493 research outputs found

    Unobtrusive physiological monitoring in an airplane seat

    Get PDF
    Air travel has become the preferred mode of long-distance transportation for most of the world's travelers. People of every age group and health status are traveling by airplane and thus the airplane has become part of our environment, in which people with health-related limitations need assistive support. Since the main interaction point between a passenger and the airplane is the seat, this work presents a smart airplane seat for measuring health-related signals of a passenger. We describe the design, implementation and testing of a multimodal sensor system integrated into the seat. The presented system is able to measure physiological signals, such as electrocardiogram, electrodermal activity, skin temperature, and respiration. We show how the design of the smart seat system is influenced by the trade-off between comfort and signal quality, i.e. incorporating unobtrusive sensors and dealing with erroneous signals. Artifact detection through sensor fusion is presented and the working principle is shown with a feasibility study, in which normal passenger activities were performed. Based on the presented method, we are able to identify signal regions in which the accuracies for detecting the heart- and respiration-rate are 88 and 82%, respectively, compared to 40 and 76% without any artifact remova

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed

    Automatic heart rate detection from FBG sensors using sensor fusion and enhanced empirical mode decomposition

    No full text
    International audienceCardiovascular diseases are the world's top leading causes of death. Real time monitoring of patients who have cardiovascular abnormalities can provide comprehensive and preventative health care. We investigate the role of the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and sensor fusion for automatic heart rate detection from a mat with embedded Fiber Bragg Grating (FBG) sensor arrays. The fusion process is performed in the time domain by averaging the readings of the sensors for each sensor array. Subsequently, the CEEMDAN is applied to obtain the interbeat intervals. Experiments are performed with 10 human subjects (males and females) lying on two different positions on a bed for a period of 20 minutes. The overall system performance is assessed against the reference ECG signals. The average and standard deviation of the mean relative absolute error are 0.049, 0.019 and 0.047, 0.038 for fused and best sensors respectively. Sensor fusion together with CEEMDAN proved to be robust against motion artifacts caused by body movements

    Synchronous wearable wireless body sensor network composed of autonomous textile nodes

    Get PDF
    A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system

    Unobtrusive Health Monitoring in Private Spaces: The Smart Vehicle

    Get PDF
    Unobtrusive in-vehicle health monitoring has the potential to use the driving time to perform regular medical check-ups. This work intends to provide a guide to currently proposed sensor systems for in-vehicle monitoring and to answer, in particular, the questions: (1) Which sensors are suitable for in-vehicle data collection? (2) Where should the sensors be placed? (3) Which biosignals or vital signs can be monitored in the vehicle? (4) Which purposes can be supported with the health data? We reviewed retrospective literature systematically and summarized the up-to-date research on leveraging sensor technology for unobtrusive in-vehicle health monitoring. PubMed, IEEE Xplore, and Scopus delivered 959 articles. We firstly screened titles and abstracts for relevance. Thereafter, we assessed the entire articles. Finally, 46 papers were included and analyzed. A guide is provided to the currently proposed sensor systems. Through this guide, potential sensor information can be derived from the biomedical data needed for respective purposes. The suggested locations for the corresponding sensors are also linked. Fifteen types of sensors were found. Driver-centered locations, such as steering wheel, car seat, and windscreen, are frequently used for mounting unobtrusive sensors, through which some typical biosignals like heart rate and respiration rate are measured. To date, most research focuses on sensor technology development, and most application-driven research aims at driving safety. Health-oriented research on the medical use of sensor-derived physiological parameters is still of interest

    Gait Verification using Knee Acceleration Signals

    Get PDF
    A novel gait recognition method for biometric applications is proposed. The approach has the following distinct features. First, gait patterns are determined via knee acceleration signals, circumventing difficulties associated with conventional vision-based gait recognition methods. Second, an automatic procedure to extract gait features from acceleration signals is developed that employs a multiple-template classification method. Consequently, the proposed approach can adjust the sensitivity and specificity of the gait recognition system with great flexibility. Experimental results from 35 subjects demonstrate the potential of the approach for successful recognition. By setting sensitivity to be 0.95 and 0.90, the resulting specificity ranges from 1 to 0.783 and 1.00 to 0.945, respectively

    BioGlass: Physiological Parameter Estimation Using a Head-mounted Wearable Device

    Get PDF
    This work explores the feasibility of using sensors embedded in Google Glass, a head-mounted wearable device, to measure physiological signals of the wearer. In particular, we develop new methods to use Glass’s accelerometer, gyroscope, and camera to extract pulse and respiratory rates of 12 participants during a controlled experiment. We show it is possible to achieve a mean absolute error of 0.83 beats per minute (STD: 2.02) for heart rate and 1.18 breaths per minute (STD: 2.04) for respiration rate when considering different combinations of sensors. These results included testing across sitting, supine, and standing still postures before and after physical exercise

    A Survey on Modality Characteristics, Performance Evaluation Metrics, and Security for Traditional and Wearable Biometric Systems

    Get PDF
    Biometric research is directed increasingly towards Wearable Biometric Systems (WBS) for user authentication and identification. However, prior to engaging in WBS research, how their operational dynamics and design considerations differ from those of Traditional Biometric Systems (TBS) must be understood. While the current literature is cognizant of those differences, there is no effective work that summarizes the factors where TBS and WBS differ, namely, their modality characteristics, performance, security and privacy. To bridge the gap, this paper accordingly reviews and compares the key characteristics of modalities, contrasts the metrics used to evaluate system performance, and highlights the divergence in critical vulnerabilities, attacks and defenses for TBS and WBS. It further discusses how these factors affect the design considerations for WBS, the open challenges and future directions of research in these areas. In doing so, the paper provides a big-picture overview of the important avenues of challenges and potential solutions that researchers entering the field should be aware of. Hence, this survey aims to be a starting point for researchers in comprehending the fundamental differences between TBS and WBS before understanding the core challenges associated with WBS and its design
    corecore