33 research outputs found

    Robust transmission design for multicell D2D underlaid cellular networks

    Get PDF
    This paper investigates the robust transmission design (RTD) of a multicell device-to-device (D2D) underlaid cellular network with imperfect channel state information (CSI). The bounded model is adopted to characterize the CSI impairment and the aim is to maximize the worst-case sum rate of the system. To protect cellular communications, it is assumed that the interference from all D2D transmitters to each base station (BS) is power-limited. It is first shown that the worst-case signal-to-interference-plus-noise ratio (SINR) of each D2D link can be obtained directly, while that of cellular links cannot be similarly found since the channel estimation error vectors of cellular links are coupled in the SINR expressions. To solve the nonconvex problem, the objective function of the original problem is replaced with its lower bound, and the resulted problem is decomposed into multiple semidefinite programming (SDP) subproblems, which are convex and have computationally efficient solutions. An iterative RTD algorithm is then proposed to obtain a suboptimal solution. Simulation results show that D2D communication can significantly increase the performance of the conventional cellular systems while causing tolerable interference to cellular users. In addition, the proposed RTD algorithm outperforms the conventional nonrobust transmission design greatly in terms of network spectral efficiency

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    Joint Beamforming and Power Optimization for D2D Underlaying Cellular Networks

    Get PDF
    This paper studies the optimal joint beamforming and power control strategy for device-to-device (D2D) communication underlaying multiuser multiple-input multiple-output cellular networks. We consider multiple antennas at the base station (BS) and a single antenna at each cellular user (CU), D2D transmitter (DT) and D2D receiver (DR). We aim to minimize the total transmission power of the system by jointly designing the transmit beamforming at the BS and the transmit powers for both BS and DTs, while satisfying the signal-to-interference-plus-noise ratio based quality-of-service constraints for both CUs and DRs. Due to the non-convex nature of the problem, we apply the semidefinite relaxation technique to find the optimal solution, which always satisfies the rank-one constraint. We also investigate three sub-optimal fixed beamforming schemes: zero-forcing (ZF), regularized ZF and hybrid maximum ratio transmission-ZF, where the focus is to minimize the total transmission power while reducing complexity. When perfect channel information is not available, we propose a robust transmit power minimization strategy with ZF beamforming which only requires limited feedback based channel direction information at the BS. Finally, computer simulation results are presented to demonstrate the effectiveness of the proposed schemes

    Reinforcement Learning-Based Resource Allocation for M2M Communications over Cellular Networks

    Get PDF
    The spectrum efficiency can be greatly enhanced by the deployment of machine-to-machine (M2M) communications through cellular networks. Existing resource allocation approaches allocate maximum resource blocks (RBs) for cellular user equipments (CUEs). However, M2M user equipments (MUEs) share the same frequency among themselves within the same tier. This results in generating co-tier interference, which may deteriorate the MUE's quality-of-service (QoS). To tackle this problem and improve the user experience, in this paper, we propose a novel resource utilization policy, which exploits reinforcement learning (RL) algorithm considering the pointer network (PN). In particular, we design an optimization problem that determines the optimal frequency and power allocation needed to maximize the achievable rate performance of all M2M pairs and CUEs in the network subject to the co-tier interference and QoS constraints. The proposed scheme enables the user equipment (UE) to autonomously select an available channel and optimal power to maximize the network capacity and spectrum efficiency while minimizing co-tier interference. Moreover, the proposed scheme is compared with traditional spectrum allocation schemes. Simulation results demonstrate the superiority of the proposed scheme than that of the traditional schemes. Moreover, the convergence of the proposed scheme is investigated which reduces the computational complexity (CC)

    Joint Optimization of Signal Design and Resource Allocation in Wireless D2D Edge Computing

    Full text link
    In this paper, we study the distributed computational capabilities of device-to-device (D2D) networks. A key characteristic of D2D networks is that their topologies are reconfigurable to cope with network demands. For distributed computing, resource management is challenging due to limited network and communication resources, leading to inter-channel interference. To overcome this, recent research has addressed the problems of wireless scheduling, subchannel allocation, power allocation, and multiple-input multiple-output (MIMO) signal design, but has not considered them jointly. In this paper, unlike previous mobile edge computing (MEC) approaches, we propose a joint optimization of wireless MIMO signal design and network resource allocation to maximize energy efficiency. Given that the resulting problem is a non-convex mixed integer program (MIP) which is prohibitive to solve at scale, we decompose its solution into two parts: (i) a resource allocation subproblem, which optimizes the link selection and subchannel allocations, and (ii) MIMO signal design subproblem, which optimizes the transmit beamformer, transmit power, and receive combiner. Simulation results using wireless edge topologies show that our method yields substantial improvements in energy efficiency compared with cases of no offloading and partially optimized methods and that the efficiency scales well with the size of the network.Comment: 10 pages, 7 figures, Accepted by INFOCOM 202
    corecore