
Congestion-Aware Scalable Video Streaming

Nuruddeen Iya, Fabio Verdicchio, Gorry Fairhurst
Electronics Research Group

University of Aberdeen
Aberdeen, UK

(nuruddeeniya, fverdicc, g.fairhurst)@abdn.ac.uk

Abstract─ Real-time media applications often ignore ongoing

congestion if there is no option to reduce the rate. These
applications pose a threat to themselves and other traffic.
Reducing the transmission rate requires reducing the amount of
packets rather than spreading the transmission over a longer
interval. Loss-based congestion control mechanisms are
unsuitable for this requirement. Also this rate reduction with
popular video codecs, e.g. MPEG4, is often problematic. This
paper investigates the problems associated with real-time video
transmission over the Internet. We investigate a rate control
method minimizing delay and losses and report preliminary but
promising results.

I. CONTEXT AND MOTIVATION
The Internet has in recent years seen an unprecedented

growth of live video streaming applications. Multimedia
applications that compete with other traffic for limited network
resources, can inject more data than a network path can sustain.
Eventually buffers fill, resulting in delay and loss. Traffic
flows that share the same router queue are disrupted: existing
traffic is starved of resources and video quality is impaired.
Multimedia applications using a potentially congested path
require congestion control to effectively share network
capacity.

Interactive network multimedia has expectations in terms of
loss and a desire to avoid excessive data. For many
applications the rate at which traffic is injected into the
network is only limited by the video codec. To mitigate the
effects of loss, packet forward error correction (FEC) may be
added. It would be beneficial to all other network users to adapt
to the available capacity and avoid delay or losses.

There is renewed interest in the use of web-based
interactive conferencing under the RTCweb initiative. The
IETF RMCAT [1] Working Group is defining congestion
control methods appropriate to multimedia.

II. CONGESTION CONTROL FOR REAL-TIME VIDEO
Real-time media imposes a strict constraint on latency

experienced by traffic: (i) late packets at the receiver are
discarded; (ii) there is no time for retransmission of lost
packets; (iii) a missing packet carrying part of a reference
frame (on which other frames depend) impairs video
reconstruction.

TCP congestion control [2] was introduced to the Internet
by Van Jacobsen in 1986 to avoid congestion collapse. The
original method has evolved into a sophisticated set of
techniques that make TCP flows "reactive" to congestion

signals, i.e. packets that are marked or dropped from the
network path. While this has stabilized the Internet for over 20
years, there are issues with this approach and the methods are
not sufficient to provide good service in all circumstances.

Early attempts to use reactive loss-based approaches like
TCP incurred significant delay due to the following: TCPs
design that optimizes throughput and induces queuing delay at
the bottleneck; TCP’s loss-recovery mechanism that requires
in-order delivery to the application; and TCPs socket interface
that uses a stream-based delivery model. Some issues may be
fixed by redesigning TCP to better support multimedia [22].

Another approach was adopted in TCP-Friendly Rate
Control, TFRC [3]. This uses an equation-based model to set
an upper limit to the capacity a flow can transmit, and enables
applications to avoid the delay of retransmission.

While transport methods can add delay, they are not the
only contributor impacting the responsiveness of applications
supporting live video streaming, the media codec handling is
also important: packets encoding a one-second video segment
must be received over a one-second interval; if the delivery
time consistently exceeds the segment duration, then the
receiver’s video lags progressively behind the sender’s. Hence
reducing the transmission rate requires reducing the volume of
packets encoding the video (sacrificing visual quality) rather
than spreading transmission of packets over a longer interval.

It is often difficult to change the media rate of popular
video codecs such as MPEG2 [4] or MPEG4/AVC [5]. One
approach is to halt the encoding process, switch encoder
configuration and re-start; even using two encoders in parallel
a client can not switch between configurations at any arbitrary
point. As an alternative, a sender can selectively discard a
(small) fraction of encoded video frames; this avoids the stall,
but the resulting rate reduction is modest. These are a key
limitation for an efficient reactive congestion control.

It is also important to consider the receiver. Packet loss
typically results in a sudden and noticeable reduction in visual
quality; while decoder mechanisms can mitigate losses, these
need to be avoided to ensure good experience. Delay variation
in the network demands that a receiver implements a playout
buffer to enable (moderately) delayed packets to be useful.

A bulk TCP congestion control method is unsuited for
delay-sensitive applications – this not only induces regular
packet loss (as TCP probes for capacity), it also builds a queue
at the bottleneck router. This makes loss-based mechanisms
undesirable for video congestion control.

978-1-4799-1270-4/13/$31.00 ©2013 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/19183818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Delay-based methods, use delay as an implicit metric to
indicate the status of the bottleneck queues, reacting to
indications of the onset of congestion (e.g. a delay-limit is
exceeded) by gracefully reducing the rate before it experiences
packet loss. This closely relates to the design constraints for
real-time applications: reduce path delay and avoid losses.

Examples of delay-based congestion control include TCP
Vegas [6], [7], and LEDBAT [8], CARD [11], CTCP [12], Cx-
TCP [13], and [7], or recent proposals such as Sprout [9]. These
schemes use proactive signaling, attempting to react before
congestion occurs, but have not been designed for multimedia.
There is a need to evaluate congestion methods against the
requirements of real-time video traffic. The RMCAT WG is
therefore evaluating proposals such as DFlow and NADA [1].

As application responsiveness becomes more important,
there has been renewed interest in Active Queue Management
(AQM). This can prevent excessive queues building in the
network, and can enable an alternate proactive approach using
ECN [10]. While such approaches are expected to be helpful,
the focus of this paper on current technologies cannot assume
the existence of AQM or ECN in the network.

III. SCALABLE NETWORK VIDEO STREAMING
We propose a framework for rate-adaptive congestion-

controlled network video [14] based on a Scalable Video
Codec (SVC) [15]. The framework comprises two components:
an SVC-based Rate-adaptation Engine (SRE), and a
Congestion and Delay Monitor (CDM) as shown in Fig.1. The
key contribution is that our framework combines the adaptation
of the video stream to the network (SRE) with a dynamic
analysis of the path condition (CDM) to drive the adaptation.

Congestion-controlled video transport requires that the
sender adapts the media quality to the available network
capacity. Existing research on bitstream adaptation, e.g. [1]
[16] [17] [18] drive the rate control by encoding the video
source at the best visual quality for a given target rate. The
SRE instead uses SVC to encode a video source into a scalable
stream targeting a maximum bitrate (hence visual quality). The
resulting packets are then grouped into subsets, each subset
comprises the same number of packets (hence has the same
rate), with each assigned a Priority ID (PID). For instance,
creating 10 PIDs corresponds to creating 10 substreams each
including 10% of the total data, hence total rate. Each PID,
labeled from 1 to 10, progressively contribute to the video
quality. When enough capacity is available, all PIDs are
transmitted, resulting in full quality. When a rate reduction is
required, PIDs are discarded progressively in descending order.
This ensures a progressive fine-grained reduction of the rate
and a corresponding graceful decrease of the visual quality.
Importantly, the rate is adapted on-the-fly by transmitting only
the appropriate subset of the unique SVC stream, without
incurring any additional encoding complexity.

At the sender, the SRE increases or reduces transmission
rate driven by the CDM. The first aim is to ensure that the
packets encoding the current part of the video, say a one-
second segment, are timely received, i.e. all packets arrive by
the time the video segment is to be displayed. This delay-based

Scalable
video
stream from
encoder Priority ID

assignment

Data
Packetization,
Scheduling,
and Selection
for
transmission

Sender
1

12

2 3

34

Feedback &
control

SRE

Delay
Monitor

Receiver Packet-to-
NALU
reconstruction

Scalable
video
stream to
decoder

CDM

Fig. 1. Scalable Network Video Streaming Framework

method is discussed in the next section. This approach proves
effective when the link is shared with delay-regulated flows.
Coexistence with TCP flows causes our system to switch to a
different rate control technique, as described in section VI.

IV. DELAY-BASED RATE CONTROL
In the absence of packet loss, the main task of the CDM is

to avoid building an excessive network queue. The CDM
responds to increased delay by having the SRE gracefully
reduce the transmission rate (dropping PIDs). In case of losses,
a sharp rate reduction is requested to the SRE; the delay
associated with a loss event is recorded and then interpreted as
a sign of impending congestion. A flow reaching the path
capacity for the first time “takes note” and avoids contributing
a similar load in the future.

In summary, our delay-based approach uses one-way delay
to infer queuing delay. The delay currently experienced by
packets is compared to an interval bounded by two extremes:
minimum delay mind , and maximum delay maxd . The former is
the minimum delay experienced by a packet, updated over
several reporting intervals as new_dmin = min(old_dmin,
current_delay). The latter is set to be the smaller of the
following: (i) a value proportional to the size of the playout
buffer at the receiver; (ii) the delay associated with a loss
event. The CDM adjusts the rate depending on where the
reported delay lies amongst a set of thresholds within the
interval [mind , maxd]. Further details given in [14] are omitted
here for brevity. Instead we exemplify the system behaviour.

We simulated the network topology shown in Fig.2 with
NS-2 [21]. Two video flows, each with nominal rate of 840
kbps, share a bottleneck with 1.2 Mbps capacity. As shown in
Fig.3, the two flows begin transmitting at different times; each
flow increases its rate linearly, with video1 reaching 8 PIDs at
around 120s, while video2 reaches 6 PIDs in the same interval.
The subsequent rate increase (by a single PID) for video2
results in a combined flow rate that progressively fills the
bottleneck buffer as indicated by the ramp in the delay. This
leads to a reduction of rate by both flows at the same time
(video1 reduces from 8 to 6 PIDs and video2 from 7 to 5).
Then, each flow takes a fair share of the link without hurting
the other. No loss was recorded. Visual quality, measured
using PSNR [14], is stable around 30 dB for both flows.

Video 1 Sender Video 1 Receiver

Video 2 Receiver
Video 2 Sender

10Mbps

10Mbps

1ms

1ms

1ms

1ms

10Mbps

10Mbps

Router 2 Router 1

10ms

Bottle-neck

Fig. 2. Simulation Topology

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

ra
te[

Mb
ps

]

time[s]

0 50 100 150 200 250 300
0

0.005

0.01

los
s r

ate
[%

]

time[s]

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

de
lay

[s]

time[s]

0 50 100 150 200 250 300
25
27
29

31
33
35

av
g Y

-p
sn

r[d
B]

time[s]

video1 video2

Fig. 3. Video flows sharing a 1.2 Mbps link.

V. OVERCOMING LIMITATIONS OF DELAY-BASED TECHNIQUES
This section discusses threats to algorithms relying only on

one-way delay, as [14]. We also note that extensive evaluations
are now required. Delay and congestion measurement are
trivial in simple simulation topologies, it becomes much more
difficult in topologies reflecting actual networks, with links
with varying capacity (e.g. due to contention, differentiated
services, or path changes) and to cross-traffic sharing a
common bottleneck.

A. Late comer problem
Delay-based methods rely on measuring a base delay – the

minimum delay of a specific network path. An incorrect
measurement that assumes too low a delay can be detected. A
higher measured base delay is more difficult to determine. This
may often be a problem when a flow starts using an already
congested bottleneck – including the queuing delay of other
flows as a part of its measured delay. This leads to the ‘late
comer’s advantage’ problem. The late-comer flow thus pushes
out the early flow and uses up the entire capacity. Work in [19]
looked into this problem for LEDBAT flows.

We update our operational delay interval [mind , maxd] using
information from recent reports; so up-to-date data are used
and occasional spurious measurements are quickly purged from
the system. The use of an upper limit for maxd proportional to
the size of the receiver playout buffer provides further
resilience. Our algorithm is robust against the late comer’s

effect as shown in Fig.3, where the two video flows originate at
different times, but none takes advantage of the other.

B. Route Changes
Path characteristics can change. Another problem that

results from measured delay is when the sender reduces its rate
in response to a reported delay increase caused by a route
change, while there is no congestion. TCP Vegas suffered from
this problem and a proposal was given by [20] in to solve it.

The proposed use of updated information means that our
CDM learns the current delay characteristics following a path
change. Faster adaptation can be obtained by observing packet
jitter and by using packet-pair techniques. However, such
methods have not been proven in the general Internet and we
assume that path-changes are relatively infrequent and
therefore are not a primary target.

C. Losses and Persistent Queues
Incorrect estimates of the path RTT may lead to delay-

based methods contributing to persistent queues along a
network path due to packets arriving at already full queues,
leading to loss. In the case of packet losses, a congestion
control method needs to significantly reduce the sender rate, to
avoid further losses and potential congestion collapse.

The proposed algorithm promptly reacts to manifest
congestion by halving the rate at every loss report. The delay
associated to this loss event is used to update the value of maxd .
Following the sharp reduction, a gradual rate increase is only
pursued when the delay is consistently low. One way to
improve the response time is to predict the future delay values
by extrapolating current measured delays and observing the
trend or their gradient. The effectiveness of such approaches in
the Internet needs to be evaluated using data for actual network
paths. We defer this validation to our future work.

D. Effects of Return Path Congestion
The return path contributes to a measured RTT. Congestion

on the return path may therefore result in inaccurate estimates
of the forward path characteristics causing a sender to reduce
its rate even though the forward path is not congested. The
effect of return path congestion is reduced in our system by
using a one-way forward delay measurement instead of RTT.

If there is loss of feedback, the sender needs to assume that
there may be excessive congestion (on either path) and needs
to respond promptly to preserve network stability, but needs to
be robust to occasional loss. We therefore assume that if no
feedback arrives within two consecutive reporting intervals, a
sender should reduce its rate linearly every two consecutive
reporting intervals, until it receives a feedback updating the
status of the network. A similar approach is proposed in [23].

VI. COEXISTANCE WITH TCP AND OTHER TRAFFIC
Delay-based algorithms, including the delay-based control

for the CDM proposed in [14], are inefficient when coexisting
with loss-based methods like TCP. When a flow using a delay-
based mechanism shares with TCP flows, it reduces its rate in
response to increasing path delay (caused by TCP packets

filling the bottleneck queue). In turn, a TCP flow may continue
to probe and fill any freed capacity, gaining a larger proportion
of the bottleneck traffic.

TCP is not the only congestion control that can impact
delay-based methods. In general, delay-based mechanisms
yield to high load flows. This includes small flows (transferring
small volumes of data that may not be congestion-controlled),
and unresponsive flows (that do not implement congestion
control or implement a method different to standard TCP).

The CDM presented in this paper overcomes the limitations
of the pure delay-based approach of [14]. In essence, the
proposed CDM adaptively switches amongst three available
strategies to respond to different circumstances and path
characteristics. The different and possibly complementary
approaches to rate-control are governed by the following:
1. The media flow that shares a capacity bottleneck needs to

offer low delay and responsibly share the available
capacity with flows that use the same or similar forms of
congestion control. This includes delay-controlled flows
that have different path characteristics (RTT). Long-term
coexistence with delay-controlled flows only is unlikely
hence this approach alone does not suffice.

2. In most practical networks, capacity is also shared with
other traffic. The congestion control algorithm therefore
needs to accommodate other (background) traffic, such as
web page viewing, DNS, etc. This competing traffic adds
delay and induces losses that delay-controlled flows avoid.
Overall this traffic is intermittent and typically a video
flow experiences the delay it expects when adjusts its rate.

3. Multimedia streaming needs to be robust to persistent
queue-building and loss-inducing traffic, such as bulk TCP
flows. These flows will not readily yield to a delay-based
algorithm. Furthermore they induce repeated loss events.

By default our CDM assumes to be competing with delay-
controlled flows and employs the rate-control method
described in section IV. Multiple flows, streamed with our
system and unaware of each other, can compete for limited link
capacity, discovering the bottleneck capacity and reacting to
loss or delay by reducing their rate. Following a change of
traffic, the flow converge to a fair share of the capacity; once
this equilibrium has been reached the delay stabilizes, no loss
occur, and the visual quality is steady, as seen in Fig.3. The
same reaction, however, leads to a different result when the
bottleneck is shared with other traffic such as TCP. The impact
of such queue building and loss-inducing flows depends on the
network bottleneck they experience:
• Small buffers: When the bottleneck buffer space is small,

traffic will overflow faster and losses will be frequent, but
the path delay will remain relatively short. The congestion
control algorithm should be able to deal with these losses.

• Large buffers: If the bottleneck buffer is large compared to
the time to serialise a packet, then large path delays may
be observed and persist (with losses being infrequent).

Both cases are problematic, as a control scheme solely
designed to avoid losses and delay will drive the sending rate
down to zero and possibly terminate the flow. Large buffers
particularly impact performance as the associated long delay

may cause the video receiver to drain its playout buffer,
causing the media playout to stall. In this case, the media client
needs to increase the amount of buffered content before
playing the video. In the following we focus on small to
medium network buffers that do not imply this scenario.

The proposed CDM detects when delay and losses grow
despite consistent efforts to reduce them. This is interpreted as
a sign that (at least) one TCP-alike flow is sharing a bottleneck
link. The CDM then switches to a different operational mode.
In such TCP-aware modes the CDM adjusts the rate in a way
that encourages TCP flows to reduce their capacity share.

The success of this method will depend on the number and
arrival rate of the sharing TCP flows. In the case of many TCP
flows, it is unlikely that any sender-based method will be able
to reduce the path latency and in the absence of methods such
as AQM or ECN, the most appropriate method appears to be a
loss-based congestion control. We suggest two alternative
congestion control approaches: Safe Retreat and Responsible
Aggression.

Safe Retreat – By default the CDM starts using the delay-
based approach to transmit 5 PIDs (50% of the nominal video
rate). Delay and losses cause the CDM to progressively reduce
the rate, as shown in Fig.4. If the video flow is consistently
forced to stay at a minimum rate with reported packet losses,
then the CDM switches to Safe Retreat mode. In this mode the
CDM claims a portion of the capacity to stream, at low rate, the
packets encoding the video at minimum quality. To combat the
effect of loss we add resilience in form of packet FEC (e.g.
PID1 +FEC for a rate of 20%; or PID1+FEC PID2 for a rate of
30%) as shown in Fig.4. The result is stable, albeit minimal,
visual quality. This may continue as long as TCP probes the
link causing losses to the video flow. If the flow cannot sustain
the base rate (with FEC) then it is terminated. This “retreat”
leaves ample room for TCP connections to achieve (more than)
fair throughput. When the the TCP-induced losses cease and
the delay rapidly dives, the CDM reverts to the delay-based
approach: the FEC is dropped and the video flow gradually
increases the streaming rate reclaiming any unused capacity.

On the other hand, if the delay remains high and moderate
but frequent loss events are recorded over a certain interval, the
CDM infers the presence of a long-lived TCP flow. In this case
it switches to Responsible Aggression to claim a fair share of
the capacity.

Responsible Aggression – In this mode the CDM increases
the transmission rate from the minimum values of the Retreat
(but not more than TFRC would). As with the previous mode,

StartPID 1
FEC 1

PID 1 PID 2 PID 10PID 3 PID 4 PID 5

10 % 20 % 30 % 40 % 50 % 100 %

...........

PID 1
FEC 1
PID 2

Terminate

Increasing stream rate
Fig. 4. Safe Retreat

FEC packets are used to protect the coded data. Packet losses
are expected as the CDM tries to gain a fairer share of the link.

Starting from the Retreat value, the rate is increased by
injecting data from one additional PID at a time, followed by
copies of the same PID. If no loss is observed over a given
interval, the process is repeated. In case of loss, the rate must
be bounded by the throughput equation specified for TFRC (1)
using the measured RTT, the loss fraction (in place of the loss
event rate), and the average video packet size (e.g. obtained
from the RTCP Receiver Reports).

2

Transmit rate (Bytes/second)
2 3RTO 3 (1 32)
3 8

s

pb bpR p p

=
⎡ ⎤

+ +⎢ ⎥
⎢ ⎥⎣ ⎦

 (1)

where: s is the average packet size in bytes; R is the round trip
time in seconds; p is the loss event rate (here replaced by the
loss fraction); RTO is the equivalent TCP retransmission time
in seconds, approximated by RTO=4R; b is the number of
packets that would be acknowledged by a single TCP
acknowledgement, approximated by b = 1.

Overall this mode implements a loss-based rate control
where rate fluctuations are smoothed as much as possible. The
system tries to find equilibrium with TCP to deliver a stable,
albeit reduced, visual quality. If link capacity suffices, the flow
reaches the nominal video rate, although this time the stream
includes the FEC packets within this amount, hence the visual
quality is lower than the nominal one, losses notwithstanding.
If the link is persistently overloaded rate is reduced till
returning to Retreat. Conversely, consistent delay reduction
and no loss trigger the switch to delay-based rate control.

A. Experimental Results and Discussion
We evaluated our proposal by simulating the network in

Fig.2 where a single 700 kbps video flow shares a 1.5 Mbps
bottleneck with a TCP (FTP) flow. Fig.5 shows the sending
rate. The CDM start operating in delay-based mode. In the first
100 s, the video has the entire capacity to itself, delay is very
low, and the CDM it increases the rate steadily. Before it
achieves the nominal rate, the TCP flow starts and quickly
floods the 600ms buffer causing losses. The loss triggers a
reduction in rate, first from 8 PIDs to 4 PIDs, then in the
following two intervals down to the PID 1 (base layer).

During the interval following the sharp rate reduction (100-
150s), the algorithm senses that it may be sharing capacity with
a TCP flow because even after driving the video rate to the
base layer, the delay still remains high enough to hinder it from
growing back its rate. It therefore goes into the Safe Retreat
mode (as a transient step into the ‘responsible aggression’
mode) by adding PID 2 and also FEC packets of PIDs 1 & 2.
This allows the video to claim some capacity equivalent to 4
PIDs of rate while protecting the base layer. Since TCP still
probes for capacity, the delay persists with some losses for
more than three consecutive reporting intervals. As a result, the
algorithm enters the Responsible Aggression mode where it
gradually increases the video rate, as described previously, till
loss occurs and TCP backs-off. This allows the video flow to
claim some share of the capacity. As the video flow share of
the capacity grows, further increases become less likely, due to

0 50 100 150 200 250 300 350 400 450 500 550 600
0

0.5

1

1.5

2

2.5

ra
te

 [M
bp

s]

time[s]

video
TCP

responsible
aggression

delay-based

delay-based retreat

Fig. 5. Video and TCP send rates

0 50 100 150 200 250 300 350 400 450 500 550 600

10

15

20

25

30

35

40

av
g

Y
-p

sn
r[

dB
]

time[s]

adapt with FEC
no adapt no FEC
no adapt with 5PID+5FEC

Fig. 6. Average PSNR of received video after sharing capacity with

TCP

the CDM congestion control based on (1). The capacity share
claimed in the example of Fig.5 seems at least fair to TCP.
When the TCP flow completes transmission, the CDM detects
the conditions to switch to the delay-based rate control: the
video drops the no longer required FEC packets (rate drop at
470s) and progressively returns to nominal rate.

The receiver’s video PSNR is shown in Fig.6, with the
thick solid line corresponding to the video flow of Fig.5. In
order to quantify the loss in quality resulting from TCP
interference we report the performance of two reference video
flows, each independently streamed under the same network
conditions and with the same TCP flow of Fig.5. The two
reference flows, constantly streaming at nominal rate without
any congestion control, are: the flow containing the full video
content (dashed dark line Fig.6) and the flow containing 50%
of the content and 50% FEC protection (dotted green line
Fig.6). The first reference provides an upper bound for the
quality achievable (in principle) during the intervals when no
loss occurs; it also demonstrates that when losses do occur, the
quality drop is sudden and obvious. The second reference
shows the quality that could be achieved, using FEC to protect
against possible losses, if one knew a-priori the fair share of the
capacity.

As shown in Fig.6, during the interval 100-150s
coexistence with TCP drives down the rate and induces losses,
leading to a quality around 20 dB. Once our system switches to
TCP-aware modes, the quality improves, climbing up to 27 dB
before the rate is limited by TFRC as in (1). The maximum
quality it achieves is equivalent to 4 PIDs. The first reference,
dashed line, shows brief but severe quality fluctuations when
the video flow shares with TCP, because base layer packets
may be lost whenever TCP overflows the buffer (similar but

smaller fluctuations are observed also in the adaptive flow in
the interval 100-150s). This type of fluctuation is not desirable
for the end user. The second reference, dotted line, shows a
consistent PSNR corresponding to 5 PIDs (almost always
delivered due to FEC, as the chances of losing both a PID and
its corresponding FEC are slim).

The result of Fig.5 is evidence of the merit of the proposed
system. It confirms that it can detect the presence of a TCP
flow and then coexist with it. The comparison with the
(second) reference system in Fig.6 shows that our system
reaches almost to the same quality as the reference system that
has a-priory knowledge of the fair share of the rate (without
incurring the quality fluctuations of the other reference
system).

VII. CONCLUSION
Interactive network multimedia has expectations that differ

significantly from the properties of transport flows derived on
TCP. This paper explores methods that are designed to
minimize the impact of loss and avoid excessive delay. The
approach discusses these methods related to a framework,
asserting that solutions that consider only transport or media
adaptation are suboptimal and a cross-layer optimization is
essential.

Our framework utilizes a scalable video codec. This has
two primary advantages: First it allows a flexible and low-cost
adaptation of the media rate driven by a congestion control
transport protocol. Second the scalable video format allows
additional FEC to be introduced to protect key parts of the
media flow from the effects of congestion-induced loss. This
can make informed decisions on what media to send to
optimize video quality to available network capacity.

Proactive congestion control mechanisms are essential to
maintain acceptable interactive multimedia performance.
However we also conclude that there are fundamental
limitations to methods that rely only on delay measurements as
congestion signals. Instead we assert that delay has to form one
important metric but must for robustness be combined with
methods to promote fair coexistence with other flows sharing
the capacity of a network bottleneck.

ACKNOWLEDGMENT
This research was partially funded by the European

Community under its Seventh Framework Programme through
the Reducing Internet Transport Latency (RITE) project (ICT-
317700). The views expressed are solely those of the
author(s).

REFERENCES
[1] IETF RMCAT WG Charter, Available at:

http://datatracker.ietf.org/wg/rmcat/.
[2] M. Allman, V. Paxson and E. Blanton, "TCP Congestion Control," IETF

RFC 5681, September, 2009.
[3] S. Floyd, M. Handley, J. Padhye and J. Widmer, "TCP friendly rate

control: TFRC Protocol specification " IETF RFC 5348, September,
2008.

[4] ISO/IEC JTC 1/SC 29, " MPEG-2 (Generic coding of moving pictures
and associated audio information)," ISO/IEC JTC 1/SC 29, November,
2009.

[5] ITU-T Recommendation H.264, "Advanced video coding for generic
audiovisual services," SERIES H: AUDIOVISUAL AND MULTIMEDIA
SYSTEMS, May, 2003.

[6] L. S. Brakmo, S. W. O'Malley and L. L. Peterson, "TCP Vegas: New
techniques for congestion detection and avoidance," in Proceedings of
the Conference on Communications Architectures, Protocols and
Applications SIGCOMM, New York, 1994, pp. 24-35.

[7] J. Martin, A. Nilsson, I. Rhee, “Delay-Based Congestion Avoidance for
TCP”, IEEE/ACM Transactions on Networking, vol. 11, Issue 3, pp.
356-369, 2003.

[8] S. Shalunov, G. Hazel, J. Iyengar and M. Kuehlewind, "Low Extra
Delay Background Transport (LEDBAT)," IETF RFC 6817, December,
2012.

[9] K. Winstein, A. Sivaraman, H. Balakrishnan, “Stochastic Forecasts
Achieve High Throughput and Low Delay over cellular Networks”,
USENIX Symposium on Networked Systems Design and Implementation,
Lombard, IL, April 2013.

[10] K. Ramakrishnan, S. Floyd and D. Black, "The Addition of Explicit
Congestion Notification (ECN) to IP," IETF RFC 3168, September,
2001.

[11] R. Jain, “A delay-based approach for congestion avoidance in
interconnected heterogeneous computer networks”, Comp. Comm. Rev.
9(5), pp. 56-71 (1989).

[12] K. Tan, K. Song, Q. Zhang, M. Sridharan, “A Compound TCP
Approach for High Speed and Long Distance Networks”, IEEE
INFOCOM ’06, pp. 1-12.

[13] L. Budzisz, “On Fair coexistence of Loss- and Delay-based TCP”,
IEEE/ACM Trans. On Networking, Vol. 19, Issue 6, 2011, pp. 1811-
1824.

[14] N. Iya, F. Verdicchio, R. Secchi, G. Fairhurst, “Rate Adaptation and
Congestion Avoidance for Scalable Video Streaming”, 14th Annual
PGNet Symposium, Liverpool, June 2013.

[15] H. Schwarz, D. Marpe and T. Wiegand, "Overview of the Scalable
Video Coding Extension of the H.264/AVC Standard," Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 17, pp. 1103-
1120, 2007

[16] Do-Kyoung Kwon, Mei-Yin Shen and C. -. J. Kuo, "Rate Control for
H.264 Video With Enhanced Rate and Distortion Models," Circuits and
Systems for Video Technology, IEEE Transactions on, vol. 17, pp. 517-
529, 2007.

[17] P. Lambert, W. De Neve, P. De Neve, I. Moerman, P. Demeester and R.
Van de Walle, "Rate-distortion performance of H.264/AVC compared to
state-of-the-art video codecs," Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 16, pp. 134-140, 2006.

[18] Jin Yang, Yu Sun, C. S. Kline and Shixin Sun, "Adaptive initial
quantization parameter selection for H.264/SVC rate control," in
Intelligent Computing and Intelligent Systems (ICIS), 2010 IEEE
International Conference on, 2010, pp. 723-726.

[19] G. Carofiglo, L. Muscariello, D. Rossi, S. Valenti, “The Quest for
LEDBAT Fairness”, IEEE GLOBECOM 2010, pp. 1-6.

[20] K. N. Srijith, L. Jacob, A. L. Ananda, “TCP Vegas-A: Solving the
fairness and rerouting issues of TCP Vegas”, Proceedings of the IEEE
International Performance, Computing and Communications
Conference, 2003, pp. 309-316.

[21] “The Network Simulator – ns-2”.
http://www.isi.edu/nsnam/index.php/User_Information, November 5,
2011.

[22] J. Iyengar, B. Ford, D. Ailawadi, S. O. Amin, M. Nowlan, N. Tiwari, J.
Wise, “Minion—an All-Terrain Packet Packhorse to Jump-Start Stalled
Internet Transports” PFLDNet 2010, November 2010.

[23] C. Perkins and V. Singh, "RTP Congestion Control: Circuit Breakers for
Unicast Sessions draft-perkins-avtcore-rtp-circuit-breakers" IETF
Internet Draft, February, 2013.

