27,575 research outputs found

    Robustness, stability, recoverability, and reliability in constraint satisfaction problems

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10115-014-0778-3Many real-world problems in Artificial Intelligence (AI) as well as in other areas of computer science and engineering can be efficiently modeled and solved using constraint programming techniques. In many real-world scenarios the problem is partially known, imprecise and dynamic such that some effects of actions are undesired and/or several un-foreseen incidences or changes can occur. Whereas expressivity, efficiency and optimality have been the typical goals in the area, there are several issues regarding robustness that have a clear relevance in dynamic Constraint Satisfaction Problems (CSP). However, there is still no clear and common definition of robustness-related concepts in CSPs. In this paper, we propose two clearly differentiated definitions for robustness and stability in CSP solutions. We also introduce the concepts of recoverability and reliability, which arise in temporal CSPs. All these definitions are based on related well-known concepts, which are addressed in engineering and other related areas.This work has been partially supported by the research project TIN2013-46511-C2-1 (MINECO, Spain). We would also thank the reviewers for their efforts and helpful comments.Barber Sanchís, F.; Salido Gregorio, MA. (2015). Robustness, stability, recoverability, and reliability in constraint satisfaction problems. Knowledge and Information Systems. 44(3):719-734. https://doi.org/10.1007/s10115-014-0778-3S719734443Abril M, Barber F, Ingolotti L, Salido MA, Tormos P, Lova A (2008) An assessment of railway capacity. Transp Res Part E 44(5):774–806Barber F (2000) Reasoning on intervals and point-based disjunctive metric constraints in temporal contexts. J Artif Intell Res 12:35–86Bartak R, Salido MA (2011) Constraint satisfaction for planning and scheduling problems. Constraints 16(3):223–227Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53Climent L, Wallace R, Salido M, Barber F (2013) Modeling robustness in CSPS as weighted CSPS. In: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems CPAIOR 2013, pp 44–60Climent L, Wallace R, Salido M, Barber F (2014) Robustness and stability in constraint programming under dynamism and uncertainty. J Artif Intell Res 49(1):49–78Dechter R (1991) Temporal constraint network. Artif Intell 49:61–295Hazewinkel M (2002) Encyclopaedia of mathematics. Springer, New YorkHebrard E (2007) Robust solutions for constraint satisfaction and optimisation under uncertainty. PhD thesis, University of New South WalesHebrard E, Hnich B, Walsh T (2004) Super solutions in constraint programming. In: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (CPAIOR-04), pp 157–172Jen E (2003) Stable or robust? What’s the difference? Complexity 8(3):12–18Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3(137)Liebchen C, Lbbecke M, Mhring R, Stiller S (2009) The concept of recoverable robustness, linear programming recovery, and railway applications. In: LNCS, vol 5868Papapetrou P, Kollios G, Sclaroff S, Gunopulos D (2009) Mining frequent arrangements of temporal intervals. Knowl Inf Syst 21:133–171Rizk A, Batt G, Fages F, Solima S (2009) A general computational method for robustness analysis with applications to synthetic gene networks. Bioinformatics 25(12):168–179Rossi F, van Beek P, Walsh T (2006) Handbook of constraint programming. Elsevier, New YorkRoy B (2010) Robustness in operational research and decision aiding: a multi-faceted issue. Eur J Oper Res 200:629–638Szathmary E (2006) A robust approach. Nature 439:19–20Verfaillie G, Schiex T (1994) Solution reuse in dynamic constraint satisfaction problems. In: Proceedings of the 12th national conference on artificial intelligence (AAAI-94), pp 307–312Wallace R, Grimes D, Freuder E (2009) Solving dynamic constraint satisfaction problems by identifying stable features. In: Proceedings of international joint conferences on artificial intelligence (IJCAI-09), pp 621–627Wang D, Tse Q, Zhou Y (2011) A decentralized search engine for dynamic web communities. Knowl Inf Syst 26(1):105–125Wiggins S (1990) Introduction to applied nonlinear dynamical systems and chaos. Springer, New YorkZhou Y, Croft W (2008) Measuring ranked list robustness for query performance prediction. Knowl Inf Syst 16:155–17

    From Uncertainty Data to Robust Policies for Temporal Logic Planning

    Full text link
    We consider the problem of synthesizing robust disturbance feedback policies for systems performing complex tasks. We formulate the tasks as linear temporal logic specifications and encode them into an optimization framework via mixed-integer constraints. Both the system dynamics and the specifications are known but affected by uncertainty. The distribution of the uncertainty is unknown, however realizations can be obtained. We introduce a data-driven approach where the constraints are fulfilled for a set of realizations and provide probabilistic generalization guarantees as a function of the number of considered realizations. We use separate chance constraints for the satisfaction of the specification and operational constraints. This allows us to quantify their violation probabilities independently. We compute disturbance feedback policies as solutions of mixed-integer linear or quadratic optimization problems. By using feedback we can exploit information of past realizations and provide feasibility for a wider range of situations compared to static input sequences. We demonstrate the proposed method on two robust motion-planning case studies for autonomous driving

    Beamforming Techniques for Non-Orthogonal Multiple Access in 5G Cellular Networks

    Full text link
    In this paper, we develop various beamforming techniques for downlink transmission for multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) systems. First, a beamforming approach with perfect channel state information (CSI) is investigated to provide the required quality of service (QoS) for all users. Taylor series approximation and semidefinite relaxation (SDR) techniques are employed to reformulate the original non-convex power minimization problem to a tractable one. Further, a fairness-based beamforming approach is proposed through a max-min formulation to maintain fairness between users. Next, we consider a robust scheme by incorporating channel uncertainties, where the transmit power is minimized while satisfying the outage probability requirement at each user. Through exploiting the SDR approach, the original non-convex problem is reformulated in a linear matrix inequality (LMI) form to obtain the optimal solution. Numerical results demonstrate that the robust scheme can achieve better performance compared to the non-robust scheme in terms of the rate satisfaction ratio. Further, simulation results confirm that NOMA consumes a little over half transmit power needed by OMA for the same data rate requirements. Hence, NOMA has the potential to significantly improve the system performance in terms of transmit power consumption in future 5G networks and beyond.Comment: accepted to publish in IEEE Transactions on Vehicular Technolog

    Stochastic Nonlinear Model Predictive Control with Efficient Sample Approximation of Chance Constraints

    Full text link
    This paper presents a stochastic model predictive control approach for nonlinear systems subject to time-invariant probabilistic uncertainties in model parameters and initial conditions. The stochastic optimal control problem entails a cost function in terms of expected values and higher moments of the states, and chance constraints that ensure probabilistic constraint satisfaction. The generalized polynomial chaos framework is used to propagate the time-invariant stochastic uncertainties through the nonlinear system dynamics, and to efficiently sample from the probability densities of the states to approximate the satisfaction probability of the chance constraints. To increase computational efficiency by avoiding excessive sampling, a statistical analysis is proposed to systematically determine a-priori the least conservative constraint tightening required at a given sample size to guarantee a desired feasibility probability of the sample-approximated chance constraint optimization problem. In addition, a method is presented for sample-based approximation of the analytic gradients of the chance constraints, which increases the optimization efficiency significantly. The proposed stochastic nonlinear model predictive control approach is applicable to a broad class of nonlinear systems with the sufficient condition that each term is analytic with respect to the states, and separable with respect to the inputs, states and parameters. The closed-loop performance of the proposed approach is evaluated using the Williams-Otto reactor with seven states, and ten uncertain parameters and initial conditions. The results demonstrate the efficiency of the approach for real-time stochastic model predictive control and its capability to systematically account for probabilistic uncertainties in contrast to a nonlinear model predictive control approaches.Comment: Submitted to Journal of Process Contro

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Robust Temporal Logic Model Predictive Control

    Full text link
    Control synthesis from temporal logic specifications has gained popularity in recent years. In this paper, we use a model predictive approach to control discrete time linear systems with additive bounded disturbances subject to constraints given as formulas of signal temporal logic (STL). We introduce a (conservative) computationally efficient framework to synthesize control strategies based on mixed integer programs. The designed controllers satisfy the temporal logic requirements, are robust to all possible realizations of the disturbances, and optimal with respect to a cost function. In case the temporal logic constraint is infeasible, the controller satisfies a relaxed, minimally violating constraint. An illustrative case study is included.Comment: This work has been accepted to appear in the proceedings of 53rd Annual Allerton Conference on Communication, Control and Computing, Urbana-Champaign, IL (2015

    Sequential Randomized Algorithms for Convex Optimization in the Presence of Uncertainty

    Full text link
    In this paper, we propose new sequential randomized algorithms for convex optimization problems in the presence of uncertainty. A rigorous analysis of the theoretical properties of the solutions obtained by these algorithms, for full constraint satisfaction and partial constraint satisfaction, respectively, is given. The proposed methods allow to enlarge the applicability of the existing randomized methods to real-world applications involving a large number of design variables. Since the proposed approach does not provide a priori bounds on the sample complexity, extensive numerical simulations, dealing with an application to hard-disk drive servo design, are provided. These simulations testify the goodness of the proposed solution.Comment: 18 pages, Submitted for publication to IEEE Transactions on Automatic Contro

    A reusable iterative optimization software library to solve combinatorial problems with approximate reasoning

    Get PDF
    Real world combinatorial optimization problems such as scheduling are typically too complex to solve with exact methods. Additionally, the problems often have to observe vaguely specified constraints of different importance, the available data may be uncertain, and compromises between antagonistic criteria may be necessary. We present a combination of approximate reasoning based constraints and iterative optimization based heuristics that help to model and solve such problems in a framework of C++ software libraries called StarFLIP++. While initially developed to schedule continuous caster units in steel plants, we present in this paper results from reusing the library components in a shift scheduling system for the workforce of an industrial production plant.Comment: 33 pages, 9 figures; for a project overview see http://www.dbai.tuwien.ac.at/proj/StarFLIP
    • …
    corecore