1,029 research outputs found

    Scalable video/image transmission using rate compatible PUM turbo codes

    Get PDF
    The robust delivery of video over emerging wireless networks poses many challenges due to the heterogeneity of access networks, the variations in streaming devices, and the expected variations in network conditions caused by interference and coexistence. The proposed approach exploits the joint optimization of a wavelet-based scalable video/image coding framework and a forward error correction method based on PUM turbo codes. The scheme minimizes the reconstructed image/video distortion at the decoder subject to a constraint on the overall transmission bitrate budget. The minimization is achieved by exploiting the rate optimization technique and the statistics of the transmission channel

    Scalable video transcoding for mobile communications

    Get PDF
    Mobile multimedia contents have been introduced in the market and their demand is growing every day due to the increasing number of mobile devices and the possibility to watch them at any moment in any place. These multimedia contents are delivered over different networks that are visualized in mobile terminals with heterogeneous characteristics. To ensure a continuous high quality it is desirable that this multimedia content can be adapted on-the-fly to the transmission constraints and the characteristics of the mobile devices. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a technique to convert an H.264/AVC bitstream without scalability to a scalable bitstream with temporal scalability as part of a scalable video transcoder for mobile communications. The results show that when our technique is applied, the complexity is reduced by 98 % while maintaining coding efficiency

    Layered Wyner-Ziv video coding: a new approach to video compression and delivery

    Get PDF
    Following recent theoretical works on successive Wyner-Ziv coding, we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantiza- tion, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered Wyner-Ziv coding for quality enhance- ment. Similar to FGS coding, there is no performance di®erence between layered and monolithic Wyner-Ziv coding when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that Wyner-Ziv coding gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks. For scalable video transmission over the Internet and 3G wireless networks, we propose a system for receiver-driven layered multicast based on layered Wyner-Ziv video coding and digital fountain coding. Digital fountain codes are near-capacity erasure codes that are ideally suited for multicast applications because of their rate- less property. By combining an error-resilient Wyner-Ziv video coder and rateless fountain codes, our system allows reliable multicast of high-quality video to an arbi- trary number of heterogeneous receivers without the requirement of feedback chan- nels. Extending this work on separate source-channel coding, we consider distributed joint source-channel coding by using a single channel code for both video compression (via Slepian-Wolf coding) and packet loss protection. We choose Raptor codes - the best approximation to a digital fountain - and address in detail both encoder and de- coder designs. Simulation results show that, compared to one separate design using Slepian-Wolf compression plus erasure protection and another based on FGS coding plus erasure protection, the proposed joint design provides better video quality at the same number of transmitted packets

    Robust P2P Live Streaming

    Get PDF
    Projecte fet en col.laboració amb la Fundació i2CATThe provisioning of robust real-time communication services (voice, video, etc.) or media contents through the Internet in a distributed manner is an important challenge, which will strongly influence in current and future Internet evolution. Aware of this, we are developing a project named Trilogy leaded by the i2CAT Foundation, which has as main pillar the study, development and evaluation of Peer-to-Peer (P2P) Live streaming architectures for the distribution of high-quality media contents. In this context, this work concretely covers media coding aspects and proposes the use of Multiple Description Coding (MDC) as a flexible solution for providing robust and scalable live streaming over P2P networks. This work describes current state of the art in media coding techniques and P2P streaming architectures, presents the implemented prototype as well as its simulation and validation results

    Recent Advances in Watermarking for Scalable Video Coding

    Get PDF
    corecore