453 research outputs found

    An Integrated Kernel PCA Neural Network and EGM for Number of Sources Estimation in Wireless Communication

    Get PDF
    The present work argues estimating number of sources in communication system using an integrated model of Principal Component Analysis (PCA) neural network and kernel method to produce Eigenvalue Grads Method (EGM). The essential advantage of this new suggested model is that, PCA neural is used to determine the covariance matrix   instead of the traditional computation process which is time consuming. Simulation outcomes of this adopted model demonstrate wonderful responses through effectiveness, fast converge speed for (PCA) neural network, as well as achieving correct number of sources

    Domain Generalization by Marginal Transfer Learning

    Full text link
    In the problem of domain generalization (DG), there are labeled training data sets from several related prediction problems, and the goal is to make accurate predictions on future unlabeled data sets that are not known to the learner. This problem arises in several applications where data distributions fluctuate because of environmental, technical, or other sources of variation. We introduce a formal framework for DG, and argue that it can be viewed as a kind of supervised learning problem by augmenting the original feature space with the marginal distribution of feature vectors. While our framework has several connections to conventional analysis of supervised learning algorithms, several unique aspects of DG require new methods of analysis. This work lays the learning theoretic foundations of domain generalization, building on our earlier conference paper where the problem of DG was introduced Blanchard et al., 2011. We present two formal models of data generation, corresponding notions of risk, and distribution-free generalization error analysis. By focusing our attention on kernel methods, we also provide more quantitative results and a universally consistent algorithm. An efficient implementation is provided for this algorithm, which is experimentally compared to a pooling strategy on one synthetic and three real-world data sets

    Efficient online subspace learning with an indefinite kernel for visual tracking and recognition

    Get PDF
    We propose an exact framework for online learning with a family of indefinite (not positive) kernels. As we study the case of nonpositive kernels, we first show how to extend kernel principal component analysis (KPCA) from a reproducing kernel Hilbert space to Krein space. We then formulate an incremental KPCA in Krein space that does not require the calculation of preimages and therefore is both efficient and exact. Our approach has been motivated by the application of visual tracking for which we wish to employ a robust gradient-based kernel. We use the proposed nonlinear appearance model learned online via KPCA in Krein space for visual tracking in many popular and difficult tracking scenarios. We also show applications of our kernel framework for the problem of face recognition

    Spectral and spatial methods for the classification of urban remote sensing data

    Get PDF
    Lors de ces travaux, nous nous sommes intéressés au problème de la classification supervisée d'images satellitaires de zones urbaines. Les données traitées sont des images optiques à très hautes résolutions spatiales: données panchromatiques à très haute résolution spatiale (IKONOS, QUICKBIRD, simulations PLEIADES) et des images hyperspectrales (DAIS, ROSIS). Deux stratégies ont été proposées. La première stratégie consiste en une phase d'extraction de caractéristiques spatiales et spectrales suivie d'une phase de classification. Ces caractéristiques sont extraites par filtrages morphologiques : ouvertures et fermetures géodésiques et filtrages surfaciques auto-complémentaires. La classification est réalisée avec les machines à vecteurs supports (SVM) non linéaires. Nous proposons la définition d'un noyau spatio-spectral utilisant de manière conjointe l'information spatiale et l'information spectrale extraites lors de la première phase. La seconde stratégie consiste en une phase de fusion de données pre- ou post-classification. Lors de la fusion postclassification, divers classifieurs sont appliqués, éventuellement sur plusieurs données issues d'une même scène (image panchromat ique, image multi-spectrale). Pour chaque pixel, l'appartenance à chaque classe est estimée à l'aide des classifieurs. Un schéma de fusion adaptatif permettant d'utiliser l'information sur la fiabilité locale de chaque classifieur, mais aussi l'information globale disponible a priori sur les performances de chaque algorithme pour les différentes classes, est proposé. Les différents résultats sont fusionnés à l'aide d'opérateurs flous. Les méthodes ont été validées sur des images réelles. Des améliorations significatives sont obtenues par rapport aux méthodes publiées dans la litterature

    Learning with Kernels

    Get PDF

    Multi-Classifiers And Decision Fusion For Robust Statistical Pattern Recognition With Applications To Hyperspectral Classification

    Get PDF
    In this dissertation, a multi-classifier, decision fusion framework is proposed for robust classification of high dimensional data in small-sample-size conditions. Such datasets present two key challenges. (1) The high dimensional feature spaces compromise the classifiers’ generalization ability in that the classifier tends to overit decision boundaries to the training data. This phenomenon is commonly known as the Hughes phenomenon in the pattern classification community. (2) The small-sample-size of the training data results in ill-conditioned estimates of its statistics. Most classifiers rely on accurate estimation of these statistics for modeling training data and labeling test data, and hence ill-conditioned statistical estimates result in poorer classification performance. This dissertation tests the efficacy of the proposed algorithms to classify primarily remotely sensed hyperspectral data and secondarily diagnostic digital mammograms, since these applications naturally result in very high dimensional feature spaces and often do not have sufficiently large training datasets to support the dimensionality of the feature space. Conventional approaches, such as Stepwise LDA (S-LDA) are sub-optimal, in that they utilize a small subset of the rich spectral information provided by hyperspectral data for classification. In contrast, the approach proposed in this dissertation utilizes the entire high dimensional feature space for classification by identifying a suitable partition of this space, employing a bank-of-classifiers to perform “local” classification over this partition, and then merging these local decisions using an appropriate decision fusion mechanism. Adaptive classifier weight assignment and nonlinear pre-processing (in kernel induced spaces) are also proposed within this framework to improve its robustness over a wide range of fidelity conditions. Experimental results demonstrate that the proposed framework results in significant improvements in classification accuracies (as high as a 12% increase) over conventional approaches
    corecore