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In this dissertation, a multi-classifier, decision fusion framework is proposed for 

robust classification of high dimensional data in small-sample-size conditions. Such 

datasets present two key challenges. (1) The high dimensional feature spaces compromise 

the classifiers’ generalization ability in that the classifier tends to over-fit decision 

boundaries to the training data. This phenomenon is commonly known as the Hughes 

phenomenon in the pattern classification community. (2) The small-sample-size of the 

training data results in ill-conditioned estimates of its statistics. Most classifiers rely on 

accurate estimation of these statistics for modeling training data and labeling test data, 

and hence ill-conditioned statistical estimates result in poorer classification performance. 

This dissertation tests the efficacy of the proposed algorithms to classify primarily 

remotely sensed hyperspectral data and secondarily diagnostic digital mammograms, 

since these applications naturally result in very high dimensional feature spaces and often 

do not have sufficiently large training datasets to support the dimensionality of the 



 

  

feature space. Conventional approaches, such as Stepwise LDA (S-LDA) are sub-

optimal, in that they utilize a small subset of the rich spectral information provided by 

hyperspectral data for classification. In contrast, the approach proposed in this 

dissertation utilizes the entire high dimensional feature space for classification by 

identifying a suitable partition of this space, employing a bank-of-classifiers to perform 

“local” classification over this partition, and then merging these local decisions using an 

appropriate decision fusion mechanism. Adaptive classifier weight assignment and 

nonlinear pre-processing (in kernel induced spaces) are also proposed within this 

framework to improve its robustness over a wide range of fidelity conditions. 

Experimental results demonstrate that the proposed framework results in significant 

improvements in classification accuracies (as high as a 12% increase) over conventional 

approaches. 
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CHAPTER I 

INTRODUCTION 

1.1 Background 

Jain et al [1] define statistical pattern recognition as “The study of how machines 

can observe the environment, learn to distinguish patterns of interest from their 

background, and make sound and reasonable decisions about the categories of the 

patterns.” Supervised pattern classification entails the use of labeled training data for 

learning appropriate class conditional statistical models, which are later employed for 

making labeling decisions about unlabeled test data. In scenarios where labeled training 

data is not available, unsupervised classification is employed to identify clusters and 

patterns and assign them to unknown classes [1], [2]. Assigning class labels to patterns is 

a task employed in a wide variety of fields. Some examples include the use of such 

systems for fingerprint recognition [1], speech recognition [1], [3], speaker identification 

[4], Automatic Target Recognition (ATR) in images collected by remote sensing 

modalities and automatic detection of breast cancer by analyzing mammograms [5]. 

In the context of remote sensing applications, ATR systems employ statistical 

pattern recognition paradigms for identifying targets in images using spatial and spectral 

information. Hyperspectral target recognition uses the rich information available in 

spectral signatures of target and background pixels for identifying targets in an image. 
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Most hyperspectral sensors capture reflectance information at every pixel over hundreds 

of spectral bands. This results in a very high dimensional pattern recognition problem, 

thereby requiring an overwhelming amount of training data (ground truth) for accurate 

representation of class conditional distributions. Further, with an increase in 

dimensionality of a pattern recognition system, the generalization capacity of the 

recognizer decreases, thereby resulting in poorer recognition performance. This is well 

known as the Hughe’s phenomenon in the remote sensing and pattern classification 

community. Conventional hyperspectral ATR systems project the high dimensional 

reflectance signatures onto a lower dimensional subspace using techniques such as 

Principal Components Analysis (PCA), Fisher’s Linear Discriminant Analysis (LDA) and 

stepwise LDA etc., and then employ a single classifier for labeling tasks [6]. Although 

these dimensionality reduction schemes are successful in reducing the ground truth 

requirement for unbiased modeling by the classifier [6], [7], [8], these projections are not 

necessarily optimal from a pattern classification perspective [9]. For example, a PCA 

projection may discard useful discrimination information if it were oriented along 

directions of small global variance, an LDA projection will be inaccurate for multimodal 

class distributions, etc.  Another factor that governs the efficacy of such dimensionality 

reduction techniques is the amount of training data required to learn the projections. For 

example, if the amount of training pixels is insufficient for a given feature space 

dimensionality, the sample scatter and covariance matrices are likely to be ill-

conditioned, and transformations such as PCA and LDA may not yield optimal 

projections. Similarly, other techniques such as best-bands selection [10] are also likely 

to be sub-optimal for ATR and ground cover classification tasks, considering the fact that 
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they do not fully utilize the rich spectral information in hyperspectral (or multispectral) 

signatures for final classification. 

There is a growing interest in using multiple data sources for robust ATR. Data 

fusion in this context typically exploits multiple, independent observations of a 

phenomenon and involves a feature level or a decision level fusion for various 

recognition and identification tasks [11], [12]. In this work, a divide-and-conquer 

approach is proposed that employs such data fusion techniques to exploit hyperspectral 

data, which otherwise typically suffers from the small-sample-size problem. The key 

problem that is addressed in this research is the design of a robust classification system, 

capable of performing recognition tasks such as ATR accurately under the small-sample-

size formulation – i.e., when the size of the training data is much less than that required to 

support the dimensionality of the feature space.  

1.2 Motivation behind the Proposed Work – Classification of Hyperspectral 

Imagery under Small Training Sample Size Conditions 

Hyperspectral imagery is a three-dimensional cube where two dimensions are 

spatial and one dimension is spectral. Thus, each pixel is actually a vector comprised of a 

hyperspectral signature containing up to hundreds or thousands of spectral bands. 

Recording reflectance values over a wide region of the spectrum potentially increases the 

class separation capacity of the data as compared to gray scale imagery (where most of 

the class specific information is extracted from spatial relations between pixels) or 

multispectral imagery (where reflectance values at a few spectral bands are recorded). 

Availability of this rich spectral information has made it possible to design classification 
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systems that can perform ground cover classification and target recognition very 

accurately. However, this advantage of hyperspectral data is typically accompanied by 

the burden of requiring large training datasets. In order to facilitate accurate estimation of 

class conditional statistics of hyperspectral data and to avoid ill-conditioned formulations, 

it is necessary to have sufficient ground truth (labeled) training data available a-priori. 

This however is not guaranteed in a general remote sensing setup. In fact, in many 

hyperspectral applications (for example, the detection of isolated targets), the amount of 

ground truth pixels available to the analyst may be less than the dimensionality of the 

data. Another ramification of having a high dimensional feature space is over-fitting of 

decision boundaries by classifiers [2], and consequently, poor generalization capacity. In 

other words, in such high dimensional spaces, it is possible that a good classifier will 

learn the decision boundaries based on the training data remarkably well, but may not be 

able to generalize well to a test set that varies slightly in its statistical structure.  

As a result of the problems associated with hyperspectral data outlined above, in 

the absence of a large training database, it is common for researchers to either (a) limit 

the number of spectral bands they use for analysis (for example, best-bands selection), or, 

(b) perform transform based dimensionality reduction (such as PCA, LDA, Stepwise 

LDA etc.) prior to classification. Conventionally, techniques such as best-bands selection, 

stepwise feature extraction (e.g., stepwise LDA) etc. are commonly employed in such 

scenarios, but as mentioned previously, these are sub-optimal in that they do not utilize 

the rich spectral information provided by hyperspectral signatures. The system proposed 

in this work employs a multi-classifier, decision fusion framework to exploit such 

hyperspectral data. 
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1.3 Alternate High Dimensional Classification Application – Robust Computer 

Aided Diagnosis (CAD) of Mammographic Masses 

Despite mammography being the modality of choice for the detection of breast 

cancer, mammogram images are sometimes hard to read, because some breast cancers 

blend into breast tissue. Radiologists often employ Computer Aided Diagnosis (CAD) 

systems to facilitate greater accuracy in detection. Most end-to-end CAD systems follow 

a three step approach – (1) Image enhancement and segmentation, (2) Feature extraction, 

and, (3) Classification. While the state-of-the-art in image enhancement and segmentation 

can now very accurately identify regions of interest for feature extraction, the resulting 

feature spaces are typically very high dimensional. This adversely affects the 

performance of classification systems because a large feature space dimensionality 

necessitates a large training database to accurately model the statistics of benign and 

malignant features. As an alternate application, in this dissertation, the multi-classifier 

decision fusion framework that employs a divide-and-conquer approach for alleviating 

the affects of high dimensionality of feature vectors is tested with such a mammography 

dataset. The feature space is partitioned into multiple smaller sized groups, and a bank of 

classifiers (a multi-classifier system) is employed to perform classification in each group. 

Finally, a decision fusion system merges decisions from each classifier in the bank into a 

single decision per mammogram. 

1.4 Contributions of this Work 

This research seeks to design a system that is capable of performing classification 

tasks on high dimensional data when only a relatively small amount of training data is 
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available. Based on an intelligent partitioning scheme, the (one-dimensional) 

hyperspectral data is partitioned into smaller subspaces. After appropriate pre-processing, 

the data in each subspace is applied to a separate classifier (independent of other 

subspace classifiers). The local classifications resulting from this bank of classifiers are 

fused in an appropriate manner using a decision fusion system. This procedure partitions 

the single classification problem over the entire hyperspectral space into multiple 

classification problems, each over a subspace of a much smaller dimension. In the 

process, the system uses the entire spectral information for classifying pixels, while 

alleviating the problems associated with high dimensional data – ill-conditioning due to 

small-sample-size, and, over-fitting of decision boundaries due to high dimensionality. 

The primary contributions of this dissertation are listed below. 

1. Design appropriate partitioning schemes from a multi-classifier, decision 

fusion perspective, which will ensure acceptable local classification across all 

subspaces, and a robust decision fusion to fuse these local classifications. 

2. Design an adaptive classifier weight assignment scheme for a multi-classifier 

decision fusion system, where weights are based on a-priori knowledge 

acquired from training data. This approach may prove critical for success in 

applications where non-uniform fidelity exists across subspaces. 

3. Determine the sensitivity of various multi-classifier, decision fusion schemes, 

including the proposed methods, to different signal fidelity conditions, 

particularly for hyperspectral remote sensing applications. 
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4. Determine appropriate transform based projections at the subspace level that 

will improve class separation in the proposed framework. In particular, the 

following projections are studied. 

o Conventional dimensionality reduction techniques (such as LDA). 

These projections are known for their potential to improve class 

separation when the original class distributions are uni-modal. 

o Kernel based discriminant analysis projections (Such as Kernel 

LDA). These projections have been recently explored in the pattern 

classification community to improve class separation when original 

class distributions are multi-modal, or the class separation is non-

linear. 

5. Analyze the generalization ability of the proposed framework by applying it to 

alternate small-sample-size application classification tasks. 

1.5 Outline of this Dissertation 

The outline of this dissertation is as follows. Chapter II will review the relevant 

background information, current state-of-the-art in pattern classification systems, and the 

challenges faced in current classification paradigms under small-sample-size conditions. 

In Chapter III, the proposed multi-classifier and decision fusion framework is discussed 

in detail. The efficacy of various metrics for partitioning the hyperspectral space into 

contiguous subspaces is studied in this chapter. An adaptive confidence based classifier 

weight assignment is also proposed, that ensures robust classification performance when 

hyperspectral signatures possess fidelity that is non-uniform across the spectrum. In 
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chapter IV, a kernel discriminant analysis projection is proposed at the subspace level, to 

ensure reliable classification performance, even when the pixel mixing between target 

and background pixels is severe. In chapter V, to illustrate the aptness of the proposed 

multi-classifier, decision fusion framework to alternate applications, the framework is 

employed for three alternate practical classification tasks – (1) Invasive species 

classification using satellite hyperspectral imagery, (2) A multitemporal hyperspectral 

classification task, and, (3) A classification of malignant and benign masses using digital 

mammogram images in a CAD system.  Results from these experiments will demonstrate 

that the MCDF framework can be extended to different high-dimensional, small-sample-

size statistical pattern classification problems. Chapter VI concludes this dissertation with 

a summary of results and discussion of suggested future work in this direction. 
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CHAPTER II 

BACKGROUND AND CHALLENGES 

2.1 Conventional Single-Classifier based Pattern Recognition Systems 

Traditional pattern recognition systems are typically based on supervised or 

unsupervised classification algorithms. Supervised pattern classification entails the use of 

labeled training data for learning appropriate class conditional statistical models, which 

are then employed for making labeling decisions about unlabeled test data. In scenarios 

where labeled training data is not available, unsupervised classification is employed to 

identify clusters and patterns and assign them to unknown classes [1], [2]. In this 

dissertation, supervised classifiers are employed and studied, since they are expected to 

perform better than unsupervised classifiers, and the tasks that are studied in this 

dissertation allow for labeled training data to be available a-priori. Assigning class labels 

to patterns is a task employed in a wide variety of fields. Some examples include the use 

of such systems for fingerprint recognition [1], speech recognition [1], [3], speaker 

identification [4], automatic target recognition in images collected by remote sensing 

modalities and automatic detection of breast cancer by analyzing mammograms [5]. In 

this chapter, a description of some supervised classification techniques will be provided. 

A description of various dimensionality reduction techniques, and their advantages and 

disadvantages will also be presented. Finally, relevant background information for 
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hyperspectral image analysis systems and CAD systems for digital mammography will be 

provided. 

2.1.1 Supervised Classification Techniques 

As the name suggests, supervised classification techniques are “supervised” with 

the aid of class labels of training data provided to the classifier. Based on these class 

labels, a supervised classifier builds a statistical model for every class. For each test data 

sample that comes through, it compares it to each of the available statistical models, to 

find the “nearest” match, and assigns the label of the statistical model with which the 

sample matches well. Supervised classifiers themselves can be either parametric, or non-

parametric in nature. Parametric classifiers, such as a maximum-likelihood classifier, 

parameterize the statistical model for every class with a finite number of parameters. In 

the case of a maximum-likelihood classifier, which will be described momentarily, the 

parameters could be the class means and covariance matrices. Another commonly 

employed parametric classifier, particularly for time-series analysis is a Hidden Markov 

Model (HMM) classifier. Non-parametric classifiers on the other hand do not attempt to 

parameterize the class-conditional distributions. Instead, they rely on other techniques, 

such as a histogram approximation for representing class-conditional statistics. In this 

dissertation, quadratic maximum-likelihood classifiers will be employed for class 

labeling. 

Quadratic maximum-likelihood classifiers employed in this dissertation assume a 

normal (Gaussian) class conditional distribution [2] for every class. Assuming equal 
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priors (a-priori class probabilities), the class membership function for such a classifier is 

given by [2] 

r 1 r r T −1 r r 1M(w | x) =− (x −μ ) Σ (x −μ ) − lnΣi , (2.1)i i i i2 2 

r
where the distribution for the i’th class is given by p(w | x ) ~ N (μ , Σ ) .i i i 

Assuming unequal priors [2], the corresponding class membership function in 

(2.1) is modified to incorporate a-priori information as  

r 1 r r T −1 r r 1M (wi | x) = − (x − μi ) Σi (x − μi ) − ln + ln P(wi ) , (2.2)Σi2 2 

where, P ( wi ) is the prior probability of class i estimated from the training data. For a 

two-class problem, the resulting decision surfaces, as represented by the class 

membership functions in (2.1) and (2.2) are hyperquadrics [2]. 

The choice of this classifier in this dissertation is motivated by the fact that after a 

LDA (or KDA) based pre-processing, most feature spaces will exhibit Gaussian 

distributions in the transformed space (by virtue of the central-limit theorem), and hence 

a normal density function becomes a fair assumption. Further, the choice of a normal 

density function in the model makes parameterization easy – mean vectors and 

covariance matrices are sufficient to represent class statistics.  

2.2 Dimensionality Reduction Techniques for Pattern Classification 

As mentioned previously, the high dimensionality of hyperspectral data comes 

with both advantages and disadvantages. The rich spectral information is likely to be 

beneficial for most target recognition and ground cover classification tasks. However, 

lack of sufficient training data creates a possibility for the class conditional statistical 
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models to be ill-conditioned, and hence, can have a detrimental effect on the recognition 

or classification problem at hand. Further, the extremely large dimensionality of 

hyperspectral data coupled with limited training data also often results in poor 

generalization capability, where the decision boundaries learned by the statistical 

classifier over-fit the training data. To mitigate these consequences of hyperspectral data, 

most researchers project the hyperspectral data onto lower dimensional spaces before 

proceeding with the classification task.  

Common choices of dimensionality reduction algorithms in the pattern 

classification community are best-bands selection, PCA, LDA and variations such as 

subspace LDA, stepwise LDA etc. [6], [7], [8], [10]. PCA and its variants are sub-optimal 

in a general classification setup [9]. LDA transformations and their variants require 

labeled training data to estimate the transformation. Further, LDA transformations are 

likely to break down when the class conditional distributions are multi-modal in nature. 

Techniques such as best-bands selection on the other hand do not utilize the rich spectral 

information available in hyperspectral signatures, and hence, by design are sub-optimal. 

The following sub-sections will briefly review three commonly employed dimensionality 

reduction mechanisms – PCA, LDA and best-bands selection, since these projections 

(and some of their variations, such as stepwise LDA) will be employed as baseline 

transformations – as a comparison with the recognition performance of the proposed 

system. An intuitive mathematical argument will also be presented to show the 

detrimental effects of PCA on class separation.  
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2.2.1 Principal Components Analysis (PCA) 

r T r r m r nPCA seeks to find a linear transformation y = W x , where x ∈ ℜ , y ∈ ℜ 

and m > n , such that the variance of the data is maximized in the projected space. 

Mathematically, PCA is a diagonalizing transformation that diagonalizes the covariance 

matrix of the global data set. It is also an unsupervised transformation in the sense that it 

does not require labeled training data for finding the transformation. While m is the 

dimensionality of the original feature space, n is the desired dimension of the projected 

space, and is usually determined as the number of significant eigenvalues in the spectral 

rdecomposition of the global covariance matrix. Assume that the covariance matrix of {x} 

(let us denote it as ∑ x ) is diagonalizable, and the spectral decomposition is given by 

∑ x = U Λ U T , (2.3) 

where Λ is a diagonal matrix with eigenvalues on the diagonal, andU is the 

corresponding eigenvector matrix. It is easy to show [2], [13] that the optimal 

transformation in a mean squared error sense, W T that maximizes the overall spread of 

the data is given by the eigenvector matrix after removing eigenvectors corresponding to 

small eigenvalues from it. A detailed discussion and explanation of the PCA algorithm 

can be found in many standard image processing books [2], [13]. Although it is a very 

powerful tool in signal analysis and coding, by design, PCA does not maximize class 

separation in the projected space. A mathematical argument describing the ineptness of 

PCA in pattern classification tasks is presented in section 2.3.  
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2.2.2 Linear Discriminant Analysis (LDA) 

r T r r m r
LDA seeks to find a linear transformation y = W x , where x ∈ ℜ , y ∈ ℜ n 

and n ≤ c −1, (c is the number of classes), such that the within class scatter is minimized 

and the between class scatter is maximized [13]. The transformationW T is determined by 

maximizing Fisher’s ratio, 

which can be solved as a generalized eigenvalue problem. The solution is given by the 

eigenvectors of the following eigenvalue problem.  

S w 
−1SbW = ΛW , (2.5) 

where is the between-class scatter matrix and S is the within-class scatter matrix, S b w 

defined as 

c r r r rSb = ∑ ni (mi − m)(mi − m)T , (2.6) 
i=1 

c r r r rSw = ∑∑ (x − mi )(x − mi )
T (2.7) 

i=1 x r∈Ci 

Note that ST = Sw + Sw is the total scatter matrix, which is related to the global 

covariance matrix by a scaling factor. The rank of Sb is not greater than c-1, where c is 

the number of classes. This results in a transformation matrix W which projects data from 

an m-dimensional feature space, to an n-dimensional projected space, n ≤ c −1 [13]. 

Further, by seeking a solution that maximizes Fisher’s ratio, the projected data contains 

class clusters that possess compact within-class structure and a well separated between-
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class structure. This ensures that all classes are well separated in the feature space, 

thereby enhancing recognition and classification performance.  

2.3 Limitations of PCA in Pattern Classification Tasks 

In recent work, Prasad and Bruce [9] showed by means of a mathematical 

argument and experimental evidence that PCA projections can be detrimental to pattern 

classification tasks. Before discussing the discrimination power in the projected space, a 

suitable optimality criterion quantifying class separation needs to be defined. For linear 

r T rtransformations of the feature space, y = W x , a common choice for quantifying class 

separation is Fisher’s ratio 

The choice of this ratio as an optimality criterion stems from the need of feature 

extraction algorithms for pattern classification tasks to minimize the within class scatter 

while maximizing the between class scatter. Lu et al have suggested the following 

modification of the Fisher’s ratio in [14], which, can be proved to be equivalent to the 

original Fisher’s ratio, in terms of the maximizing solution 

The theoretical argument presented here covers two scenarios – (1) When the 

within-class and total scatter matrices are full ranked, and, (2) When the within-class and 

total scatter matrices are rank-deficient. Scenario (1) is likely to occur when there are 

enough training data vectors relative to the dimensionality of the feature space, and, the 

feature space itself does not contain overly redundant features (redundant features 

typically make the scatter matrices rank deficient.) For the purpose of analysis, we can 
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use the total scatter matrix, ST instead of the total covariance matrix, since both are related 

by a normalization constant. Let Sb, Sw and ST be the scatter matrices in the original 

feature space, as defined in section 2.2. A PCA projection will then solve the following 

eigenvalue problem 

(S w + S b )W = ΛW . (2.10) 

On the other hand, LDA specifically solves for the maximization of the optimality 

criterion using the generalized eigenvalue approach [2], [13]. Using the second form of 

Fisher’s ratio, J2, LDA solves the following eigenvalue problem 

( S w + S b ) 
− 1 S bW = Λ W , (2.11) 

which is known to maximize class separation. It follows that PCA will maximize the 

optimality criterion only when the solution of (2.8) is same as the solution of (2.9). It is 

obvious that a common solution will not exist for any arbitrary Sb, Sw and ST. An intuitive 

way to picture this is the following. Let the spectral decomposition of ST be 

S T = UΛU T . (2.12) 

In a PCA projection, we choose eigenvectors corresponding to large eigenvalues 

of ST for projection (let us say, the first n are retained), and the projection matrix is given 

~ byU T , which denotes a matrix containing the principal directions for projection. Let the 

~ ~ corresponding diagonal matrix of eigenvalues beΛ. WhenU T is used as the projection 

matrix, in the projected space, the modified Fisher’s ratio, J2, becomes 

~ ~ ~ ~ ~ ~ ~ ~ U T SbU U T SbU U T SbU U T SbU 
n . (2.13)J 2 (U ~) = = = = ~ T ~ ~ T ~ ~ U (Sw + Sb )U U STU Λ ∏ λii=1 

18 



 

 

 

 

  

 

 

Here, n is the number of principal components retained in the PCA projection. 

Clearly, the modified Fisher’s ratio is not guaranteed to increase relative to the original 

space by this projection because  

~~ T ~ • the value of the numerator, U SbU is not guaranteed to increase sinceU 

represents principal directions of ST, not Sb. 

~ • the value of the denominator, Λ is actually greater than the value of in the Λ 

original space, because small eigenvalues (typically, numerically close to zero) in 

~ 
Λwere discarded to create Λ . 

From these arguments, it is clear that PCA is not an optimal transformation for 

feature extraction stages of pattern recognition systems. Further, it also follows that any 

transformation that employs PCA as an intermediate transformation (e.g., Subspace LDA 

[9]) is also likely to be sub-optimal from a pattern classification perspective. Any 

reported improvements in classification performance due to PCA projections are likely to 

be a consequence of the characteristic of the dataset that was employed for the study 

(e.g., if the directions of large global variance were indeed the directions of good class 

separation.) 

The discussion above deals with scenario (1) - the case where the within-class and 

total scatter matrices are well-conditioned. Scenario (2), which deals with situations 

where PCA is applied as a tool to discard the null space of ST, as with subspace LDA, is 

studied next. Note that by definition, Sb has a rank of at most c-1, where, c is the number 

of classes. On the other hand, Sw (and hence, ST) may either be full ranked or rank 

deficient, depending on the amount of training data and redundancy of features. Zheng et 
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al pointed out in [15] that when Sw is rank deficient, the transformation that maximizes 

the optimality criterion in an ideal sense would project the data onto a subspace 

N(ST )
⊥ ∩N(Sw ) , where N(ST )

⊥is the orthogonal complement of the null space of ST and 

N (S w ) is the null space of S w . One way to visualize this is to realize that an ideal 

transformation will shrink the within class scatter (by projecting to the null space of S w ) 

in the non-null space of ST . 

In the following discussion, scatter matrices in the transformed space are denoted 

~ with a tilda, S . It is common practice in PCA transformations to project the data in 

directions such that the significant eigenvalues of the overall covariance matrix (or total 

scatter matrix) are retained. In situations where ST is rank deficient, consider a simple 

PCA projection that discards the null space of ST . Techniques such as subspace LDA 

employ PCA with this goal. Such a transformation ensures that after projection, 

~ ~ ~ 
N ( S T ) { }, the null set. If we restrict S b and w to be positive semi definite, = Φ S 

~ ~ ~ N (S ) = {N (S ) ∩ N (S )}. (2.14)T b w 

Hence, after the PCA projection, 

~ ~ N (Sb ) ∩ N (S w ) = {Φ}. (2.15) 

~ ~ Recall that the desired projection space is N(ST )
⊥ ∩N(Sw ) . However, if 

~ S T ) { } (after a PCA projection), it only implies that the intersection of the null N ( = Φ 

~ ~ ~ spaces of and is a null set. This does not guarantee N S )⊥ = Φ ; i.e. it does notS b S w ( w { }  

guarantee retention of the null space of S w . However, the most discriminative projected 

space requires both: 
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~ ~ N(S ) ={Φ}and N(S )⊥ = {Φ}. (2.16)T w 

Hence, even in a situation where PCA is used as a preprocessing step (to resolve 

singularity issues in ST) before another feature reduction step (e.g., as in subspace LDA), 

discarding the null space of ST is not necessarily the optimal strategy.  

2.4 Limitations of LDA in Pattern Classification Tasks 

LDA, though beneficial as a supervised dimensionality reduction technique, is not 

designed for tasks where the class-conditional statistics are multi-modal. This however is 

not a serious impairment for a wide array of classification tasks, since for these tasks, 

uni-modal class conditional distribution functions make for good approximations to the 

actual distributions. However, since the generalized eigenvalue formulation for LDA 

involves an inverse of the within-class scatter matrix, Sw, in situations where Sw is rank-

deficient, such as when limited training data (relative to the dimensionality of the original 

feature space) is available to estimate it, it is not possible to find a reliable solution to the 

corresponding eigenvalue problem.  

One solution that some researchers have previously proposed to recondition the 

formulation is a regularization technique, where, a small energy identity matrix is added 

to Sw before estimating its inverse. The resulting formulation is known as regularized 

LDA (R-LDA). Another approach that has had some level of success with face 

recognition tasks is the Subspace LDA approach, which is discussed in the previous 

section. In recent work, Prasad and Bruce [9] demonstrated mathematically and 

experimentally that this approach is sub-optimal at best, and does not help in 

classification of hyperspectral data. Yet another approach that alleviates the high 
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dimensionality, small-sample-size problem is the stepwise LDA (S-LDA) approach, also 

known as Discriminant Analysis Feature Extraction (DAFE). S-LDA with forward 

selection and backward rejection is now commonly employed to mitigate affects of 

small-sample-size on LDA transformations. The forward selection procedure starts by 

calculating a certain metric (in this work, Az, area under the Receiver Operator 

Characteristics / ROC curve is chosen) for each feature. The Az values are sorted in 

descending order. The feature with the highest Az gets placed into a feature vector, and 

the ROC area Az_BEST is set to Az1. The second best feature is then appended to the feature 

vector, and Az2 is computed. The second best feature is only retained if Az2 > Az_BEST. This 

process is repeated until all the individual features are examined, or until the bound on 

the maximum number of features in the feature vector is reached. This bound should not 

be larger than would be supported by the available training data size insofar as learning 

the LDA transformation is concerned.  

Next, backward rejection is performed. Assume at this stage that there are b 

features selected in the feature vector, and the best ROC area is Az_BEST. If b = 1, then no 

features may be removed, and the process halts. If b > 1, then the first feature is removed, 

and the ROC area A’z1 is calculated. If A’z1 > Az_BEST, then the first feature vector is 

removed, and Az_BEST is set to A’z1. This process continues until all features have been 

examined.  

This forward selection and backward rejection approach results in a determination 

of the “best” feature subset, upon which if LDA is applied, the class separation in the 

resulting space will be high. Recent studies involving the DAFE algorithm have shown Az 

[26] to work well in the forward selection, backward rejection task. Although this 
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algorithm allows us to draw on the benefits of the LDA transformation for high 

dimensional feature spaces, it is still sub-optimal, in that the selection and rejection 

procedures outlined above do not perform an exhaustive search in the feature space to 

find the optimal ‘combinations’ of features.  

2.5 Hyperspectral Best-Bands Selection 

Hyperspectral best-bands selection (also referred to as band selection) is a 

dimensionality reduction technique employed by many researchers to extract the “most 

useful” bands of a hyperspectral dataset for classification and recognition tasks [16]. This 

approach entails the use of an appropriate performance metric as a criterion for selecting 

bands out of all available bands of hyperspectral signatures for training a classifier. The 

performance metric employed could be supervised (i.e., make use of class label 

information), or unsupervised. In either case, this approach is sub-optimal by design even 

though it can reduce the dimensionality of high dimensional hyperspectral data 

substantially, since it discards a majority of the spectral information before classification.  

In this work, band selection (BNDS) will be used as another baseline method, 

against which recognition performance of the proposed system will be compared. Due to 

its popularity and previously documented “efficacy” [16], entropy will be used as the 

metric for band selection in this dissertation. The corresponding BNDS algorithm is 

simple – Use training data to estimate entropy of each feature in the feature vector; rank 

order features in descending order of entropy; select the top n features as the best-bands / 

best-features. Entropy based BNDS is believed to be an effective dimensionality 

reduction method because it selects the n most-informative features as the reduced 
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dimensional feature space. In chapter 3, experimental results will provide a quantitative 

comparison of the efficacy of these approaches (R-LDA, S-LDA and BNDS), as 

compared to the proposed divide-and-conquer approach.  

2.6 Hyperspectral Image Analysis Background  

As mentioned previously, hyperspectral imagery is a three-dimensional cube 

where two dimensions are spatial and one dimension is spectral. Thus, each pixel is 

actually a vector comprised of a hyperspectral signature containing up to hundreds or 

thousands of spectral bands. This dense sampling of reflectance values over a wide region 

of the spectrum potentially increases the class separation capacity of the data as 

compared to gray scale imagery (where most of the class specific information is extracted 

from grey level statistics and spatial relations between pixels) or multispectral imagery 

(where reflectance values at a few spectral bands are recorded). Availability of this rich 

spectral information has made it possible to design classification systems that can 

perform ground cover classification and target recognition very accurately. 

Hyperspectral reflectance signatures of various plant species can be seen in Figure. 2.1.  
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Note the sharp “red-edge”, prominent at the transition from the red region of the 

spectrum to the Near-Infrared (NIR) region. This sharp transition is a typical 

characteristic of most vegetation signatures, and is in-fact used for distinguishing 

vegetation species from non-vegetation species in an image. Also note that although the 

various species look similar in the visible portion of the spectrum, considerable 

differences in reflectance values can be observed at larger wavelengths (e.g., in the NIR 

region.) Hence, it is safe to infer that having reflectance values recorded over a wide 

region of the spectrum can indeed provide a better recognition performance.  

Figure  2.1    Hyperspectral signatures of  various plant species. 
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Figure 2.2   Overview of hyperspectral  remote  sensing  systems.  
 
Image courtesy Dr. Lori Mann Bruce, Mississippi State University. 

Figure 2.2 illustrates a typical hyperspectral remote sensing system. Despite its 

advantages, using hyperspectral reflectance values as features in a pattern classification 

setup nevertheless can result in an over-dimensionality and ill-conditioned scenario 

induced by the high dimensionality and small-sample-size. This necessitates the use of 

large training datasets if conventional algorithms are to be employed for classification 

tasks. This however is not guaranteed in a general remote sensing setup. In fact, in many 

hyperspectral applications (for example, the detection of isolated targets), the amount of 

ground truth pixels available to the analyst may be less than the dimensionality of the 

data. As mentioned in the previous chapter, another ramification of having a high 

dimensional feature space is over-fitting of decision boundaries by classifiers [2], and 

consequently, poor generalization capacity. With this in mind, we study the performance 
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of the proposed multi-classifier, decision fusion systems using various experimental 

datasets and simulated signal fidelity conditions over the next three chapters.  

Due to its potential and challenges, hyperspectral image analysis has been a topic 

of active research over the past decade. In [17], Compact Airborne Spectrographic 

Imager (CASI) data was employed for identifying subsets of the available spectral bands 

for robust target material classification. In [18], [19], [20], wavelet based analysis of 

hyperspectral data was performed to study the distribution of signal energy of 

hyperspectral reflectance signatures at different scales and resolutions. In [21], Lin et al 

proposed a parametric projection pursuits algorithm for projecting high dimensional 

reflectance signatures onto lower dimensional spaces. In [22], Hsu et al performed 

dimensionality reduction by using Fourier and wavelet transform basis of the available 

spectral and spatial data, and then chose the “best” bases as those that provided the best 

approximation of the training data.  
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Figure  2.3   The overall block diagram representation of the proposed  system.  
 
PP refers to “pre-processing”. B0, B1… Bn are spectral bands that define the partitioning  of 
the spectrum.  

2.7 Proposed System Architecture 

The solution proposed to alleviate the small-sample-size problem and high 

dimensionality of hyperspectral data is based on a divide-and-conquer approach. Fig. 2.3 

illustrates the block level functionality of the proposed system. Note that this system is 

designed to work for supervised classification tasks. Training data is employed to 

intelligently partition the hyperspectral space into a set of contiguous subspaces. An 

appropriate pre-processing (for example, LDA) is performed on each subspace. This is 

followed by a bank of classifiers (each assigned to a particular subspace) making local 

classification decision in each subspace. Each of these local pre-processing operations 

and classification formulations are well conditioned, and exploit information in a certain 
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distinct subset of the spectrum. The classification results (in the form of class labels and 

posterior probabilities) from each subspace are merged into a single classification 

decision per test pixel / signature using an appropriate decision fusion mechanism. This 

dissertation will study the effect of each part of the proposed system on the overall 

classification performance, under varying data fidelity conditions. In particular, the 

following studies will be conducted in the proposed framework: 

1. Techniques for band-grouping (subspace identification): Under this category, 

various “intelligent” band-grouping metrics will be examined for their efficacy in 

identifying partitions of the hyperspectral space that best serve the multi-classifier 

decision fusion system. As will be described in the next chapter, the subspace 

identification task as approached in this work is based on a bottom-up band-

growing procedure that monitors a certain performance metric of the group that is 

being grown. A new metric that better identifies subspaces in the current context 

is also proposed. Effect of various types of performance metrics on the overall 

classification performance of the system will be studied.  

2. Suitable pre-processing of input data in each subspace: After subspace 

identification, it is desirable to improve class separation, and reduce the 

dimensionality of subspaces for improved classification performance. It has 

already been established that PCA projections are not optimal projections in 

classification tasks. LDA projections on the other hand are well suited for 

classification tasks where class conditional density functions are uni-modal. 

Because they improve class separation by design, LDA transformations are 

employed at the pre-processing level. Note that although LDA transformations 
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over the entire hyperspectral space are likely to be ill-conditioned due to a limited 

sample size, this is not the case for LDA projections at the subspace level. In 

severe pixel mixing conditions however (such as when a significant percentage of 

target pixels are mixed with background pixels), the class conditional density 

functions are likely to be multi-modal, and LDA projections may no longer be 

optimal (even in the proposed divide-and-conquer framework). In such situations, 

benefits of projecting data into a kernel space will be explored. In particular, 

efficacy of KDA projections to improve class separation in kernel induced spaces 

will be studied in the MCDF framework.  

3. Impact of decision fusion strategies on classification performance: The decision 

fusion strategy employed plays an important role in merging the classification 

decisions from individual subspaces. Benefits of hard and soft decision fusion 

techniques will be studied in the proposed framework. Further, an adaptive weight 

assignment technique is proposed that will weigh the classification decisions 

(hard, e.g., labels; and soft, such as posterior probabilities) of each classifier based 

on its relative strength in accurately classifying training data.  

Finally, the studies described above will be repeated with different simulated data 

fidelity conditions. In particular, pixel mixing will be simulated by linearly mixing target 

and background pixels. This will simulate a scenario where the spatial resolution of the 

sensor is not high enough to just capture the target in the pixels. Further, noisy data 

conditions will be simulated by adding noise to the hyperspectral signatures. Performance 

of various aspects of the proposed system will be studied in these simulated conditions. 
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2.8 Alternate Pattern Classification Application – Computer Aided Diagnosis of 

Benign and Malignant Tumors in Digital Mammography 

To demonstrate that the proposed divide-and-conquer framework can serve as a 

useful approach for different types of classification tasks, an alternate classification task – 

robust detection of benign and malignant tumors in digital mammography is chosen in 

this dissertation. CAD tools have been developed over the years to aid radiologists in the 

interpretation of mammograms. Breast cancer is believed to be among the leading causes 

of cancer related deaths among women, and mammography is the modality of choice for 

detecting breast cancer [23], [24]. As is the case with many medical imaging modalities, 

significant research is being conducted for the design of Computer Aided Diagnosis 

(CAD) systems.  A typical CAD system performs the following tasks in succession: (1) 

Image enhancement and segmentation, (2) Feature extraction, and, (3) Classification. 

Robust image enhancement and segmentation algorithms are now available for 

identifying regions of interest in mammogram images [25]. The features extracted from 

these segmentations are however oftentimes very high dimensional; for example, some 

CAD systems result in hundreds or even thousands of features [25], [26]. This has 

ramifications on the performance of the backend classification system in that the size of 

available training data (number of available training mammograms) does not match the 

required size needed to accurately model the statistical characteristics of high 

dimensional feature spaces. To alleviate this problem, many researchers employ some 

feature selection or dimensionality reduction method to reduce the size of the feature 

space. One popular choice in the medical imaging community for doing so is S-LDA, 

which employs a forward selection and backward rejection technique to identify a subset 
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of available features that are potentially useful for the classification task.  This however is 

not necessarily the optimal solution to the problem of over-dimensionality. S-LDA does 

not perform an exhaustive search on all feature combinations to select the “best” features. 

Further, any approach that leaves out certain features and uses only a smaller subset for 

classification is clearly sub-optimal, in that it is not employing all the information 

available to perform classification.  

In this dissertation, as an alternate application, the proposed divide-and-conquer 

approach is used to robustly classify mammogram images from very high dimensional 

feature spaces generated using state-of-the-art image enhancement, segmentation and 

feature extraction algorithms. The proposed approach partitions the high dimensional 

feature space into many smaller dimensional subspaces. A bank of classifiers (multi-

classifier system) performs “local” classification in each such subspace, and an 

appropriate decision fusion system “fuses” these local classification results into a final 

malignant/benign classification for every mammogram image. In doing so, all the 

available information is employed for classification while the problems associated with 

overly high dimensional feature spaces are avoided. It is hence expected that the 

proposed system will more accurately classify malignant and benign mammogram 

images.  A discussion on the pre-processing employed, the features extracted from these 

mammograms, the proposed classification system and experimental results with a 

mammography database is provided in section 5.3. Since the key motivation behind 

exploring the efficacy of the proposed framework for a CAD application is to 

demonstrate the generalization ability of the framework to other classification tasks, 

details on how to read mammograms to identify malignant tumors, the explanation 
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behind the choice of features used in CAD systems for mammography etc. are omitted 

from this work. The reader can review details of these concepts from [26]. 
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CHAPTER III 

MULTI-CLASSIFIERS, DECISION FUSION AND CONFIDENCE BASED WEIGHT 

ASSIGNMENT FOR HYPERSPECTRAL CLASSIFICATION 

3.1 Introduction 

There is a growing interest in using multiple data sources for robust ATR and land 

cover classification. Data fusion in this context typically exploits multiple, independent 

observations of a phenomenon and performs a feature level or a decision level fusion for 

various recognition and identification tasks. For example, in Watanachaturaporn et al [1], 

different types of data (IRS-1C LISS III images, NDVI and DEM), collected in the 

Himalayan region were fused for land cover classification. Jeon et al [2] used decision 

fusion techniques for multi-temporal classification. Similarly, Memarsadeghi et al [3] 

studied the fusion of data from Hyperion and ALI sensors in the PCA and wavelet 

domains, for improved invasive species forecasting. More recently, Fauvel et al [4] have 

studied the use of multi-classifiers and decision fusion for the classification of urban 

images. Chanussot et al [5] have studied the use of fuzzy fusion techniques for detecting 

linear features in SAR multitemporal images. In particular, multi-source data fusion 

facilitates accurate image analysis and classification in scenarios where data from a single 

sensor or source lacks resolution or fidelity in the spatial or spectral domain [6], [7].  

In this chapter, a divide-and-conquer approach is presented that employs such 

data fusion techniques to exploit hyperspectral data, which otherwise typically suffers 
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from the small-sample-size problem. Conventional hyperspectral ATR systems employ 

dimensionality reduction schemes for projecting the data onto a lower dimensional 

subspace, which is then used by a single classifier for labeling tasks [8]. Although these 

dimensionality reduction schemes are successful in reducing the ground truth requirement 

for unbiased modeling by the classifier [8], [9], these projections are not necessarily 

optimal from a pattern classification perspective [10], [11]. For example, a PCA 

projection may discard useful discrimination information if it were oriented along 

directions of small global variance, a LDA projection will be inaccurate for multimodal 

class distributions, etc.  Another factor that governs the efficacy of such dimensionality 

reduction techniques is the amount of training signatures required to learn the projections. 

For example, if the number of training signatures is insufficient for a given feature space 

dimensionality, the sample scatter and covariance matrices are likely to be ill-

conditioned, and the transformations such as PCA and LDA may not yield optimal 

projections. Similarly, other techniques such as best-bands selection [12] are also likely 

to be sub-optimal for ATR and land cover classification tasks, considering the fact that 

they do not fully utilize the rich spectral information in hyperspectral (or multispectral) 

signatures for final classification. 

In this work, the hyperspectral space is partitioned into contiguous subspaces such 

that the discrimination information within each subspace is maximized, and the statistical 

dependence between subspaces is minimized. Each subspace is then treated as a separate 

source in a multi-source multi-classifier setup. Various decision fusion schemes are 

employed to merge classification outputs (labels/posterior probabilities) from the multi-

classifier system and their efficacy is studied. In doing so, we do not discard potentially 
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useful information in the hyperspectral signatures, and also overcome the small-sample-

size problem, since the number of training signatures required per subspace is 

substantially lower than if we directly used all the bands with a single classifier system. 

In fact, the minimum number of training signatures required in this scheme is governed 

by the size of the largest subspace formed during partitioning, which is typically much 

smaller than the size of the original hyperspectral space.  

Previous approaches to band grouping [13], [14] use a combination of correlation 

between variables (in this case, bands) and Bhattacharya distance to partition the 

hyperspectral space. In this work, the efficacy of higher order statistical information 

(using average mutual information) instead of simple correlation is studied, for a bottom-

up band grouping [15], [16]. A confidence based adaptive weight assignment scheme is 

also proposed for decision fusion - where the weight associated with a classifier’s 

decision depends on its confidence in recognizing training data. The advantage of this 

adaptive classifier weight assignment over a uniform weight assignment for hyperspectral 

classification is studied. 

This chapter is organized as follows. In section 3.2, the proposed method of 

partitioning the hyperspectral space using mutual information is described. In section 3.3, 

details of the proposed technique of employing multi-classifier systems for hyperspectral 

classification problems are presented. A description of various decision fusion schemes 

employed in this work is also included. Relevant implementation issues are also 

discussed in this section, along with explanation of how these have been addressed. 

Section 3.4 contains a description of the handheld hyperspectral dataset used for 

experimental evaluation of the algorithm. In section 3.5, experimental results quantifying 
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the efficacy of the proposed algorithm are presented. Section 3.6 summarizes key results 

and observations from the various experiments in this chapter. 

3.2 Subspace Identification 

3.2.1 Subspace Identification using Band Grouping 

Subspace identification is the first step in the proposed multi-classifier, decision 

fusion system. It involves intelligent partitioning of the hyperspectral feature space into 

contiguous subspaces such that each subspace possesses good class separation, and the 

statistical dependence between subspaces is minimized. A classifier is then dedicated to 

every subspace, and an appropriate fusion rule is employed to combine the local 

classification decisions into a final class label for every test signature. 

In this work, a bottom-up band grouping algorithm is proposed for subspace 

identification. Figure 3.1 depicts the application of the band grouping procedure on 

hyperspectral signatures. Using labeled training signatures, each subspace is grown in a 

bottom-up fashion (i.e., continue to add successive bands to the subspace) until the 

addition of bands no longer improves some performance metric. At this point, growth of 

the current subspace is stopped and the procedure is repeated for the next subspace. The 

metric employed for band grouping should be such that it simultaneously ensures good 

class separation within a group as well as low inter-group dependence. While good class 

separation per group is important for accurate decision making at the subspace level, a 

low inter-group dependence ensures robust decision fusion of these local decisions.  A 

band grouping threshold (t) controls the sensitivity of partitioning to changes in the 

metric. This threshold is the tolerance value for the percentage change in the metric used 
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Figure 3.1   Illustrating the bottom-up band growing procedure for subspace 
identification.  

 
The signatures depicted above are the average of all hyperspectral signatures  of 
Cotton and Johnsongrass in the experimental hyperspectral  database.  

for stopping growth of the subspace being identified.  Let Mi-1 be the performance metric 

of the subspace being identified without the addition of the i’th band, and, let Mi be the 

performance metric of the subspace with the i’th band included, then, the band grouping 

threshold, t is defined as 

M − Mi i−1t = .     (3.1)  
M i−1 

In this work, the value of t is set to zero, that is, the growth of the subspace being 

identified is stopped when addition of the i’th band does not change the value of the 

performance metric being monitored. In addition to monitoring changes in the 

performance metric, upper and lower bounds are imposed on the size of each subspace 

during the band grouping procedure. The lower bound (chosen as 10 bands in this work) 
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ensures that the number of subspaces formed does not increase unreasonably. It also 

ensures that subspaces are not any smaller than would be supported by the approximately 

block diagonal statistical structure of the correlation or mutual information matrices of 

hyperspectral data. The upper bound (chosen as 25 in this work) ensures that the size of 

each subspace is not so large that supervised dimensionality reduction and classification 

algorithms start to fail because of ill-conditioned statistical estimates. This bound should 

be adjusted based on the amount of training data available for dimensionality reduction 

and classification. 

3.2.2 Mutual Information and Subspace Identification 

It can be inferred from the preceding discussion that the choice of performance 

metric plays an important role in the performance of the proposed system. Previously 

[13], [14], various combinations of Bhattacharya distance and feature cross-correlation 

have been studied as potential performance metrics. In recent work [17], Tsagaris et al 

have suggested the use of Mutual Information for defining blocks of bands of 

hyperspectral data in the context of color representation. In this work, a metric using 

Mutual Information is proposed for band grouping.  

In the subspace identification process, a good class separation in every subspace 

reduces the local classification errors, while statistical independence between subspaces 

ensures diversity in the multi-classifier setup. A multi-classifier, decision fusion system 

will be beneficial if there is diversity in the subspaces or in the models (e.g., classifiers). 

Redundancy between subspaces is not desired in a decision fusion setup since it may lead 

to propagation of errors (e.g., in majority vote fusion, if two different subspaces produce 

42 



 

 

 

 

 

 

 

 

 

identical errors in classification, a single type of error contributes to two bad votes and so 

on). Instead of restricting the partitioning process to second order statistics (correlation), 

it is proposed that incorporating higher order statistics (as quantified by mutual 

information) into the metric shall generate a more meaningful partitioning of the 

hyperspectral space. Mutual information between two discrete valued random variables x 

and y is defined [18] as 

P(i, j)I(x, y) =∑∑P(i, j) log . (3.2)
P(i)P( j)i∈x j∈y 

Here, P(i,j) is the joint probability distribution of x and y, and P(i) and P(j) are the 

marginal probability distributions of x and y respectively. These can be estimated using 

histogram approximations. In the context of hyperspectral images,  x and y represent 

reflectance values for a pair of bands. Figure 3.2 shows the global correlation matrix and 

the global average mutual information matrix for an experimental hyperspectral dataset. 

Details of this dataset are provided in section 3.4. Note that both statistical measures 

reveal an approximate block diagonal structure. It is this block diagonal nature of feature 

cross correlation (and mutual information) that allows us to partition this space into 

approximately independent and contiguous subspaces. Further note that the average 

mutual information matrix reveals a finer block diagonal structure as compared to the 

correlation matrix. Based on these observations, the metric employed for partitioning in 

this work is as follows 

JMAMIn = JMn AMIn , (3.3) 
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Figure 3.2 Global correlation matrix and mutual 
information matrix for experimental 
hyperspectral data. 
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AMIn is the minimum average mutual information between a candidate band and the 

remaining bands in the current (n’th) subspace, and JMn is the between class Jeffries 

Matsushita (JM) distance of the current subspace, and is given by 
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JM = 2(1 − e−BD ), where, 

⎛ ⎞ . (3.4)
BD = − ln⎜∑ p(x)q(x)⎟ 

⎝ x∈X ⎠ 

 

 

 

 

 

 

 

 

BD is the Bhattacharya distance; p(x) and q(x) are the probability distributions of the two 

classes between which the distance is being estimated. As will be explained later, in this 

dissertation, both distributions are assumed to be Gaussian. JM distance is chosen to 

measure class separation, because unlike Bhattacharya distance it has an upper bound. 

This results in a normalized metric possessing lower and upper bounds. In a multi-class 

situation, JMn is evaluated as the minimum pair-wise JM distance between classes in the 

current subspace. Previously, correlation has been employed for partitioning the space 

into approximately independent subspaces. The corresponding metric is similar to the one 

in (3.3) and is written as JMCorr, where mutual information is replaced by correlation.  

3.2.3 The Jarque-Bera Test 

Thus far, an intuitive argument towards employing mutual information for 

subspace identification has been presented. To reinforce the aptness of a mutual 

information based metric instead of a correlation based metric by means of a quantitative 

comparison, proof of deviation from normality of hyperspectral data is presented here. 

Towards this end, the Jarque-Bera (JB) test [19] was performed on experimental 

hyperspectral data on a per-band basis. The JB test is a two sided goodness of fit test 

which uses the following test statistic to accept or reject the null hypothesis 

n (k − 3) 2 

T = (s 2 + ) , (3.5)
6 4 

where n is the sample size, s is the sample skewness, and k is the sample kurtosis. The 
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null hypothesis is that the data under analysis comes from a normal distribution, whereas 

the alternative hypothesis is that it does not come from a normal distribution.  

Figure 3.3 depicts the results of this test on experimental hyperspectral data 

(Cotton vs. Johnsongrass). H is either one or zero, depending on whether the null 

hypothesis was rejected or not. This hypothesis test was conducted at the 5% significance 

level. Each band of the hyperspectral data was treated as a random variable and was 

tested for normality by this test. It can be seen that at the per class level (e.g., Cotton 

only, or Johnsongrass only), there are several bands of the spectrum which deviate from 

normality (H = 1). A similar observation can be made at the global level (Cotton and 

Johnsongrass combined). Since various bands of the hyperspectral data deviate from 

marginal normality, we can infer that the data deviates from multi-variate normality. It 

Figure 3.3   Jarque-Bera test for experimental hyperspectral data on a per-band 
basis for the first 1600 bands. 
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can hence be concluded that it is reasonable to expect a mutual information based metric 

to provide a more meaningful partitioning of the hyperspectral space, since it is not 

restricted to second order moments. 

3.3 Multi-Classifiers and Decision Fusion (MCDF) 

After partitioning the hyperspectral space into independent subspaces, each with 

good class separation, a multi-classifier system is employed followed by a decision 

fusion process to make classification decisions. The proposed Multi-Classifier and 

Decision Fusion (MCDF) system is essentially a bank of classifiers that make “local” 

decisions in the partitioned subspaces, followed by a decision fusion mechanism that 

fuses these individual decisions. These can be parametric classifiers such as maximum 

likelihood classifiers, or non parametric classifiers such as k nearest neighbors classifiers, 

neural network based classifiers etc. In this work, quadratic maximum likelihood 

classifiers are employed [20]. Figure 3.4 depicts the block level functionality of the 

proposed system. Training signatures are used to identify appropriate contiguous 

subspaces, which are represented by the bands on the edges. Training data is also used to 

ascertain subspace accuracies using the same bank of classifiers that will be used for 

classifying test signatures. This training accuracy assessment allows us to assign a 

confidence score to each subspace, which can then be used for pruning away subspaces 

with lower than acceptable scores, or for assigning weights to each classifier adaptively 

in the decision fusion process. Decision fusion can occur either at the class label level 

(hard fusion), or at the posterior probability level (soft fusion). The system is tested with 

decision fusion at both these levels. 
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Figure 3.4   Block level functionality of the feature space partitioning, multi-classifier and 
decision fusion systems. 

 

 

 

 

Since each subspace is of a much smaller dimensionality than the dimension of 

the original hyperspectral signature, a suitable preprocessing (such as LDA) may prove 

beneficial before making the local classification decisions. For uni-modal class 

conditional density functions, a LDA based dimensionality reduction is likely to improve 

class separation in the projected space. Recall that we impose an upper bound on the size 

of subspaces during the subspace identification process. One of the considerations during 

choosing an appropriate upper bound is for the within and between class scatter matrices 

to be well conditioned. Hence, LDA based dimensionality reduction at the local subspace 

level is going to be well conditioned for most subspaces, as opposed to a single LDA 

based projection on the entire hyperspectral space, which is likely to be ill-conditioned in 

the absence of a lot of training data.  

3.3.1 Hard Decision Fusion – Majority Voting 

In hard decision fusion, a final classification decision is arrived at based on a vote 

over individual class labels (hard decisions) from each subspace. Unlike soft fusion based 

techniques, the overall classification of majority voting based fusion is not very sensitive 
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to inaccurate estimates of posterior probabilities. However, in situations where posterior 

probabilities can be accurately estimated, soft fusion methods are likely to provide stable 

and accurate classification. A simple majority vote (MV) is given by 

w = argmax N(i) 
i ∈{1,2...C} 

n  (3.6)
where, N(i) =∑ I (wj = i). 

j=1 

where I is the indicator function,  w is the class label from one of the C possible classes 

for the test pixel, j is the classifier index, n is the number of subspaces (and hence the 

number of classifiers), and N(i) is the number of times class i was detected in the bank of 

classifiers. The form of voting described in (3.6) is based on uniform weight assignment, 

i.e., every classifier in the multi-classifier, decision fusion system enjoys equal voting 

strength. An adaptive voting mechanism is proposed, where strong classifiers enjoy a 

greater influence in the final decision. One possible way of performing this adaptive 

voting mechanism is to weigh a classifier’s vote based on its confidence score which can 

be learned from training data. Hence, (3.6) is modified to incorporate a non-uniform 

weight assignment: 

w = argmaxN(i) 
i ∈{1,2...C} 

n  (3.7)
where,N(i) =∑α j I (wj = i), 

j=1 

where αj is the confidence score (weight) for the j’th classifier. The voting scheme 

depicted in (3.6) is referred to as Majority Voting (MV), and the proposed voting scheme 

in (3.7) is referred to as Weighted Majority Voting (WMV) in this dissertation. 
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3.3.2 Soft Decision Fusion – Linear and Logarithmic Opinion Pools 

Soft decision fusion entails the use of posterior probabilities, or more generally 

some class membership function from every classifier for making the final decision. 

Unlike hard fusion techniques, soft decision fusion schemes do not rely solely on class 

labels from each classifier to make the final decision. Two popular soft decision fusion 

schemes are linear and logarithmic opinion pools [21]. A linear opinion pool uses the 

individual posterior probabilities of each classifier  (j = 1, 2,… n), pj(wi/x) to estimate a 

global class membership function 

n 

C(wi | x) = ∑α j p j (wi | x), 
j=1  (3.8) 

w = argmaxC(wi | x). 
i ∈{1,2...C} 

Once again, the classifier weights (αj, j = 1, 2, …n) can either be uniformly 

distributed over all classifiers, or can be assigned based on the confidence score of each 

classifier. This is essentially a weighted average of posteriors across the classifier bank. 

In a Logarithmic Opinion Pool, the global class membership function is modified to be a 

weighted product of the posterior probabilities of all classifiers, instead of a weighted 

sum 

α
C(wi | x) = ∏ 

n 

p j (wi | x) j 

j=1  (3.9)
n 

⇒ logC(wi | x) = ∑α j log p j (wi | x). 
j=1 

The logarithmic opinion pool has some advantages over a linear opinion pool 

[21]: (1) the resulting class membership function in a logarithmic opinion pool is uni-

modal, and, (2) decisions from different classifiers are treated independently in the fusion 
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process. However, as pointed out in Benediktsson et al [21], [22], this fusion scheme has 

one serious drawback in that a single zero (or numerically small) posterior probability 

can potentially veto decisions from the remaining classifiers. Hence, logarithmic opinion 

pools must be used carefully, and should particularly be avoided where posterior 

probability estimation is not accurate. 

In this work, the implementations of linear and logarithmic opinion pools with 

uniform weight assignment are referred to as LOP and LOGP respectively, while the 

implementations with the proposed adaptive weight assignment are referred to as WLOP 

and WLOGP respectively.   

3.3.3 Confidence based Weight Assignment and Pruning 

In the proposed system, training data is jackknifed into further training and test 

data. Recognition accuracies from each subspace obtained from this data are a measure of 

the confidence of the subspace in the recognition task. Based on the application, certain 

subspaces may be better suited for the recognition task. For example, if a certain portion 

of the hyperspectral space is more affected by noise and distortion effects than other 

regions, the corresponding subspaces are bound to be less reliable than the others for the 

recognition task. In such situations, it is hoped that training accuracy assessment captures 

the confidence of each subspace in the labeling decision. In this work, the effect of 

assigning non-uniform weights to the bank of classifiers, based on training accuracies in 

the subspaces is also studied. For this purpose, the training accuracy in a subspace is 

assigned as the weight of the corresponding classifier. Decision fusion performance based 

on such a weight assignment is compared to the performance with a uniform weight 
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assignment. For a two class target recognition problem, an accuracy of 50% or less is 

worse than a random decision. Hence, in this work, subspaces with training accuracy of 

less than or equal to 50% are pruned away and not considered in the decision fusion 

process. 

3.3.4 Decision Fusion – Implementation Issues 

The efficacy of soft fusion techniques is dependent on the accurate estimation of 

posterior probabilities. Although LOP and LOGP have been used previously for remote 

sensing classification [21], [22], these methods have not been tested for alleviating the 

small-sample-size problem commonly encountered when classifying hyperspectral data. 

A typical characteristic of hyperspectral data is that adjacent bands (and hence features) 

are highly correlated. For normally distributed data, a high cross-feature correlation 

sometimes results in rank deficient covariance matrices, which makes the estimates of 

class membership functions or posterior probabilities unreliable. Note that this problem is 

not commonly encountered with multispectral data since adjacent bands of a 

multispectral sensor are separated by a reasonable amount in the wavelength domain. 

With hyperspectral data, we need to address this issue for reliable estimation of posterior 

probabilities or class membership functions. In this work, quadratic maximum likelihood 

classifiers are employed. These classifiers assume Gaussian class distributions for the i’th 

class, p(x / wi)~N(µi , Σi). Assuming equal priors, the class membership function for such a 

classifier is given by [20] 

1 T −1 1M (w | x) = − (x − μ ) Σ (x − μ ) − ln . (3.10)i i i i Σ i2 2 
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It follows from the preceding discussion that for hyperspectral data, Σi can 

sometimes be rank deficient even in the presence of sufficient training data, resulting in 

an unstable inverse (and hence an ill-conditioned class membership function). To resolve 

this issue, the null space of Σi is discarded with the assumption that this space contains 

only redundant information (i.e., Σi is rank deficient only due to highly correlated data, 

not due to insufficient data). This assumption is reasonable in the proposed multi-

classifier, decision fusion approach, since each classifier deals with a subspace of a much 

smaller dimension, and hence the small-sample-size problem is usually not encountered. 

Hence, to compute the inverse of Σi, the Singular Value Decomposition based pseudo-

inverse method is used. Similarly, the determinant of Σi is estimated as the product of its 

non-zero significant singular values, in order to discard its null space. This results in 

stable estimates of class membership functions and posterior probabilities.  

3.4 Experimental Hyperspectral Data 

Hyperspectral data employed for testing the proposed system was collected using 

an Analytical Spectral Devices (ASD) Fieldspec Pro FR handheld spectroradiometer 

[23]. Signatures collected from this device have 2151 spectral bands sampled at 1nm over 

the range of 350 – 2500nm with a spectral resolution ranging from 3 – 10nm. A 25° 

instantaneous field of view (IFOV) foreoptic was used. The instrument was set to average 

ten signatures to produce each sample signature, and the sensor was held nadir at 

approximately four feet above the vegetation canopy. Hyperspectral signatures collected 

with an ASD spectroradiometer tend to have high levels of noise in the regions associated 

with longer wavelengths, particularly when the sensor has been in use for a longer period 
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of time or under high temperature conditions (due to overheating of the semiconductors). 

Thus the signatures were truncated at 1800nm.  Also, the reflectance values in the regions 

1350nm - 1430nm were removed from all signatures to avoid noise due to atmospheric 

water absorption.  

Signatures in the dataset form two classes: (1) an agricultural row crop, Cotton 

variety ST–4961, and (2) a weed that is detrimental to the crop’s yield, Johnsongrass 

(Sorghum halepense). In this study, 54 signatures of Johnsongrass and 35 signatures of 

Cotton are used. These signatures were measured in good weather conditions in 

Mississippi, U.S.A., in 2000-2004. A target recognition scenario is created using this data 

treating the weed (Johnsongrass) as the target class and the crop vegetation (Cotton) as 

the background class, as would be the case when remote sensing is used for precision 

agriculture applications. Challenging target recognition tasks are created by linearly 

mixing target test signatures with the background at various mixing ratios (MR). All 

experiments reported in this dissertation are performed using a leave-one-out testing 

procedure. Each test target signature sequestered during the leave-one-out testing is 

mixed linearly with a random background signature. To ensure an unbiased setup, the 

background signature used in this mixing is not used for training the system. This makes 

it a tough and realistic ATR problem because it creates a mismatched situation where the 

classifiers are trained on clean target and background signatures but tested on mixed 

(corrupt) target signatures. The mixing ratios (background percentage to target 

percentage) for test target signatures reported in this work are 30:70 (MR1), 40:60 (MR2) 

and 50:50 (MR3). With this setup, target recognition accuracies of these sub-pixel ATR 

tasks are estimated using the proposed MCDF system.  
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Figure 3.5   Experimental hyperspectral data. 

Top left: Cotton (Whitney Cranshaw, Colorado State University, Bugwood.org); Top right: 
Johnsongrass (James H. Miller, USDA Forest Service, Bugwood.org); Bottom: Hyperspectral 
signatures of Cotton and Johnsongrass. 
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3.5 Experimental Setup and Results 

In order to determine the efficacy of the proposed algorithms, various ATR 

experiments are setup with the dataset described in section 3.4.  Five sets of experiments 

are presented with the following objectives: (1) To demonstrate the benefits of using a 

mutual information based metric for subspace identification, (2) To study the effect of 

adaptive weight assignment and uniform weight assignment on decision fusion 

performance when the signatures possess uniform fidelity throughout the spectrum, (3) 

To repeat the study in objective 2 when the signatures possess non-uniform fidelity 

across the spectrum, (4) To study the benefits of a LDA based pre-processing at the local 

subspace level in the proposed decision fusion setup, (5) To compare the performance of 

feature level fusion with that of decision level fusion, and, (6) To compare the 

performance of the efficacy of the proposed MCDF framework with current state-of-the-

art feature extraction approaches.  

All experiments were conducted in the mixed pixel classification framework as 

described in section 3.4. This simulates a challenging and realistic scenario – which is 

commonly encountered when the size of the target is smaller than the resolution of the 

sensor, resulting in mixing of target signatures with background signatures. In this work, 

efficacy of the proposed algorithms is gauged using overall recognition accuracies (which 

measure the system’s capacity to recognize both target and background signatures.) 

Further, for accurate estimation of overall recognition accuracies, all experiments were 

conducted using the leave-one-out cross validation method [24].  
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3.5.1 Experiment 1: Consistent Fidelity of the Signatures across the Spectrum 

This experiment demonstrates the benefits of subspace identification using the 

proposed mutual information based metric instead of a correlation based metric. Further, 

in this experiment, uniform weight assignment is compared with adaptive weight 

assignment when the signatures are of uniform fidelity across the spectrum. Subspaces 

are identified based on two metrics – JMCorr and JMAMI. Based on the subspaces 

identified using these metrics, dimensionality reduction (LDA) and local classifications 

per subspace followed by decision fusion are carried out to obtain the class labels of test 

signatures.  

A comparison of the overall recognition accuracies at various mixing ratios and 

using different decision fusion strategies is provided in Figure 3.6 for both metrics. Error 

bars atop all bar plots (in this and in subsequent figures) indicate the 95% confidence 

intervals for the recognition accuracy estimates, taking into account the finite number of 

available training and testing samples. We can make the following observations from the 

results depicted in Figure 3.6. At low mixing ratios (e.g., MR1), all decision fusion 

schemes and both metrics result in a near 100% recognition accuracy. Thus, the overall 

approach (partitioning the spectrum into subspaces of contiguous bands followed by 

multi-classifiers and decision fusion) is very powerful. However, if the target abundance 

is substantially low relative to the background abundance, then the design parameters 

(band grouping metric, decision fusion scheme etc.) start playing a more critical role. 

JMAMI based partitioning almost always results in higher recognition accuracy as 

compared to JMCorr based partitioning. This improvement is higher at severe mixing 

ratios (when the target abundance is low). We can hence infer that JMAMI provides a 
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more meaningful partition of the hyperspectral space, resulting in more robust decision 

fusion in this multi-classifier setup. In the remainder of this chapter, we use the JMAMI 

metric for partitioning the hyperspectral space, unless otherwise mentioned. Further, for 

low target abundances, MV and LOP based fusion is more reliable than LOGP based 

fusion. This is expected because LOGP based fusion is sensitive to the accuracy of the 

posterior probability / class membership function estimates. These estimates are likely to 

be inaccurate under severe mixing conditions. Note also that in this setup, where the 

hyperspectral signatures were of consistent fidelity across the spectrum, uniform weight 

assignment (MV, LOP, LOGP) performs as well as adaptive weight assignment (WMV, 

WLOP, WLOGP). 
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Figure 3.6   Mutual information vs. correlation based metric; uniform vs. 
adaptive weights. 
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3.5.2 Experiment 2: Non-Uniform Fidelity of the Signatures across the Spectrum 

This experiment demonstrates the benefits of adaptive weight assignment over 

uniform weight assignment when the hyperspectral signatures have fidelity varying 

across the spectrum. As before, a mixed pixel classification experiment is performed, at 

mixing ratio MR1. Zero mean Gaussian noise is added to reflectance values in a part of 

the spectrum – bands 1 through 700 (approximately 350 to 1000 nm). Since many 

hyperspectral sensors are a composite of multiple sensors, each tuned to a specific region 

of the spectrum, it is possible to have a scenario where a subset of the spectrum is of 

poorer fidelity. Since this experiment studies noise performance, hundred iterations of 

noise addition and leave-one-out testing are performed and the results from these are 

averaged to estimate overall recognition accuracies. 

Results from this experiment are summarized in Figure 3.7.  Noise power was 

varied from 0.01 to 0.09 for hard decision fusion, and from 0.001 to 0.009 for soft 

decision fusion. Soft decision fusion techniques (LOP and LOGP) started to break down 

at noise powers at or above 0.01. This can be attributed to the inaccurate estimation of 

class membership functions at low signal to noise ratios. In particular, it is observed that 

LOGP is the least robust decision fusion scheme in the presence of additive noise. Hard 

decision fusion techniques are more robust to larger noise powers. Adaptive weight 

assignment consistently outperforms uniform weight assignment in this case. Further, the 

improvement in hard decision fusion using the proposed adaptive weight assignment is 

significantly higher than that in soft decision fusion. The improvement from using 

adaptive weights is relatively small at low and high noise levels, and large at moderate 

noise levels. 
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Figure 3.7   Performance of adaptive weights versus  uniform weights.  
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3.5.3 Experiment 3: LDA based Pre-Processing at the Subspace Level 

LDA based pre-processing per subspace has been performed before making local 

classification decisions in all experimental analyses presented in this chapter. This 

experiment shows that such a pre-processing at the subspace level in the proposed multi-

classifier, decision fusion setup is indeed beneficial. Training data is used to learn the 

LDA transformation in each subspace and this transformation is applied to training and 

test data. Results from this experiment are summarized in Figure 3.8. It is clear that LDA 

based dimensionality reduction is beneficial for all decision fusion schemes at most 

mixing ratios. When the mixing becomes severe, the class conditional distributions are 

likely to become multi-modal, and hence the LDA transformations learned are likely to 

deviate significantly from optimality. This phenomenon can be observed at mixing ratio 

MR3, where for MV and LOGP, LDA based pre-processing reduces the overall 

Figure 3.8   Effect of LDA based preprocessing at the subspace level on the decision fusion 
performance. 
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recognition accuracy. Recognition accuracies for WMV, WLOP and WLOGP (though 

omitted from this figure in order to maintain clarity), are very similar to those of MV, 

LOP and LOGP, since the signatures were of consistent fidelity throughout the spectrum. 

3.5.4 Experiment 4: Feature versus Decision Level Fusion 

In this experiment, the performance of feature level fusion is compared to that of 

decision level fusion. Feature level fusion refers to a simple concatenation of “optimized” 

features from every subspace after a suitable dimensionality reduction pre-processing 

(LDA in this case) per subspace. A single classifier is employed on this concatenated 

vector for classification. Decision level fusion is performed in a manner consistent with 

the MCDF implementation described previously – instead of concatenating the 

transformed features from every subspace, local classification decisions are made in each 

such LDA transformed subspace and these local decisions are then fused. Results from 

this experiment are reported in Figure 3.9. We can conclude from these results that 
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Figure 3.9 Feature versus decision level fusion. 
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decision level fusion consistently outperforms feature level fusion. Once again, 

recognition accuracies for WMV, WLOP and WLOGP (though omitted from this figure 

in order to maintain clarity), are very similar to those of MV, LOP and LOGP, since the 

signatures were of consistent fidelity throughout the spectrum. 

3.5.5 Experiment 5: Comparison against Current State-of-the-art  

Experiments 1 through 4 quantify the efficacy of the proposed MCDF framework 

in various classification scenarios, and demonstrate the usefulness of the framework for 

robust hyperspectral classification in small-sample-size conditions. In this experiment, 

the performance of the MCDF framework is compared with that of conventional 

algorithms employed by researchers for feature optimization and extraction in small-

sample-size conditions. Towards this end, classification performance of the following 

feature extraction and classification systems is reported: (1) PCA, (2) R-LDA, (3) S-

LDA, (4) BNDS, and (5) MCDF. For algorithms 1 through 4, a conventional single 

maximum-likelihood classifier is employed after each feature extraction method. These 

algorithms are described in the previous chapter, in sections 2.1 through 2.5. In the PCA 

approach, the final dimension was chosen to be equal to the number of significant 

eigenvalues in the spectral decomposition of the covariance matrix of the training data. In 

the R-LDA approach, a small constant (in this work, 1e-04) was added to the diagonal 

entries of the within-class scatter matrices to avoid unstable inverses in the LDA 

formulation. In the S-LDA algorithm, the upper limit of the intermediate feature space 

dimensionality in the forward selection, backward rejection procedure is set to 10. An 

entropy based band-selection technique was employed in the BNDS algorithm, where, 
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the “top” 10 features were selected. For algorithm 5, the MCDF framework with JMAMI 

based band-grouping and MV based decision fusion was employed for classification, as 

described in section 3.5. 

Figure 3.10 depicts the overall recognition accuracy and false alarm rates using 

these algorithms, at the three mixing ratios, MR1, MR2 and MR3. PCA is expected to 

perform poorly, and that is observed in this figure. Not only does PCA based feature 

extraction result in poor overall classification accuracy, the associated false-alarm rate is 

also very high. Regularizing the scatter matrices in the R-LDA approach does not yield 

superior classification performance either. LDA applied on a reduced subset of features 

based on a forward selection and backward rejection approach (S-LDA) does yield better 

classification performance. Entropy based band selection (BNDS) performs slightly 

better than S-LDA, but at the expense of a larger false-alarm rate. Finally, the proposed 

MCDF framework outperforms the other algorithms at most mixing ratios. It also 

generates the least amount of false alarms.  
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Figure 3.10  Comparison of the MCDF framework with current state-of-the-art. 
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3.6 Conclusions 

In this chapter, a new classification framework for hyperspectral classification is 

proposed, based on spectral band grouping, multi-classifiers and decision fusion – 

providing a robust classification performance. The proposed classification system also 
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alleviates the small-sample-size problem commonly encountered in hyperspectral 

classification applications – since the training of supervised dimensionality reduction and 

classification algorithms is performed in many local subspaces, each of a much smaller 

dimension as opposed to the original high dimensional hyperspectral space.  

A justification was provided for using higher order statistical information 

provided by a mutual information based metric for the subspace identification task. 

Experimental evidence was provided for the same. An adaptive weight assignment 

scheme was also proposed for the decision fusion process, which proved to be beneficial 

in scenarios where the hyperspectral signatures were of non-uniform fidelity across the 

spectrum. Experimental evidence was also provided to justify the choice of a LDA based 

dimensionality reduction scheme at the subspace level before invoking the multi-

classifier and decision fusion systems. LDA based dimensionality reduction at the 

subspace level improved classification performance of the system under light and 

moderate mixing conditions. As pixel mixing increased, although the LDA based MCDF 

approach performed better than conventional approaches, there was room for 

improvement. It was also demonstrated experimentally that decision level fusion 

consistently outperforms feature level fusion. It was observed in these experiments that 

between hard and soft decision fusion approaches, hard decision fusion (MV and WMV) 

were most robust to poor signal fidelity (e.g., due to pixel mixing and additive noise). 

Also, among the soft decision fusion approaches, LOGP and WLOGP were least robust 

to poor signal fidelity. Hence, in the remainder of this dissertation, only MV and LOP 

based decision fusion results will be reported. Finally, classification performance of the 

proposed MCDF system was compared against the performance of conventional feature 
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extraction and optimization approaches that are currently employed for classification in 

small-sample-size conditions.  

Although the proposed MCDF system provides a robust classification 

performance with experimental hyperspectral data, there is room for further improvement 

by using more sophisticated dimensionality reduction schemes. Kernel methods such as 

kernel principal component analysis, kernel discriminant analysis and support vector 

machines have recently gained popularity in many pattern classification tasks, and more 

recently, in remote sensing and hyperspectral image analysis tasks [25], [26], [27]. In the 

next chapter, kernel methods are incorporated into the proposed MCDF system to 

improve the system’s classification performance when class conditional densities are 

multi-modal and decision boundaries are non-linear (for example, under severe pixel 

mixing conditions).  
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CHAPTER IV 

INFORMATION FUSION IN KERNEL INDUCED SPACES FOR ROBUST 

HYPERSPECTRAL CLASSIFICATION 

4.1 Introduction 

ATR systems based on remotely sensed hyperspectral images can suffer from the 

curse of dimensionality because the hyperspectral reflectance signatures often have a 

dimensionality much greater than the number of available training (ground-truth) pixels. 

Thus, conventional hyperspectral based ATR and land cover classification systems often 

project the high dimensional reflectance signatures onto lower dimensional subspaces 

before employing a classification algorithm [1]. As mentioned in previous chapters, in the 

context of hyperspectral classification and target recognition, some commonly used 

dimensionality reduction (or feature extraction/reduction) techniques are LDA, PCA, S-

LDA and band selection [2], [3]. These techniques aim at avoiding the curse of 

dimensionality (commonly referred to as the Hughes phenomena in the remote sensing 

community), and reduce the amount of training data required for robust classification. 

Although these dimensionality reduction schemes successfully reduce the ground truth 

requirement for unbiased modeling by the classifier [1], these projections are not 

necessarily optimal from a pattern classification perspective [3]. For example, a PCA 

projection may discard useful discrimination information if it were oriented along 
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directions of small global variance, while an LDA projection will be inaccurate for 

multimodal class distributions.  Another factor that governs the efficacy of such 

dimensionality reduction techniques is the amount of training signatures required to learn 

the projections. As an example, if the number of training signatures is insufficient for a 

given feature space dimensionality, the sample scatter and covariance matrices are likely 

to be ill-conditioned, and transformations such as LDA may not yield optimal 

projections. 

In the previous chapter, a divide-and-conquer approach (MCDF) is proposed that 

addresses the small-sample-size problem by partitioning the hyperspectral space into 

smaller subspaces, and performing local pre-processing and classification in each 

subspace, followed by decision fusion to merge the local classification results for 

obtaining the final class labels of test signatures. Such an approach yielded a superior 

classification and recognition performance as compared to conventional dimensionality 

reduction techniques and alleviated the small-sample-size problem commonly 

encountered in hyperspectral data classification tasks. However, this approach had room 

for improvement, in that LDA was employed as the pre-processing procedure at the local 

subspace level to improve class separation before performing classification. This 

approach performs very well in pure pixel classification, or in mild mixing conditions 

(target pixels may be mixtures of target and non-target classes); however, performance 

significantly decreased when the target pixels were severely mixed with background 

pixels. In severe mixing conditions, the class conditional density functions are likely to 

be multi-modal, and the decision boundaries are hence likely to be highly nonlinear. 

Under such conditions, LDA is likely to fail, because it assumes uni-modal class 
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conditional distributions. Further, when a classification system is trained on “pure” data 

but tested with “mixed” data, it is important that the pre-processing transformation or the 

classification algorithm impart significant generalization in the overall classification 

procedure, to account for this statistical mismatch.  

To address the inability of the previously proposed technique to reliably classify 

pixels in severe mixing conditions, in this chapter, a kernel based pre-processing at the 

subspace level is proposed, where the hyperspectral space is divided into smaller 

contiguous subspaces and a Kernel Discriminant Analysis (KDA) based projection is 

performed in each subspace before classification. Finally, local classification decisions 

from each subspace are merged using decision fusion. Kernel projections such as kernel 

PCA and KDA have recently become popular in many pattern classification tasks [6-9]. 

This chapter will explore the benefits of kernel projections in creating linearly separable 

class features which exhibit a stronger generalization capacity, and, Fisher’s discriminant 

analysis in the kernel projected space for further improving class separation, all in the 

multi-classifier, decision fusion framework. In particular, the performance of the 

proposed system is studied in a difficult classification scenario - when one has pure 

training signatures or pixels, but mixed test signatures or pixels. This is a realistic 

scenario, since it is not uncommon to have “pure” training data of the target (e.g., 

acquired from hand-held sensors), but have mixed test pixels that need to be classified 

(e.g., acquired from satellite imagery with relatively poor spatial resolution.) 

The outline of this chapter is as follows. In section 4.2, a brief summary of KDA 

and the implementation used in this work is presented. Section 4.3 provides a description 

of the multi-classifier decision fusion framework within which the KDA technique is 

74 



 

 

  

 

 

 

 

exploited, and the motivation for using KDA in this framework is presented. In section 

4.4, a description of the experimental hyperspectral data employed for measuring the 

efficacy of the proposed system in target recognition tasks is provided. In section 4.5, 

experimental evidence is presented justifying the use of the proposed KDA based MCDF 

system. Section 4.6 concludes this chapter with a summary and discussion of 

experimental outcomes.  

4.2 Discriminant Analysis in Kernel Induced Spaces 

4.2.1 Conventional LDA 

r T r r m rLDA seeks to find a linear transformation y =W x , where x ∈ℜ , y ∈ℜn and 

n ≤ c − 1 , (c is the number of classes), such that the within-class scatter is minimized 

and the between-class scatter is maximized. The transformationWT is determined by 

maximizing Fisher’s ratio [10] which can be solved as a generalized eigenvalue problem. 

The solution is given by the eigenvectors of the following eigenvalue problem 

Sw 
−1SbW =ΛW , (4.1) 

where Sb is the between-class scatter matrix and Sw is the within-class scatter matrix. 

Note that ST = Sw + Sb is the total scatter matrix, which is related to the global 

covariance matrix by a scaling factor. Introductory discussion on LDA is provided here; 

the reader is referred to [10] for more discussion. 

LDA assumes uni-modal class-conditional statistics. Hence, when class-

conditional distributions are multi-modal (as is the case for mixed pixels), LDA 

transformations will not optimize class separation. Further, if class-conditional statistics 

vary in training and test conditions, linearly projected spaces will not guarantee a good 
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generalization capacity. For example, if the LDA transformation is learned from training 

data that has a linear decision boundary, but applied to test data that has a nonlinear 

decision boundary, the mismatch in training and test conditions will not be accounted for, 

and the classification of test data in the LDA projected space will be unreliable.  

4.2.2 Kernel Discriminant Analysis 

In kernel methods, the key motivation behind mapping data onto a higher 

dimensional space is to convert nonlinear decision boundaries in the input space into 

linear decision boundaries in the transformed space via an appropriate nonlinear kernel 

function [7]. The “kernel trick” allows for computation of algorithms in a kernel mapped 

space without explicitly evaluating the mapping, as long as the algorithm can be 

expressed in terms of dot products of vectors in the input space. In its most general 

formulations, the kernel trick states [7] that if an algorithm can be formulated in terms of 

a positive definite kernel, k1, it is possible to construct an alternate algorithm by replacing 

k1 by another positive definite kernel, k2. 

In machine learning applications, the most common use of the kernel trick 

involves a situation where the kernel k1 is a dot product, although, the original 

formulation is not limited to this case. A positive definite kernel is also endowed with a 

reproducing property [7]. An example usage of the kernel trick in light of this property is 

as follows. Assume that an algorithm in the original (input) space can be represented 

′entirely in terms of dot products of vectors in the input space, i.e., in terms of൏ ,ݔ ݔ  ൐ 

where x and x′ are vectors in the input space. Now consider a “kernel induced” space, 

created by mapping all points in the original space onto a higher (possibly infinite) 
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dimensional space - i.e., each vector x in the original space is mapped onto k(. , x), a 

vector in the kernel induced space. The algorithm will still hold in this high dimensional 

kernel induced space. Further, the kernel trick and reproducing property can facilitate 

easy implementation of the algorithm in this space. To implement the algorithm in this 

kernel induced space, we need inner products of vectors in this space, 

൏ ݇ሺ. , ,ሻݔ ݇ሺ. , ݔ ′ሻ ൐. Instead of performing the mapping (from the input space onto the 

kernel induced space) explicitly and then evaluating inner products in the kernel induced 

space, the reproducing property allows us to replace these inner products by the values of 

the kernel function evaluated using vectors in the original space, ൏ ݇ሺ. , ,ሻݔ ݇ሺ. , ݔ ′ሻ ൐ൌ 

݇ሺݔ, ݔ ′ሻ. For more explanation, and a more general formulation of the kernel trick and 

reproducing kernel Hilbert spaces, the reader is referred to [7].  

Mika et al [8] extended the conventional Fisher’s LDA technique to a high 

dimensional, kernel induced space by employing the kernel trick. Similarly, Baudat et al 

[9] proposed an alternative implementation to KDA, referred to as generalized 

discriminant analysis. In the kernel LDA setting, if Ф is a nonlinear mapping to a feature 

space F, the linear discriminant function that needs to be maximized is 

wTSB 
ΦwJ(w) = T Φ , (4.2)

w SW w 

Φwhere SB 
Φ and Sw are between-class and within-class scatter matrices [7] of the mapped 

training data in F, and w is a vector in F. If F is a very high dimensional space, obtaining 

a solution in the above formulation may become intractable. The solution proposed by 

Baudat et al [9] is as follows: 
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1) Evaluate the empirical kernel (Gram) matrix,

= k(xi , xj ) , (4.3)

 K, as: 

Kij = φ(x ),φ(xj ) i 

where k(.,.) is the kernel function and {xi} is the set of all training data vectors.  

2) Define a block diagonal matrix, W, as: 

(Wl ) , (4.4)W = l =1,2 ,...., N 

where Wl is an (nlxnl) matrix with all entries equal to 1/nl. N here is the number of classes, 

and nl is the number of samples in the l’th class. 

3) Perform the eigenvalue decomposition of K as K = PΓPT 

4) Compute the eigenvalues and eigenvectors (λ and β) of the system given by 

λβ = P TWP β . 

5) Computeα = PΓ −1β . 

The projection of any point (z) in the input space that maximizes (4.2) in the 

kernel space can be obtained as 

M 

wTφ (z) = ∑α ik (xi , z) , (4.5) 
i=1 

where {αi} is the coefficient vector learned in the algorithm described above, M is the 

total number of training points {xi}, and k(.,.) is the kernel function. In this work, the 

algorithm described above is employed to perform the KDA projection on the feature 

space. 

Such a KDA transformation can provide two key advantages in pattern 

classification tasks: (1) the kernel mapping onto the higher dimensional space F creates a 

linear class separation structure, which is easier to work with and provides a better 

generalization ability; (2) projection of data from the kernel space into a lower 
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dimensional space maximizes class separation which in turn ensures good classification 

performance in the KDA space. In scenarios where the original (input) space contains 

data that is already uni-modal and linearly separable, KDA may not prove significantly 

beneficial over conventional LDA. However, in scenarios where the class conditional 

distributions in the input space are multi-modal or are not linearly separable, discriminant 

analysis in the kernel space is likely to be beneficial. With this in mind, this technique 

was chosen as an alternate pre-processing transformation to ensure good classification 

performance of hyperspectral subspaces under severe mixed pixel (targets are sub-pixel) 

conditions. 

Recently, Fauvel et al [6] employed kernel PCA for hyperspectral classification 

tasks. Although kernel PCA has previously produced promising results for some pattern 

classification tasks, like PCA, it is not designed to maximize class separation. LDA (in 

the original or kernel induced feature space) on the other hand, seeks to find a 

transformation that maximizes class separation as characterized by the Fisher’s ratio. 

Hence, this work will employ KDA, and its benefits in robust hyperspectral target 

recognition will be studied. 

4.2.3 Choice of Kernel and Kernel Parameters 

The choice of kernel function and kernel parameters is expected to have a 

significant impact on the classification performance in a KDA projected space. The 

kernel function employed in this work is the Radial Basis Function (RBF) kernel, defined 

as [9]: 

k(xi , x j ) = exp(− x − x 
2
/σ 2) , (4.6)i j 
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where σ is a user defined parameter of the kernel. Although the key requirement for the 

kernel trick to hold is for the kernel function to be positive definite, the RBF kernel has 

been successfully applied in machine learning applications, such as in Support Vector 

Machine (SVM) implementations for pattern classification tasks. In various classification 

applications, this kernel function has resulted in induced spaces that result in a greater 

degree of generalization in learning decision boundaries. Further, this kernel function 

results in Kernel / Gram matrices that are full ranked [7]. This is a very important 

advantage over other kernels, because it ensures well-conditioned formulations of kernel 

based algorithms.  

It has been pointed out in [7] that the value of σ (width of the kernel) governs the 

generalization of the decision boundaries learned in the kernel induced space. The larger 

this value, the better that classification algorithm would generalize to arbitrary test data, 

and vice-versa. In this chapter, classification performance of the proposed system will be 

studied over a wide range of this parameter space, in an attempt to identify appropriate 

parameter values for the classification task at hand. 

4.3 KDA in a Multi-Classifier and Decision Fusion Framework 

Although hyperspectral data provides a dense sampling of reflectance values 

across the spectrum, it does come at a price. The high dimensionality of hyperspectral 

data introduces two key challenges in classification tasks. (1) Small-sample-size problem: 

a high dimensional feature space necessitates a large amount of training (ground-truth) 

data for reliable statistical modeling of class-conditional distributions. (2) Hughes 

phenomenon: increased dimensionality typically reduces generalization ability of the 
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classification system because of “overtraining” of class-conditional statistics by the 

classifier. In other words, even if the classifier is able to successfully learn the statistics 

of the training data well, it may not be able to generalize well to test data bearing slightly 

different statistics. A significant “mismatch” between training and test conditions is likely 

to result in poor classification performance if the feature space dimensionality is high and 

conventional linear methods are employed for classification. Problem 1 was addressed in 

previous work [11] using a Multi-Classifier Decision Fusion (MCDF) framework.  This 

chapter addresses problem 2 by introducing KDA in the MCDF framework. 

4.3.1 A Multi-Classifier and Decision Fusion Framework for Classification 

In the previous chapter, the MCDF framework was proposed for classification of 

hyperspectral data in small-sample-size conditions. In the MCDF framework, a high-

dimensional hyperspectral space is partitioned into multiple contiguous subspaces, each 

of a much smaller dimension. An appropriate band-grouping algorithm is employed to 

identify these subspaces adaptively. Once these subspaces are identified, LDA based 

dimensionality reduction is carried out in each subspace. Finally, a bank of classifiers 

performs “local” classification in each of these subspaces independently, and the results 

from each classifier in this bank are merged into a final class label per pixel using an 

appropriate decision fusion rule. This framework results in robust classification of high 

dimensional hyperspectral data in small training sample size conditions. It was shown in 

the previous chapter and in recent publications related to this dissertation [11-13] that the 

MCDF framework outperformed other conventional single-classifier based paradigms, 

even when the training sample size was smaller than the dimensionality of the data. 
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However, under severe pixel mixing conditions, the MCDF approach started to break 

down, as did other conventional approaches. This was expected, because, the MCDF 

approach employed a LDA transformation per subspace, followed by a quadratic 

maximum-likelihood classifier for classification. Although LDA based pre-processing 

improves class separation, and hence classification performance of uni-modal data, it is 

not expected to perform well under pixel mixing, because class-conditional distributions 

are likely to become multi-modal with increasing pixel mixing. Further, since a simple 

linear projection (LDA) followed by a maximum-likelihood classification is employed 

per subspace in the MCDF approach, this framework is not expected to generalize well to 

severe mismatches in training and test conditions. 

4.3.2 KDA in the MCDF framework 

Kernel methods, including Kernel LDA and SVMs have recently shown to 

improve the classification generalization capacity [6], [8], [9]. In recent work [6], Kernel 

PCA has been employed for classification tasks, and has delivered promising results. In 

this work, PCA is not employed as a pre-processing of data because PCA is not designed 

for classification tasks. Instead, a Kernel Discriminant Analysis (KDA) approach is 

employed as a pre-processing in the MCDF framework to ensure robust classification, 

even under severe pixel mixing conditions. 
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Figure 4.1 Illustrating the kernel based multi-classifier decision fusion framework. 
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Figure 4.1 illustrates the approach proposed in this chapter. The hyperspectral 

space is partitioned into multiple contiguous subspaces and training data is employed to 

“learn” the KDA transformation in each subspace (using (4.2) through (4.4)). This KDA 

transformation is then employed to project both training and test data to a reduced 

dimensional space. For a c-class classification task, the dimensionality of data in each 

subspace after the KDA projection would be c-1 [7], [10]. Hence, for a binary 

classification task, the dimensionality of data in each subspace after this projection is one. 

This reduced-dimensional training and test data is then employed to perform “local” 

classification of test data (signatures/pixels) in each subspace independently. Finally, a 

decision fusion mechanism is employed to merge these class labels into a single class 

label per test signature/pixel.  

The motivation behind partitioning the hyperspectral space into multiple 

contiguous subspaces is similar to the explanation provided in [11] for employing the 
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MCDF framework. The key reason behind this partitioning is the observation that due to 

the dense spectral sampling in hyperspectral data, successive bands represent contiguous 

regions of the spectrum. . As a result, the resulting features (e.g. reflectance values) in 

these adjacent bands are highly correlated. To ensure a diverse collection of subspaces, 

adjacent bands (features) are grouped into subspaces such that the correlation (or mutual 

information) of bands within each subspace and the class separation of each subspace is 

simultaneously high. Different band-grouping metrics for this task were studied in [11] 

and chapter 3 of this dissertation. In this work, it was observed that unlike when LDA is 

employed in the MCDF framework [11], when KDA is used as a pre-processing at the 

subspace level, the choice of performance metric employed for band-grouping 

(/partitioning) of the hyperspectral space does not affect overall classification 

performance significantly. In other words, projections in kernel induced spaces at each 

subspace were so powerful in discriminating classes that the resulting MCDF system was 

not sensitive to intelligent partitioning of the hyperspectral space. Hence, in this chapter, 

a simple manual partitioning of the hyperspectral space into equal sized contiguous 

subspaces is performed. A window size (size of each group/subspace) equal to the 

dimensionality of the hyperspectral data will degenerate to the special case of a KDA 

based single classifier system. Although the KDA based MCDF system is not sensitive to 

the partitioning metric employed, it is sensitive to the size of each subspace, as will be 

explained later (in section 4.5.1). 
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4.3.3 Choice of classifier 

In this work, a bank of quadratic maximum likelihood classifiers is employed for 

performing “local classification” on the KDA projection of each subspace. These 

classifiers assume Gaussian class distributions for the i’th class, ݌ሺݓ|ݔ௜ሻ~ܰሺߤ௜, Σ୧ሻ. 

Assuming equal priors, the class membership function for such a classifier is given by 

[14] 

1 T −1 1 . (4.7)M (w | x) = − ( x − μ ) Σ ( x − μ ) − lni i i i Σ i2 2 

Other parametric or non-parametric classifiers such as k nearest-neighbors, neural 

networks, SVMs can also be employed in this bank of classifiers. However, it has been 

shown in [7] that data distributions in KDA projected spaces tend to be Gaussian in 

nature. In-fact, it has been shown in [7] that a KDA projection followed by conventional 

maximum-likelihood classification is as good (and in certain conditions, better than) as a 

SVM classifier. It is hence contended that quadratic maximum likelihood classifiers are a 

good choice in this setting. 

4.3.4 Decision Fusion – Fusing “Local” Classification Decisions 

After performing classification in local kernel induced subspaces, a decision 

fusion mechanism is needed to merge class label and posterior probability information 

from all individual subspaces into a final class label per test pixel/signature. Decision 

fusion can be either “hard” or “soft”. Hard decision fusion involves fusion of individual 

class labels (hard-information). One popular example of such an approach is Majority 

Voting (MV) [11], [15], where for every test pixel, a voting mechanism is invoked over 

the results of all local classifiers in the bank of classifiers, and the signature is labeled as 
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belonging to the class that gets maximum number of votes. Soft decision fusion on the 

other hand entails the use of posterior probabilities, or more generally some class 

membership function from every classifier for making the final decision. Unlike hard 

fusion techniques, soft decision fusion schemes do not rely solely on class labels from 

each classifier to make the final decision. Two popular soft decision fusion schemes are 

linear and logarithmic opinion pools [11], [15]. A Linear Opinion Pool (LOP) uses the 

individual posterior probabilities of each classifier (j = 1, 2,… n), pj(wi/x) to estimate a 

global class membership function 

n 

C(wi | x) = ∑α j p j (wi | x), 
j=1  (4.8) 

w = argmaxC(wi | x). 
i ∈{1,2...C} 

The classifier weights (αj, j = 1, 2, …n) can either be uniformly distributed over all 

classifiers, or can be assigned based on the confidence score of each classifier. This is 

essentially a weighted average of posteriors across the classifier bank. In a Logarithmic 

Opinion Pool, the global class membership function is modified to be a weighted product 

of the posterior probabilities of all classifiers, instead of a weighted sum. In this work, a 

uniform distribution of classifier weights is employed. 

In previous work [11], it was observed that MV based decision fusion was least 

sensitive to signal fidelity conditions, while LOGP was most sensitive to signal fidelity 

and reliability of posterior probability estimates. When posterior probability estimates 

were reliable, LOP based decision fusion resulted in good classification in the MCDF 

framework. Hence, only results with LOP based decision fusion are reported in this 

chapter, although MV and LOGP were tested, and were found to be inferior to LOP.   
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4.4 Experimental Hyperspectral Data 

Hyperspectral data was collected using an Analytical Spectral Devices (ASD) 

Fieldspec Pro FR handheld spectroradiometer [16]. Signatures collected from this device 

have 2151 spectral bands sampled at 1nm over the range of 350 – 2500nm with a spectral 

resolution ranging from 3 – 10nm. A 25° instantaneous field of view (IFOV) foreoptic 

was used. The instrument was set to average ten signatures to produce each sample 

signature, and the sensor was held nadir at approximately four feet above the vegetation 

canopy. Hyperspectral signatures collected with an ASD spectroradiometer tend to have 

high levels of noise in the regions associated with longer wavelengths, particularly when 

the sensor has been in use for a longer period of time or under high temperature 

conditions (due to overheating of the semiconductors).  Thus the signatures were 

truncated at 1800nm.  Also, the reflectance values in the regions 1350nm - 1430nm were 

removed from all signatures to avoid noise due to atmospheric water absorption. This 

resulted in hyperspectral signatures with 1600 bands. 

Signatures in the dataset form two classes: (1) an agricultural row crop, Cotton 

variety ST–4961, and, (2) a weed that is detrimental to the crop’s yield, Johnsongrass 

(Sorghum halepense). In this study, 54 signatures of Johnsongrass and 35 signatures of 

Cotton are used. These signatures were measured in good weather conditions in 

Mississippi, U.S.A., in 2000-2004. A target recognition scenario is simulated by 

employing the weed (Johnsongrass) as the target class, and the crop (Cotton) as the 

background class. Challenging target recognition tasks are created by linearly mixing 

target test signatures with the background at various mixing ratios (MR). All experiments 

reported in this chapter are performed using a leave-one-out testing procedure [17]. Each 
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test target signature sequestered during the leave-one-out testing is mixed linearly with a 

random background signature. To ensure an unbiased setup, the background signature 

used in this mixing is not used for training the system. This results in a realistic and 

challenging ATR problem because it creates a mismatched situation where the classifiers 

are trained on clean (unmixed) target and background signatures but tested on corrupt 

(mixed) target signatures. The mixing ratios (background percentage to target percentage) 

for test target signatures reported in this work range from 10:90 (very light mixing) to 

90:10 (severe mixing). With this setup, target recognition accuracies are estimated from 

these sub-pixel ATR tasks using the proposed kernel based MCDF system. 

4.5 Experimental Setup and Results 

To determine the efficacy of the algorithm proposed in this chapter, ATR 

experiments are setup with the dataset described in section 4.4.  Three sets of experiments 

are presented with the following objectives: (1) To study the effect of window size on the 

classification performance of the kernel based MCDF system, (2) To study the effect of 

the kernel parameter, σ on the generalization capacity of the proposed framework, (3) 

Benchmarking the recognition performance of the proposed system against other popular 

state-of-the-art classification methods under “light”, “moderate” and “severe” pixel 

mixing conditions.  Experiments 1 and 2 provide an understanding of the performance 

variation of the proposed system over the parameter space, and experiment 3 helps in 

quantifying the benefits of the kernel based MCDF system for classification over 

previous approaches, in particular, S-LDA, LDA based MCDF and single classifier 

KDA. 
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All experiments were conducted in the mixed pixel classification framework as 

described in section 4.4. This simulates a challenging and realistic scenario – which is 

commonly encountered when the size of the target is smaller than the resolution of the 

sensor, resulting in mixing of target signatures with background signatures. In this work, 

efficacy of the proposed algorithms is gauged using overall recognition accuracies (which 

measure the system’s capacity to recognize both target and background signatures.) 

Further, for accurate estimation of overall recognition accuracies, all experiments were 

conducted using the leave-one-out cross validation method.  

4.5.1 Experiment 1: Effect of Window Size on the Efficacy of the Kernel based MCDF 

System 

As is expected, the window size, (the size of each group in the partitioning of the 

hyperspectral space) is likely to have an effect on classification performance of the KDA 

based MCDF system. In previous work [11], it was seen that correlation and mutual-

information matrices of experimental hyperspectral data were approximately block-

diagonal – with strong correlation among successive bands, and relatively weaker 

correlation between bands that were placed farther apart in the spectrum. When choosing 

an appropriate partition of the hyperspectral space, it was found necessary to ensure that 

the smallest size of the partition be no smaller than what would be supported by the 

approximate block-diagonal structure of the correlation matrix of the data. A smaller 

window/group size would mean that correlated bands would actually get partitioned into 

separate groups, and this would lower the diversity in the bank-of-classifiers, thereby 

weakening the decision fusion system [11]. Further, when LDA is employed as a pre-
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processing at the subspace level [11], [12] instead of KDA, an upper bound on the size of 

each window/group is also needed to ensure that the within-class scatter matrices 

estimated in the LDA formulation are well-conditioned. If the size (dimensionality) of 

any group is larger than what would be supported by available training data, the within 

class scatter matrix may be ill-conditioned, resulting in sub-optimal performance of the 

MCDF system.  

In the KDA based MCDF framework proposed in this chapter, we no longer have 

the restriction of an upper bound on each group to ensure a well-conditioned formulation. 

This follows from the fact that the KDA formulation employed in each group relies solely 

on the empirical Gram matrix, and the property that the Gram matrix is always full 

ranked (assuming it was learned from “distinct” training data points) when an RBF kernel 

is employed [7]. This implies that we can choose an arbitrarily large window size and the 

KDA based MCDF formulation would still remain well-conditioned.  

However, increasing the window size indiscriminately in the partitioning process 

will affect the diversity of the bank of classifiers, and this may adversely affect the 

decision fusion performance. In experiment 1, the window size is varied over a wide 

range of values to study the variation in classification accuracy of the proposed system 

over this range. The value of the kernel parameter, σ was set to one in this experiment. 

Figure 4.2 shows the average absolute value of correlation between all the KDA 

projected subspaces in the partition. This value is a measure of the diversity of KDA 

induced subspaces, and hence of the classifiers in the bank-of-classifiers. Note that high 

redundancy (high correlation) implies a poor decision fusion performance [11], and high 

diversity (low correlation) implies a stronger and more robust decision fusion 
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performance. Figure 4.2 depicts this value (estimated from training data) for different 

window sizes, ranging from 10 to 800. The upper bound on the window size is 800 (i.e. 

the largest window size that results in uniform partitions).  Figure 4.3 depicts the overall 

recognition accuracy of the proposed system for different window sizes, varying from 10 

to 1600. Recall that when the window size is 1600 the KDA based MCDF system 

degenerates to a KDA based single classifier system. Because there is only one subspace 

in the partition when the window size is 1600, the window size is not varied all the way 

to 1600 for figure 4.2, where the purpose is to measure correlation between different 

subspaces in the KDA domain. However, comparing figure 4.2 and figure 4.3 for window 

size ranging from 10 to 800, a very definite trend can be seen. From window size 10 to 

window size 50, the average absolute correlation drops as the window size increases. In 

this range, the overall accuracy of the proposed system increases (for all mixing ratios). 

However, after a window size of 50, further increase in window size results in an increase 

in correlation and a drop in the overall classification accuracy. Classification accuracy 

and correlation between subspaces are inversely related, which can be explained by the 

fact that when the collection of classifiers is more diverse, the resulting decision fusion is 

more robust. 
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Figure 4.2  Average absolute value of correlation between KDA coefficients from 
each subspace for different window sizes. 

Figure 4.3   Accuracy vs. window size. 
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The large correlation between KDA spaces when the window size is small (e.g., 

between 10 and 50) is likely to be due to the fact that in that range, window size is 

smaller than what would be supported by the approximate block-diagonal structure of the 

correlation matrix of the data.  

4.5.2 Experiment 2: Effect of Kernel Parameter on the Generalization Capacity of the 

Kernel based MCDF System 

In this experiment, the generalization ability of the proposed system is studied as 

a function of the kernel parameter, σ. As was mentioned previously, the key motivation 

behind introducing a kernel based transformation in the MCDF framework is to improve 

the generalization ability of classification, that is, to ensure that the classification system 

is able to generalize well to arbitrary test data – even the kind that has a slightly different 

statistical structure as compared to the test data. This ensures a robust classification 

because in operational scenarios, it is rarely the case that we are able to train a classifier 

on data with spatial and spectral fidelity precisely similar to the actual test data.  

In figure 4.4, overall classification accuracy is reported using the proposed KDA 

based MCDF system over a wide range of kernel parameter values, varying σ from 0.1 to 

4.1. The window size in the partitioning process was set to 50. Results are reported for 

light pixel mixing (MR 10:90 and 20:80), moderate pixel mixing (MR 50:50) and severe 

pixel mixing (MR 80:20 and 90:10).  

As explained in [7], the value of σ, the width of the RBF kernel has an impact on 

the generalization ability in the kernel induced space. As σ increases, the generalization 

capacity of a kernel based machine typically increases. Note that for light to moderate 
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pixel mixing conditions, the statistical structure of training and test data is very similar. 

This however is not the case for severe pixel mixing conditions, where not only the 

mismatch between training and test conditions is high, but with increased mixing, the 

class distributions are likely to be multi-modal in nature. This observation is reflected in 

the trends that can be seen in figure 4.4. For mild to moderate pixel mixing, overall 

accuracy increases with an increase in σ, obtaining the best classification accuracy at 

around σ  = 0.6. However, a further increase in the parameter results in a drop in overall 

accuracy. For severe pixel mixing, it can again be seen that the overall accuracy increases 

Figure 4.4   Accuracy vs. kernel parameter (sigma). 
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with increasing σ. Note that under severe pixel mixing, the maximum overall accuracy is 

attained with a relatively wide kernel (σ  = 1) as compared to the mild and moderate pixel 

mixing case. This is due to the fact that under the severe pixel mixing case, more 

generalization (obtained by a wider kernel) is needed in the classification framework to 

account for multi-modality of class distributions and mismatch in training and test 

conditions. 

From this figure, it follows that without any a-prior information about the extent 

of pixel mixing, a value of σ = 1 appears to be a good choice as the kernel parameter, as it 

provides high overall accuracy over a wide range of pixel mixing conditions. 

4.5.3 Experiment 3: Benchmarking 

The variation of performance of the proposed kernel based MCDF system with 

window size and kernel parameter provide us with valuable insight into the robustness 

and generalization capacity of this system as a function of the user-defined parameters. 

Based on the discussion in experiments 1 and 2, a window size of 50 and a kernel 

parameter σ = 1 is a reasonable choice for the type of experimental hyperspectral data 

employed in this chapter. 

In this experiment, the recognition performance of the proposed system (using the 

parameters values: window size = 50 and σ = 1) will be compared against conventional 

state-of-the-art approaches for hyperspectral recognition.  In particular, in this 

experiment, overall recognition accuracy will be compared in different pixel mixing 

conditions using (1) MCDF-KDA (the proposed system), (2) Single-KDA (employing a 

single KDA transformation on the entire hyperspectral space, followed by a single 
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maximum likelihood classifier), (3) MCDF-LDA (The multi-classifier and decision 

fusion framework using LDA as the pre-processing, instead of KDA), (4) S-LDA 

(Stepwise LDA), (5) Multi-KDA-FF (Feature fusion of multi-KDA projections, followed 

by a single classifier instead of a MCDF framework). S-LDA (also known as 

Discriminant Analysis Feature Extraction, or DAFE in the remote sensing community) is 

commonly employed by researchers in classification tasks when the training data size is 

small relative to the dimensionality of the data. It employs a forward selection and 

backward rejection algorithm to identify a smaller subset of available features 

(hyperspectral bands in this case) upon which a LDA transformation is applied. More 

details about this algorithm can be found in [18]. In this work, an area under Receiver 

Operating Characteristics (ROC) curve is employed to identify the smaller subset of 

hyperspectral bands upon which LDA is applied. This metric has previously shown to 

work well with hyperspectral data [18]. The size of the smaller subset upon which LDA 

is applied is chosen as 10, which is a reasonable value for the given amount of training 

data. Multi-KDA-FF still employs a partitioning of the hyperspectral space, followed by a 

KDA transformation in each subspace of the partition. However, the outcomes of KDA 

transformations from each subspace are not fed into a bank-of-classifiers, and instead are 

fused (concatenated) into one single feature vector per hyperspectral signature. Finally, a 

single maximum-likelihood classifier is employed for classification. This helps illustrates 

the benefits of decision fusion in the proposed MCDF-KDA system, instead of feature 

fusion. 
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Outcomes of these experiments for experimental hyperspectral datasets are 

depicted in figure 4.5. Note that in mild pixel mixing conditions (MR 10:90), the 

previously proposed MCDF-LDA system provides good classification accuracy. S-LDA 

and Single-KDA also perform well in these conditions. However, as pixel mixing 

becomes moderate (MR 40:60, 50:50) and severe (MR 60:40 and 90:10), the MCDF 

approach starts to break down. Performance of Single-KDA and S-LDA also starts to 

deteriorate. However, over this wide range of pixel mixing conditions, the proposed 

MCDF-KDA system to outperform other approaches (more so in moderate and severe 

pixel mixing conditions). 

Finally, note that in all pixel mixing conditions, the feature fusion approach 

(Multi-KDA-FF) performs worse than most other approaches, and this clearly illustrates 

the benefit of having a multi-classifier and decision fusion system instead of performing 

feature fusion followed by a single classifier system for classification.  

Figure 4.5 Accuracy at various mixing ratios for Cotton vs. Johnsongrass. 

Bars atop each value indicate the 95% confidence interval. 
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4.6 Conclusions 

In this chapter, a new kernel based multi-classifier and decision fusion framework 

is proposed for robust classification of high dimensional hyperspectral data. The 

proposed classification system has two significant advantages over conventional 

classification approaches: (1) It alleviates the small-sample-size problem commonly 

encountered in hyperspectral classification applications; (2) It ensures robust 

hyperspectral classification, even in severe pixel mixing and training-test ‘mismatch’ 

conditions. Although the previously proposed LDA based MCDF system alleviated the 

small-sample-size problem, the KDA based MCDF approach proposed in this chapter 

further ensures a robust classification in challenging classification scenarios.  

Outcomes of experimental analysis in this chapter provided a justification for 

partitioning the hyperspectral space into smaller analysis windows, and for performing 

local KDA transformations and classifications in each window, instead of a single KDA 

transformation followed by a single classifier for classification. It was shown that the 

classifier diversity decreases with an increasing window size. A diverse ensemble of 

classifiers ensures a robust decision fusion based classification. This fact was exploited to 

determine the appropriate window size. Experimental results corroborated this 

observation, as it was noted that the overall accuracy of the MCDF-KDA system 

decreased as the window size was increased beyond the chosen window size. 

The effect of varying the kernel parameter on the overall classification accuracy 

of the proposed system was studied. It was observed that increasing the value of the 

kernel parameter improved the generalization capability of the MCDF-KDA algorithm – 

i.e., the algorithm was robust even under severe training-test mismatch, but this came at 
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the cost of a slightly reduced performance in perfectly matched training-test conditions. 

After observing the overall accuracy vs. kernel parameter plots under various pixel 

mixing conditions, it was concluded that without any a-priori information about the 

extent of pixel mixing (or training-test mismatch), a kernel parameter value of 1 was a 

reasonable choice for the proposed system. 

To conclude, the proposed MCDF-KDA algorithm provided a very robust 

hyperspectral classification performance for the given hyperspectral classification task, 

even with very little training data. This algorithm can be easily extended to any 

hyperspectral classification task, and the algorithm parameters (window size and kernel 

parameter) can be adapted to the dataset at hand by running experimental analysis similar 

to experiments 1 and 2 on the training dataset. 
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CHAPTER V 

PRACTICAL APPLICATIONS OF THE MCDF FRAMEWORK 

In this chapter, the MCDF framework is tested with three different practical 

classification tasks – (1) invasive species classification using satellite hyperspectral 

imagery, (2) multitemporal hyperspectral classification, and, (3) Computer Aided 

Detection (CAD) of malignant masses using digital mammogram images.  In task 1, the 

previously employed MCDF framework is extended to satellite hyperspectral imagery, 

and its performance is compared to that from an S-LDA based feature extraction method. 

Results from this experiment will demonstrate that the MCDF framework can easily be 

extended to different hyperspectral sensors for robust statistical classification in small-

sample-size conditions. In task 2, the MCDF framework is extended to a two-tier multi-

classifier, decision fusion framework, wherein decision fusion is performed across both 

temporal and spectral dimensions for robust classification of multitemporal hyperspectral 

datasets. In task 3, the MCDF framework is tested on an entirely different classification 

task – as the classification backend of a digital mammography based CAD system. 

Current state-of-the-art CAD systems for mammography employ very high dimensional 

feature spaces for classification, and hence, it is expected that the MCDF framework will 

improve the robustness of such CAD systems. Results from these experiments 
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demonstrate that the MCDF framework can be extended to different high-dimensional, 

small-sample-size statistical pattern classification problems. 

The outline of this chapter is as follows. In section 5.1, the MCDF framework is 

tested on an invasive species classification task. In section 5.2, an extension of the MCDF 

framework is proposed to robustly classify multitemporal hyperspectral data. In section 

5.3, the MCDF framework is tested on an entirely different statistical pattern 

classification task – CAD of malignant and benign tumors using digital mammography.  

5.1 Practical Application 1: Invasive Species Classification using Satellite 

Hyperspectral Data 

Nonnative invasive species adversely impact ecosystems, causing loss of native 

plant diversity, species extinction, and impairment of wildlife habitats. Dispersal is a key 

issue in invasive species, because most invasive species disperse readily. During times of 

climate change, new invasive species may disperse into novel climate regions.  The 

manner in which an invasive species will respond to climate change will vary according 

to the life history requirements of the species, its current range, its ability to disperse, and 

the conditions under which it can regenerate. Managers need to be on the alert for new 

threats by invasive species if climates change, and they must be ready to respond to 

situations as they arise. 

Over the past decade federal and state agencies and nongovernmental 

organizations have begun to work more closely together to address the management of 

invasive species. In the 2005 fiscal year, approximately $500M was budgeted by U.S. 

Federal Agencies for the management of invasive species [1].  Despite extensive 
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expenditures, most of the methods used to detect and quantify the distribution of these 

invaders are ad-hoc, at best.  Likewise, decisions on the type of management techniques 

to be used or evaluation of the success of these methods are typically non-systematic. 

More efficient methods to detect or predict the occurrence of these species, as well as the 

incorporation of this knowledge into decision support systems, are greatly needed. 

In an attempt to demonstrate that the MCDF framework proposed in this 

dissertation will hold for data acquired from space-borne hyperspectral sensors as well, in 

this experiment, conventional classification approaches will be compared with the 

proposed MCDF approach for an invasive species detection and classification problem, 

using data acquired from the HYPERION imager [2].  

HYPERION is a push-broom imager aboard the NASA Earth-Orbiter-1 mission 

satellite [2]. It possesses 220 spectral bands covering the spectrum from 400nm -

2500nm, each with a spectral resolution of 10nm. It has a swath of 7.5Km and a spatial 

resolution of 30m. Signatures in this dataset form two classes: (i) 115 samples of 

Tamarisk (Tamarix ramosissima), and (ii) 65 samples of Non-Tamarisk (a collection of 

native vegetation signatures in the vicinity, such as those of cottonwood, willow etc.). 

Figure 5.1 depicts some images and sample signatures from this dataset.  
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Figure 5.1   Experimental hyperspectral data. 

Top: Tamarisk stand in Colorado. Native plants are unable to penetrate the 
thick stands of tamarisk [Photograph: Tim Carlson]; Bottom: Hyperspectral 
signatures from the dataset. 
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Tamarisk, an invasive species also known as salt cedar is a particular problem in the 

U.S.’s desert southwest, where it is displacing the native cottonwood, willow, and other 

native plants.  Tamarisk shrubs, or trees, are extremely competitive against native 

vegetation because they aggressively consume the water supply.  Since tamarisk can re-

grow from root crown buds, even after burning, the current management practices for 

tamarisk involve combinations of chemical, mechanical, and biological techniques. 

Thus, detection of tamarisk through the use of remote sensing could greatly reduce the 

cost associated with this invasive species. 

In this experiment, a Tamarisk vs. Non-Tamarisk classification is carried out, for 

accurate identification and mapping of Tamarisk invasion among other native vegetation. 

Due to limited ground-truth, a leave-one-out cross-validation is carried out, as described 

previously. In table 5.1, classification accuracy from two systems is reported – (i) S-LDA 

(current state-of-the-art), and, (ii) MCDF. The length to which the intermediate feature 

vector is allowed to grow in the S-LDA procedure is set to 10. In the MCDF framework, 

JMCorr and JMAMI are separately employed for band-grouping to study possible 

benefits of employing a mutual information based metric for satellite hyperspectral data. 

LDA based pre-processing is carried out in each subspace, followed by quadratic 

maximum-likelihood local classification. Finally, these local decisions are fused by a 

decision fusion mechanism. Results with both hard (MV) and soft (LOP) decision fusion 

are reported. 
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Table 5.1    Comparing classification performance of the conventional S-LDA 
technique, with that of the proposed MCDF technique for satellite 
hyperspectral data.  
 

 S-LDA (Baseline) MCDF – MV MCDF – LOP 

 JMCorr JMAMI  JMCorr JMAMI 

 76.4 (2) 76.4 (2) 75.8 (2) 75.8 (2) 

67.7 (3) MCDF - WMV MCDF – WLOP 

JMCorr JMAMI  JMCorr JMAMI 

76.4 (2) 76.4 (2) 74.7 (2) 74.8 (2) 

 
 Values below are overall classification accuracies (expressed in percentage), and the 

  95% confidence interval for each value is provided in parenthesis. 

 

 

Note that by employing the divide-and-conquer (MCDF) approach instead of the 

baseline S-LDA approach, the overall classification accuracy improved by 8 to 9%. 

Further, for this dataset, where the spectrum is not as densely sampled compared with 

handheld ASD data, employing a mutual information based metric (JMAMI) for band-

grouping does not yield any advantage. Finally, the “weighted versions” of the decision 

fusion schemes, namely, WMV and WLOP did not provide any additional benefit either, 

as is expected for this dataset owing to the near uniform fidelity of the hyperspectral 

signatures.  

The benefits of a kernel projection (KDA) at the subspace level in the MCDF 

framework are evident from results of a sub-pixel classification task using the 

HYPERION dataset (Figure 5.2). As before, a sub-pixel classification task is simulated 
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by mixing target test pixels with random background (non-target) pixels, and 

classification is conducted in the MCDF framework using (1) LDA as a pre-processing 

(MCDF-LDA), and, (2) KDA as a preprocessing (MCDF-KDA), at the subspace level. 

The KDA algorithm used in this experiment is explained previously in chapter 4. LOP is 

employed as the decision fusion rule. Results are reported for three different pixel 

mixing ratios (background : target percentage) – MR1 (10:90), MR2 (20:80), MR3 

(30:70). It can be seen that incorporating a KDA transformation in the MCDF framework 

improves its generalization ability – the classification accuracy in severe pixel mixing 

conditions is substantially higher for MCDF-KDA as compared to the MCDF-LDA 

approach. 

It is important to point out here that unlike the handheld ASD data, for space-

borne and air-borne data, a mixing ratio of 30:70 is quite severe, because the pixels 
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Figure 5.2 Overall recognition accuracy for the Tamarisk vs. Non-Tamarisk 
using Hyperion imagery, at different pixel mixing ratios. 

Mixing ratios are: MR1 (10:90), MR2 (20:80), MR3 (30:70). Error bars indicate 
the 95% confidence interval of the classification accuracy. 
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already have much lower spatial resolution, and also suffer from atmospheric effects. It 

should also be noted that despite the fact that the MCDF based approach results in better 

classification accuracies as compared to conventional approaches, the best classification 

accuracy obtained with this dataset (76.4%, in table 5.1) is still lower than the very high 

classification accuracies obtained with handheld ASD data.  

5.2 Practical Application 2: Multitemporal Hyperspectral Classification 

Up to this point, experiments in this dissertation have exploited the MCDF 

framework towards the goal of robust classification of hyperspectral data. In this section, 

it will be demonstrated that this approach can be extended to a more generic data fusion 

scenario. In particular, an extension of the MCDF approach will be presented that will 

exploit both temporal and spectral information for robust classification of an invasive 

species classification dataset, i.e., decision fusion will be performed across the spectral 

and temporal dimensions.  

Employing temporal information along with spectral information is expected to 

result in better classification performance, as compared to employing temporal 

information alone, or spectral information alone. In classification of vegetation species, 

spectral data can provide useful information about the cell structure, water stress, and 

other such biophysical characteristics, while the temporal evolution of this spectra can 

provide useful phenological information. However, just like hyperspectral classification 

tasks, multitemporal hyperspectral classification problems are also prone (in fact, even 

more so) to over-dimensionality of features and small training sample size problems.  
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Previously, Jeon and Landgrebe [3] have proposed a decision fusion system to 

classify multispectral, multitemporal data. The proposed majority vote based decision 

fusion technique improved the classification accuracy of three remotely sensed Thematic 

Mapper (TM) datasets, over a simple pixel-wise classifier that did not perform 

multitemporal decision fusion. Although this framework provided good recognition 

performance with multispectral data, extending this approach to hyperspectral data would 

necessitate addressing the inherent over-dimensionality of hyperspectral signatures in an 

appropriate manner. In this section, an extension of the MCDF approach [4] is presented 

to enable robust multitemporal, hyperspectral target classification. In the proposed 

approach, MCDF systems will be employed for each date in the dataset, and a second tier 

of decision fusion system will merge these results for final classification. The use of the 

divide-and-conquer approach per date ensures that for every date, the classification 

system is robust, even when working with a small-training-dataset. Finally, the fusion of 

class labels from every date further ensures that information from every time stamp in the 

temporal sequence is employed in the decision making process. The performance of the 

proposed system will be compared against that of conventional techniques, such as LDA 

and S- LDA. The efficacy of the system will be quantified by means of overall 

recognition accuracies. 

Figure 5.3 depicts the overall block diagram of the proposed system. As in [4], the 

proposed framework incorporates a subspace identification procedure to partition the 

hyperspectral space into multiple contiguous subspaces and then employs a decision 

fusion mechanism to fuse local classification results from each subspace. However, in the 

proposed multitemporal hyperspectral system, multiple banks of classifiers and decision 
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Figure 5.3   Illustrating the proposed system for robust classification of multitemporal 
hyperspectral data.  

For every date, a band-grouping / subspace allocation procedure followed multi-classifiers and 
decision fusion is employed. Decisions from every date are merged into a final class label. 

Date 1 Date 2 Date M 

Class 
Label 

Class 
Label 

Class 
Label 

Fusion Rule 

Class Label 

Multi Temporal 
Hyper spectral data 

B0 B1 B2 B3 B4 Bn 

LDA LDA LDA LDA LDA 

Classifier 1 Classifier 3 Classifier n 

Fusion 
Rule 

Class Label 

Labels & 
posteriors 

Band‐Grouping 
(training data) 

Bank of classifiers 

Sub‐Space Allocation 
(test data) 

Signatures 
of Date M 

fusion systems are employed – one for each date. Finally, a global decision fusion system 

merges classification results from each bank (date) into a final class label per test pixel or 

signature. The resulting system is capable of providing reliable classification of test data 

even when relatively few training samples are available for each date. 

It has been shown in chapter 3 that a divide-and-conquer approach that partitions 

the hyperspectral space and employs multi-classifiers and decision fusion for 

classification is robust in small-sample-size conditions. In this work, as in chapter 3, a 

metric based on the product of maximum Jeffries Matsushita distance and mutual 

information is employed for such partitioning of the hyperspectral space of every date. 
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This ensures that each subspace created in the process possesses good class separation, 

while the collection of subspaces is simultaneously diverse.  

5.2.1 Experimental Hyperspectral Dataset 

The multitemporal hyperspectral data used in this study was collected using an 

Analytical Spectral Devices (ASD) Fieldspec Pro FR handheld spectroradiometer [5]. 

Signatures collected from this device have 2151 spectral bands sampled at 1nm over the 

range of 350 – 2500nm with a spectral resolution ranging from 3 – 10nm. A 25° IFOV 

foreoptic was used, the instrument was set to average ten signatures to produce each 

sample signature, and the sensor was held nadir at approximately four feet above the 

vegetation canopy. Reflectance values in the regions 1350nm - 1430nm and 1800nm – 

1980nm were removed from all signatures and then interpolated using piecewise cubic 

Hermite interpolation, to remove effects of atmospheric water absorption. 

Figure 5.4 illustrates the experimental dataset. Signatures in this dataset form two 

classes: (i) an aquatic invasive species, Waterhyacinth (Eichornia crassipes), and (ii) 

another aquatic species, American lotus (Nelumbo lutea). A possible remote sensing 

application for such species may involve detecting and mapping Waterhyacinth in aquatic 

environments for appropriate chemical treatment and removal. The two aquatic species 

were grown under well-regulated environmental conditions at the R. R. Foil Plant 

Research Center at Mississippi State University. Data was collected in the range of ±2 

hours of solar noon, every week from 24th June 2005 to 26th October 2005, for a total of 

twenty signatures per class per date [6]. 
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Figure 5.4   Experimental hyperspectral data. 

Top left: Waterhyacinth (Ted Center, USDA); Top right: American Lotus (Robert H. 
Mohlenbrock, USDA); Bottom: Hyperspectral signatures of the two aquatic species. 
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5.2.2 Experimental Setup and Results 

Target recognition experiments were carried out on hyperspectral data described 

above. All experiments reported here are performed using a leave-one-out testing 

procedure. Three different baseline experiments are reported, for comparing the 

performance of the proposed system with. The first baseline approach, called MT-SLDA 

employs a S-LDA [7], [8] approach per date, followed by a feature-space concatenation 
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(of the S-LDA output from every date) and a single classifier at the backend. In this 

approach, hyperspectral data from each date was reduced by means of a S-LDA (also 

known as Discriminant Analysis Feature Extraction, DAFE [8]) procedure. S-LDA 

employs a forward selection and backward rejection approach to choose a smaller subset 

(in this work, set as 10) of original features to apply LDA upon. The metric employed for 

forward selection and backward rejection in this experiment was the area under the 

Receiver Operating Characteristics (ROC) curve [7], [8]. This resulted in a reduced 

feature space dimensionality of one per date (since we only have two classes in this 

recognition task). Finally, the reduced dimensional space (in this case a scalar) is merged 

across all dates, and we come up with a single feature vector, which is of a much smaller 

dimensionality than the original multitemporal hyperspectral feature space. In this case 

(for a two-class problem), the dimensionality of this feature vector equals the number of 

dates in the multitemporal dataset. The S-LDA transformations per date are learned from 

training data, and applied to both training and test data samples. This is followed by a 

single classifier system.  

In the second baseline approach, referred to as LDA-DF, we combine 

hyperspectral signatures from all dates into one single dataset, getting rid of the temporal 

information in the dataset by discarding date information, and randomly permuting the 

samples of each class. Finally, instead of using a conventional single classifier approach, 

we employed a multi-classifier, decision fusion approach, where the hyperspectral space 

was partitioned into multiple smaller subspaces, and LDA followed by classification was 

performed in each subspace independently. Finally, the local classification results (from 

each subspace/subset of the spectrum) were merged using decision fusion. 
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The third baseline approach, referred to as LDA also involves merging the 

hyperspectral signatures of all dates, that is, getting rid of the temporal information in the 

dataset by discarding date information, and randomly permuting the samples of each 

class. Since in this scenario, the number of training samples is sufficiently large for a 

conventional LDA transformation to be estimated, an LDA based projection of training 

and test data (learned from the training data) is performed, followed by a single classifier 

system. This approach quantifies the ability of conventional classification systems to 

classify the available hyperspectral data without using any temporal information. This 

approach is referred to as LDA in table 5.2.  

The three baseline systems described above were compared against the proposed 

multitemporal decision fusion system illustrated in figure 5.3. All classifiers employed in 

this work were maximum-likelihood classifiers, assuming Gaussian class-conditional 

distributions [7], [9]. Majority voting [4] was employed as the decision fusion scheme in 

all of this work. 
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Experimental results with the proposed algorithm and the three baseline systems 

are provided in table 5.2.  The accuracy reported is the overall recognition accuracy, 

along with the 95% confidence interval, both expressed in percentage. Figure 5.5 depicts 

the individual accuracies per date – i.e., using a multi-classifier, decision fusion system 

for each date separately. Note that although the individual classification accuracies 

(figure 5.5) are all less than 100%, and vary from approximately 65% – 95%, the overall 

accuracy of the proposed system (MT-DF), which is comprised of a two level decision 

fusion (spectral and temporal) is a 100% (table 5.2). This illustrates the fact that when the 

temporal information is added to the spectral information (by fusing results obtained over 

different dates), the corresponding classification accuracy for this two-class recognition 

task improved significantly. From table 5.2, it is clear that the proposed MT-DF system 

significantly outperforms the other “baseline” approaches to classification. A LDA-DF 

system, which discards the temporal information, but employs a multi-classifier and 

decision fusion framework for classification using spectral information is the next best 
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Figure 5.5   Individual classification accuracies per Julian date, using the multi-
classifier decision fusion system on the hyperspectral signatures. 
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Table 5.2  Overall recognition accuracy for the multitemporal, 
hyperspectral task using the proposed approach (MT-DF) 
and three baseline approaches. 

Recognition 
Accuracy (%) 

Confidence 
Interval (+/- %) 

MT-DF 100 0 
LDA-DF 96.8 0.8 

LDA 91.5 1.3 
MT-SLDA 86.6 3.2 

system. The next best system is the LDA system, which also discards the temporal 

information, but employs a conventional single-classifier approach for the classification 

task. Finally, for this classification task, the MT-SLDA system provides the lowest 

classification accuracy. 

In this experiment, the recognition performance of the proposed multi-temporal, 

hyperspectral decision fusion system was compared with various baseline approaches. It 

was established that despite the classification performance of each individual date in the 

dataset being relatively low, when the “temporal” information was exploited in the 

proposed framework, the classification accuracy for this two-class problem rose to a 

100%. This demonstrates one of the many possibilities of multi-source data fusion within 

which MCDF framework can be incorporated. Hyperspectral information can similarly 

be combined using a decision fusion framework with other modalities, such as RADAR, 

LIDAR, spatial information etc.  
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5.3 Practical Application 3: Robust Classification of Mammogram Images 

In previous chapters, the proposed MCDF framework is designed and tested with 

hyperspectral data, which is typically comprised of a dense “near-continuous” sampling 

of the spectra. This helps ensure that the adjacent bands of hyperspectral data are highly 

correlated, thereby allowing for a bottom-up band-grouping approach to identify 

subspaces in the proposed MCDF framework.  While there are many applications which 

would use such datasets, there exist other datasets, where the feature vectors may not 

possess a well-defined correlation structure to warrant an intelligent and automated band-

grouping. It would become necessary in such circumstances to adapt the feature-grouping 

(subspace identification) technique to the dataset at hand. One example of such a high-

dimensional classification task is the discrimination of malignant and benign tumors in 

digital mammography CAD systems. In this experiment, the MCDF system will be 

applied to features extracted from the front-end of a digital mammography CAD system, 

for robust classification of mammogram images, i.e., identifying benign versus malignant 

masses in the images.   

Breast cancer is believed to be among the leading causes of cancer related deaths 

among women, and mammography is the modality of choice for detecting breast cancer 

[10], [11]. As is the case with many medical imaging modalities, a great amount of 

research is being conducted for the design of CAD systems.  A typical CAD system 

performs the following tasks in succession: (1) image enhancement and segmentation, (2) 

feature extraction, and, (3) classification. Robust image enhancement and segmentation 

algorithms are now available for identifying regions of interest in mammogram images 

[12]. The features extracted from these segmentations are however oftentimes very high 
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dimensional; for example, some CAD systems result in hundreds or even thousands of 

features [8], [16], [17], [18]. This has ramifications on the performance of the backend 

classification system in that the size of available training data (number of available 

training mammograms) does not match the required size needed to accurately model the 

statistical characteristics of high dimensional feature spaces.  

In this experiment, we propose employing the divide-and-conquer (MCDF) 

approach to robustly classify mammogram images from very high dimensional feature 

spaces generated using state-of-the-art image enhancement and segmentation and feature 

extraction algorithms. The proposed approach partitions the high dimensional feature 

space into many smaller dimensional subspaces. A bank of classifiers (multi-classifier 

system) performs “local” classification in each such subspace, and an appropriate 

decision fusion system “fuses” these local classification results into a final 

malignant/benign classification for every mammogram image. In doing so, the proposed 

system is employing all the available information for classification while avoiding the 

problems of overly high dimensional feature spaces, and hence it is expected that the 

system will more accurately classify malignant and benign mammogram images. 

5.3.1 Mammography Background 

Most end-to-end CAD systems follow a three step approach to classifying 

mammogram images. Mammograms are first pre-processed and enhanced (e.g. contrast 

enhancement) to remove noise and improve contrast. These images are then segmented to 

extract the “region of interest”. Features pertinent to the malignant/benign classification 

task are extracted from these segmentations, and are then optimized before being input to 
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a classification system. The classification system builds models of feature spaces for 

malignant and benign classes using available training data and uses these to perform 

classification, i.e. assign a label of benign or malignant to future input cases.  

Some common mammographic image enhancement methods include adaptive 

neighborhood contrast enhancement, gamma correction and wavelet and multi-scale 

enhancement. These methods are described in detail in [8]. In this study, for the periphery 

segmentation, image enhancement consists of contrast limited adaptive histogram 

equalization (CLAHE), as well as custom non-linear methods described in [8]. Figure 5.6 

illustrates sample mammographic images from the experimental dataset. 

Image segmentation in the context of mammogram images typically seeks to 

identify a “region of interest” in the image that is most likely to provide useful 

Figure 5.6   Sample images from the DDSM database. 

Figure (left to right) shows the original mammograms, images after image 
enhancement to remove noise and further enhancement using Gaussian isotropic 
filtering [8]. Segmentation and feature extraction was performed on these 
enhanced images [8], [13]. 
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information pertinent to malignant / benign classification. There are many approaches to 

mammographic mass segmentation. These include morphological approaches, texture 

analysis, gray level statistical thresholding and statistical models, level sets, bilateral 

subtraction of breast image pairs, functional minimization and region growing, multi-

resolution analysis and fuzzy region growing, modified median filtering and template 

matching, adaptive filtering, the radial gradient index and probabilistic methods, vicinal 

support vector based segmentation, and steerable filters. These methods are discussed in 

detail in [8]. 

The segmentation methodology used in this work is based on the approach 

proposed by Catarious in [13]. Since the focus of this experiment is on the backend 

(multi-classifier and decision fusion framework) design, the reader is referred to [8], [13] 

for a detailed description of the segmentation method. This segmentation is chosen as our 

system’s front-end because it performed very well for a benign / malignant classification 

on the mammogram database used by Catarious [13]. It provided a “successful” 

segmentation method and has been documented in previous publications.  

Table 5.3 enlists the features extracted from the dataset. The final feature vector 

for every mammogram (generated after segmentation and feature extraction) is a 

concatenation of all the features listed in table 5.3. The resulting feature space is hence 

inherently very high dimensional (1032-dimensional in this case.)  A high dimensional 

feature space adversely affects classification performance (unless there is sufficient 

training data to support the high dimensional space.) Hence, conventional single-

classifier based systems typically employ a suitable feature selection and optimization 

algorithm for dimensionality reduction before classifying the mammograms. 

121 



 

   

 
  

 
 

    

  

 
 

 
  

  

Table 5.3   Features extracted from mammograms in the DDSM database for 
classification of mammogram images. 

Feature type Number of 
features 

References 

Patient age 1 [8, 10, 15] 

Morphological features (Area, axis ratio, box ratio, 
eccentricity etc.) 

14 [8, 16] 

Statistical features (grey-level mean, standard 
deviation etc.) 

3 [8, 16] 

Features extracted from the Normalized Radial 
Length (entropy, mean, roughness etc.) 

6 [8, 16, 17, 18] 

Features extracted from the gray-level co-occurrence 
matrix (Energy, variance, covariance etc.) 

1008 [8, 16, 17, 19] 

LDA is a popular preprocessing / dimensionality reduction tool commonly 

employed by many researchers in the pattern classification community. As mentioned in 

previous chapters, one limitation of LDA based preprocessing is that to learn the LDA 

based linear transformations, the various scatter matrices (similar to covariance matrices) 

must be estimated in the original feature space from training data. For high dimensional 

data, a large amount of training data must be available to estimate these matrices. In the 

absence of a large amount of training data, estimates of these matrices are likely to be ill-

conditioned, and LDA based preprocessing is likely to fail (or be suboptimal). 

S-LDA with forward selection and backward rejection is commonly employed to 

mitigate affects of small-sample-size on LDA transformations. This algorithm is 

described in section 2.4. This forward selection and backward rejection approach results 

in a determination of the “best” feature subset, upon which if LDA is applied, the class 

separation in the resulting space will be high. Although this approach allows us to draw 

on the benefits of the LDA transformation for high dimensional feature spaces, it is still 

sub-optimal, in that the selection and rejection procedures outlined above do not perform 
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an exhaustive search on the feature space to find the optimal ‘combinations’ of features. 

Since this algorithm is commonly employed by many researchers as a feature 

optimization strategy for pattern classification (including medical CAD) systems, it is 

used as the baseline system in this work - classification performance of the proposed 

approach is compared against that of this S-LDA approach. 

5.3.2 Experimental Dataset 

This study uses an image database from the Digital Database for Screening 

Mammography (DDSM) database [14]. The 60 cases in our dataset consist of 30 

randomly selected benign cases and 30 randomly selected malignant cases, where only 17 

of the malignant cases are spiculated. Note that spiculated benign cases are relatively 

rare, and none were included in this study. Each test case consists of a mammographic 

image, the diagnosis (malignant or benign, which are validated with biopsies and follow– 

up visits), the patient’s age, a physician supplied region of interest (ROI), and a 

radiologist assessment of whether the mass is spiculated. Only an indication of the 

presence of spicules is provided (a spiculation template is not provided). The original 

mammographic images are scanned with a Howtek scanner with a pixel size of 43.52 

μm2 and 12 bits per pixel radiometric resolution [14]. Each mammogram is cropped to 

[2048 × 2048] pixels in an area around the physician supplied ROI. Further discussion of 

this dataset in terms of subtlety, margins and density are provided in detail in [8]. 

5.3.3 The Proposed MCDF Approach 

It has been established in previous sections that when dealing with high 

dimensional feature spaces and a small training sample size, a multi-classifier and 
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decision fusion approach to classification can provide high classification accuracies, even 

when the conventional approaches such as PCA, LDA and S-LDA begin to fail. When 

employed on high dimensional, remotely sensed hyperspectral data, this framework 

provided a reliable classification mechanism, even under relatively poor signal fidelity 

conditions. This experiment proposes to employ this algorithm in the context of features 

extracted from mammogram images. The dimensionality of features extracted from these 

images can be as high as a few thousand.  

The proposed framework is as follows: (1) Find a suitable partition of the feature 

space, i.e., identify appropriate subspaces (each of a much smaller dimension); (2) 

Perform “local” classification in each subspace; (3) Finally, employ a suitable decision 

fusion scheme to merge the local decisions into a final malignant/benign decision per 

mammogram image. In the work with hyperspectral imagery presented in the previous 

chapters, it was found that the correlation structure of the feature space was 

approximately block-diagonal. This permitted the use of a correlation or mutual 

information based metric in the partitioning of the corresponding feature space into 

multiple contiguous subspaces [4]. However, unlike hyperspectral data, where the feature 

space comprises of reflectance values over a continuum of wavelengths, features 

extracted from mammogram images typically do not possess a standard correlation 

structure. This is primarily because these features are created by concatenating various 

different kinds of quantities, such as morphological characteristics, texture information, 

patient history etc. Hence, in an attempt to define a suitable partition of the feature space 

derived from mammogram images, the feature space is broken down into small groups, 

each comprised of m adjacent features, where m is a small integer valued number, 
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Table 5.4     Classification performance of the proposed system with the DDSM dataset.  
 

Stepwise LDA 
 (Baseline) 

 MV based fusion 
(Proposed) 

LOP based Fusion 
(Proposed) 

OA CI SE SP (m) OA CI SE SP OA CI SE SP 
    2 85 3.8 87 83 85 3.8 87 83 
    3 90 3.2 90 90 88 3.4 90 87 
    4 85 3.8 83 87 85 3.8 83 87 

82 4 80 83 5 80 4.2 77 83 82 4.1 80 83 
6 85 3.8 83 87 83 3.9 83 83 
7 82 4.1 80 83 82 4.1 80 83 
8 82 4.1 80 83 82 4.1 80 83 
15 78 4.4 73 83 78 4.4 73 83 

 
 

 

 

determined experimentally. In previous work, Ball and Bruce [8], [12] found that when 

doing a forward selection and backward rejection of mammography features, patient age 

was always selected as an important feature in the final feature selection. Hence, in this 

work, patient age was injected into each partition/subspace generated above to strengthen 

each local classifier. 

Other than the feature grouping (subspace identification) procedure described 

above, the remaining implementation of the MCDF system remains the same as described 

in section 3.3 and figure 3.4. LDA was employed as the pre-processing technique for 

each subspace/group, and quadratic maximum-likelihood classifiers were employed in 

the multi-classifier system. Decision fusion performance of both MV and LOP are 

studied in this experiment. Results from this experiment are provided in table 5.4. The 

partition size, m was varied from 2 (a very small number), to 15 (a reasonably large 

partition size, considering the limited size of the training data). As is common in medical 

image processing and CAD literature, classification performance, as quantified by the 

OA: Overall Accuracy; CI: 95% Confidence Interval; SE: Sensitivity; SP: Specificity (all 
expressed in percentage); m: partition size 
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overall recognition accuracy, the specificity (proportion of true negatives correctly 

identified), and sensitivity (proportion of true positives correctly identified) are reported 

in this table. To conclude, the proposed multi-classifier, decision fusion system has the 

potential to significantly outperform the baseline single-classifier system, for small 

partition sizes (m). By employing the proposed system, the overall accuracy, sensitivity 

and specificity of the binary classification task improve by as much as 10%. Hence, the 

MCDF framework promises robust classification of mammographic masses [20] even 

though the dimensionality of feature vectors extracted from these mammograms is very 

high. This demonstrates that the benefits of the MCDF approach are not restricted to 

hyperspectral data alone. 
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CHAPTER VI 

CONCLUSIONS  

6.1 Conclusions 

A new paradigm for robust statistical classification of high dimensional data was 

proposed in this dissertation. The proposed divide-and-conquer framework partitions the high 

dimensional classification problem into multiple smaller dimensional classification problems, 

followed by decision fusion to combine these local classification results. This framework was 

primarily tested on hyperspectral classification datasets. With hyperspectral data, it was shown 

that an appropriate bottom-up band-grouping followed by a multi-classifier decision fusion setup 

resulted in very high classification accuracies. It was also shown that with the handheld ASD 

hyperspectral data, a mutual information based metric for the bottom-up band-grouping procedure 

provided a better partition of the hyperspectral feature space, resulting in greater classification 

accuracies in mild and moderate pixel mixing conditions. An adaptive decision fusion approach 

based on non-uniform classifier weight assignment was also proposed in this work that accounted 

for non-uniform fidelity across the feature space. 

The basic MCDF approach based on linear transformations (LDA) at the subspace level 

resulted in very high classification accuracies when pixel mixing was not severe. An alternate 

nonlinear (KDA) preprocessing at the subspace level was also proposed in this dissertation to 

provide greater robustness within the MCDF framework, even under severe pixel mixing 

conditions. It was found that the nonlinear version of the MCDF framework (MCDF-KDA) 
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provided superior classification performance over a wide range of pixel mixing conditions, 

enabling the MCDF framework to be useful even when the pixel mixing is severe.  

To demonstrate the aptness of the MCDF framework to general high dimensional 

classification tasks, this dissertation also tested the framework with three different practical 

classification tasks. In the first such task, it was demonstrated that the MCDF approach performed 

better than conventional methods at classifying invasive species from satellite hyperspectral data. 

It was also shown that the nonlinear extension of the framework (MCDF-KDA) provided an even 

more robust classification performance in mixed pixel conditions. The second practical 

classification task consisted of classifying aquatic invasive species from available multitemporal, 

hyperspectral data. Towards this goal, the MCDF framework was extended to a two-tier decision 

fusion system, combining information over spectral and temporal dimensions. The resulting 

classification systems’ performance was far superior compared to conventional methods. The 

third practical classification task consisted of employing the MCDF framework as a classification 

backend to a CAD system for identifying malignant and benign tumors from mammographic 

images. Once again, an appropriate partitioning of the very high dimensional feature space, 

followed by local classification and decision fusion resulted in a far superior classification 

performance as compared to conventional methods. 

Experimental results presented in this dissertation demonstrate that the MCDF framework 

is indeed a promising classification approach for high dimensional datasets. One can conclude 

from its ability to exhibit robust classification performance for a variety of datasets using very 

little training data that it should indeed be considered for classification tasks involving high 

dimensional small-sample-size datasets. Hyperspectral data possesses a statistical structure that 

facilitates a natural partitioning of the spectrum using a bottom-up band-grouping approach. 

However, for an arbitrary classification task, where the feature vectors do not possess such a 

statistical structure, the key issue that would need to be addressed to successfully employ the 
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MCDF framework is the identification of a suitable partition of the high dimensional feature 

space (as was done with the mammography dataset in the previous chapter).  

6.2 Suggested Future Work 

The MCDF framework is not only a powerful classification approach – it also provides a 

natural framework for extending the classification setup from a single-source to a multi-source 

setup. If additional sources of information are available for classification, such as, Radio 

Detection and Ranging (RADAR), or texture information derived from a high spatial resolution 

sensor in addition to hyperspectral data, these can be combined for better classification. It would 

be interesting to study the extension of the MCDF approach proposed in this dissertation to a 

classification task that simultaneously employs data acquired from multiple modalities. 

In this dissertation, the MCDF framework is tested for two-class (binary) recognition 

problems. It can however be easily extended to be used in multi-class recognition problems, such 

as land-cover classification. It would be interesting to study the performance of this framework as 

applied to such tasks. 
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