect wireless, sensorless and contactless sensing to leap
towards industrial products in the coming few years.

II. FROM RSSI TO CSI

How can we infer environmental information from wireless
signals? As a toy example, weak WiFi signal strength may
indicate long distance from the access point or blockage in
the way. Though intuitive, Received Signal Strength (RSS) is
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Fig. 1. Wireless sensing in multipath propagation environments.

widely used to infer environment information such as propaga-
tion distances. The past two decades have witnessed extensive
sensing applications via RSS, with RSS-based wireless indoor
localization as the most representative.

A. Received Signal Strength

Traditionally, RSS serves as an indicator for channel quality
and is accessible in a range of wireless communication tech-
nologies including RFID, FM, GSM, WiFi, ZigBee and so on.
Due to its ubiquity, researchers also explored to utilize RSS for
sensing, such as wireless indoor localization [12] and passive
human detection [2]. In theory, it is feasible to substitute RSS
into propagation models to estimate propagation distance, or
take a set of RSS as one radio fingerprint for each location, or
infer human motions from the fluctuation of RSS. However,
in indoor environments, RSS may not decrease monotonically
with propagation distance due to small-scale multipath fading,
thus limiting ranging accuracy. Multipath propagation indoors
can also lead to significant fluctuation of RSS. Some study
showed that RSS can fluctuate up to 5dB within one minute
even for a stationary link in a typical laboratory environment
[13]. Such multipath-induced RSS fluctuation may cause false
match of fingerprint-based localization schemes. Since RSS
is a single-valued indicator, it fails to characterize the rich
multipath propagation indoors, making it less robust and
reliable. Consequently, most RSS-based sensing applications
often resort to dense deployed wireless links to avoid the
impact of multipath via redundancy [4].

B. Channel State Information

As RSS is only a MAC layer feature, recent efforts have
dived into the PHY layer to combat the impact of multipath
propagation indoors. In the wireless communities, multipath
propagation is often depicted by Channel Impulse Response
(CIR). Under the time-invariant assumption, CIR can be is
modeled as a temporal linear filter:

h(τ) =

N∑
i=1

aie
−jθiδ (τ − τi) (1)

where ai, θi and τi denote the amplitude, phase and delay
of the ith path, respectively. N is the number of resolvable
paths in the time domain and δ(τ) is the Dirac delta (im-
pulse) function. Each impulse represents one propagation path
resolvable by time delays. Multipath propagation also leads
to constructive and destructive phase superposition, which
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Fig. 2. An analogous illustration of RSS and CSI.

exhibits frequency-selective fading in the frequency domain.
Thus multipath propagation can be equivalently characterized
by Channel Frequency Response (CFR), which is the Fourier
transform of CIR given infinite bandwidth.

While neither CIR nor CFR is accessible in the MAC
layer, the PHY layer of WiFi, especially Orthogonal Frequency
Division Multiplex (OFDM) based WiFi standards (i.e. IEEE
802.11a/g/n), is capable of measuring a sampled version
of CFR for channel measurement purposes. Typically, high-
resolution measurements of channel responses (CIR or CFR)
require dedicated channel sounders. However, as OFDM-based
WiFi standards require a subcarrier level channel measurement
to improve decoding performance, they naturally provide
coarse-grained CFR measurements at the granularity of OFDM
subcarriers. With slight firmware modification and commercial
WiFi network interface cards [14], these sampled versions of
CFR measurements can be revealed to upper layers in the
format of Channel State Information (CSI). Each CSI estimates
the amplitude and phase of one OFDM subcarrier:

H(fk) = ‖H(fk)‖ej∠H (2)

where H(fk) is the CSI at the subcarrier of central frequency
fk, amplitude ‖H(fk)‖ and phase ∠H , respectively.

C. RSSI vs. CSI

Compared with RSS, CSI depicts multipath propagation to
certain extent, making it an upgrade for RSS. Analogously
speaking, CSI is to RSS what a rainbow is to a sunbeam,
where components of different wavelengths in CSI are sepa-
rated, while RSS only provides a single-valued amplitude of
superposed paths (Figure 2). As physical layer information,
CSI conveys richer channel information invisible in MAC layer
RSS. One the one hand, CSI estimates the channel frequency
response on multiple subcarriers per received packet, thus
depicting the frequency-selective fading of WiFi channels. On



the other hand, CSI measures not only the amplitude of each
subcarrier, but its phase as well. Thus CSI provides richer and
finer-grained channel information in the frequency domain.
Since CIR is the inverse Fourier transform of CFR, CSI also
enables coarse-grained path distinction in the time domain.

CSI brings about more than richer information. With proper
signal processing, CSI can exhibit different site-specific am-
plitude and phase patterns in different propagation environ-
ments, while its overall structure remains stable in the same
environment. Hence it holds potential to extract finer-grained
and more robust signal features from CSI via machine learning
and signal processing techniques, rather than simply adding up
the amplitudes over subcarriers (a similar processing approach
as RSS). Although currently CSI is only accessible on cer-
tain platforms, e.g. IEEE 802.11a/g/n compatible devices, the
continuing popularity of WiFi and its ubiquitous deployment
indoors still makes CSI a relatively pervasive signal feature.

Compared with the precise CIR/CFR measured by dedicated
channel sounders, the resolution of CSI is limited by WiFi
bandwidth. Given a bandwidth of 40MHz, its time resolution
still fails to distinguish individual paths. Nevertheless, we
envision WiFi standards with increasingly wider bandwidth
(e.g. IEEE 802.11ac) would provide finer-grained information
on multipath propagation in the near future.

III. SENSORLESS SENSING VIA WIFI

How does CSI benefit wireless sensing? Since CSI can be
regarded as an upgrade for RSS, it is natural to adopt CSI
to boost performance of conventional RSS-based applications.
For instance, in RSS-based indoor localization, RSS can be
used as either a location-specific fingerprint or to calculate
the distance between the mobile client and the access point
based on propagation models. Similarly, CSI can be employed
as a finer-grained fingerprint as it carries both amplitude and
phase information across subcarriers; or for more accurate
ranging by accounting for frequency-selective fading. We refer
interested readers to [15] for a more comprehensive overview
on CSI-based wireless indoor localization. In general, RSS-
based applications usually consider multipath propagation as
harmful, since it is unable to resolve multipath propagation and
suffers from unpredictable fluctuation in dense multipath prop-
agation. In contrast, CSI manages to resolve multipath effect at
subcarrier level. Albeit coarse-grained, it offers opportunities
to harness multipath in wireless sensing applications.

A. Sensing the Environment

In multipath propagation environments, propagation path-
s can be broadly classified into Line-Of-Sight (LOS) and
Non-Line-Of-Sight (NLOS) paths, where NLOS paths often
pose major challenges in designing wireless communication
and mobile computing applications deployed indoors. Se-
vere NLOS propagation may deteriorate communication link
quality and degrade theoretical signal propagation models.
A prerequisite to avoid the impact of NLOS propagation
is to identify the availability of the LOS path. Since CSI
depicts multipath propagation at the granularity of subcarriers,

researchers explored to exploit CSI for LOS identification [16]
[17]. Some extracted statistical features from CSI amplitudes
in both the time and frequency domains, and leveraged receiver
mobility to distinguish LOS and NLOS paths based on their
difference in spatial stability [16]. Others utilized CSI phases
of multiple antennas for real-time LOS identification for both
static and mobile scenarios [17]. Phase information offers an
orthogonal dimension to traditional amplitude-based features,
and has been successfully adopted in a range of applications
e.g. millimeter-level localization [18].

Another more concrete environment characteristic is the
shape and the size of rooms and corridors, which make up
part of the indoor floor plan. Floor plan is often assumed to
be offered by location-based service providers and researchers
have shown increasing interest to build up indoor floor plans
by combining wireless and inertial sensing. Some work have
also demonstrated the feasibility of using wireless sensing only
to recover part of the floor plan information. For instance,
researchers distinguished straight pathways, right-angle and
arc corners by analyzing the difference in the trend of CSI
changing rates while the WiFi device moves [19]. With chan-
nel measurements on multiple receiving antennas, the authors
in [20] developed a space scanning scheme by calculating the
angle-of-arrivals of multiple propagation paths simultaneously
and recovering the locations of the reflecting walls. Despite its
bulky size currently, the working prototype holds promise for
sensing the physical environment wirelessly and contactlessly.

B. Sensing Humans

Humans, as part of the environments wireless signals propa-
gate within, have been of utmost interest in the area of wireless
and sensorless sensing. In passive human detection, CSI is
able to detect tiny human-induced variations in both LOS
and NLOS paths, thereby enhancing detection sensitivity and
expanding sensing coverage. Some researchers exploited CSI
as finer-grained fingerprints to achieve omnidirectional passive
human detection on a single transmitter-receiver link, where
the user approaching from all directions can be detected [5].
With fusion of multiple links, CSI also facilitates fine-grained
passive human localization, which substantially outperforms
RSS-based schemes [21]. Other researchers extended human
detection to multi-user scenarios by harnessing the frequency
diversity of CSI and correlating the variation of CSI to the
number of humans nearby for device-free crowd counting [6].

Pioneer research has marched beyond passively detecting
simply the presence of humans. On the one hand, CSI-based
wireless sensing shifts from locating users in the physical
coordinates to offering more context-aware information. Some
demonstrated the feasibility of general-purposed daily activity
recognition by using CSI as fingerprints for the hybrid of
locations and activity patterns [8]. Other work targeted at more
concrete scenarios, e.g. fall detection [22] adopting similar
principles with scenario-tailored optimization. On the other
hand, ambitious CSI-based sensing applications aim to explore
detecting micro body-part motions at increasingly finer gran-
ularity. Some reported over 90% accuracy of distinguishing



multiple whole-body [7] and body-part gestures [10], while
others claimed highly accurate breath detection [11] or even
lips reading [9]. Nevertheless, researchers have reached no
concursus on to what extent of motion granularity and variety
is CSI capable of distinguishing in practice.

C. One Leap Further: WiFi Radar

Over the past five years, CSI has spawned a broad range of
applications and its application scenarios continue to expand.
As an upgrade for RSS, it is natural to improve performance
of some applications simply by replacing RSS with CSI. CSI
also enables various applications infeasible with RSS alone,
such as gesture recognition, breath detection, and complex
environment sensing. Nevertheless, CSI is no panacea, and
its improvement in sensing granularity is still incomparable
with radar signals. Some envisioned applications might have
already gone beyond the capability of CSI.

Apart from further exploring and exploiting the frequency
diversity and the phase information of CSI, researchers also
began to identify its limitations in certain application sce-
narios, as well as seek other techniques to extend CSI-based
wireless sensing to general WiFi-based sensorless sensing or
WiFi radar. In [23], researchers pointed out ambiguity function
analysis that the range resolution of passive bistatic radars
based on current WiFi standards can only reach meters, which
is fundamentally constrained by the operating bandwidth of
WiFi signals. Consequently, researchers are striving to over-
come this intrinsic constraint by incorporating Multi-Input-
Multi-Output (MIMO) technology. In [24], researchers exploit-
ed antenna cancellation techniques to eliminate the impact of
static clutters to enable through-wall sensing of human move-
ments. In [25], the authors achieved computational imaging
using WiFi, and built a MIMO-based prototype on software
defined radio platforms. They experimentally demonstrated
that the size, material, and orientation of the target objects
can significantly affect the performance of WiFi imaging, and
a one-fit-all solution is still to be explored.

IV. CONCLUSION

Wireless and sensorless sensing seeks breakthroughs in the
contradiction between the limitation of WiFi signals and the
growing demand for environmental perception in everyday life,
searches for a balance between low cost and high accuracy,
explores solutions via frequency diversity and spatial diversi-
ty, and creates applications that are previously infeasible in
wireless communications and mobile computing. We envision
technological advances would boost sensing capability to finer
granularity and higher sensitivity, which will in turn foster
various new applications. This article only serves as a brief
introduction on the concept of wireless and sensorless sensing,
and we refer interested readers to the corresponding references
throughout this article for more in-depth information.

If we consider WiFi as a side sensor, then WiFi-based
contactless sensing can be regarded as one of the world’s most
large-scale wireless sensor networks, spreading over office
buildings, shopping malls, other public places and homes,

and silently watching the activities of humans therein. Living
inside such a network, every individual in the physical world
has been bestowed with unique being in the digital world. So
the next time you would like a secret meeting, after shutting
the doors, pulling down the curtains and even checking for
wiretaps beneath the table, do not forget to turn off the WiFi!
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