10 research outputs found

    CLASSIFICATION OF RAILWAY ASSETS IN MOBILE MAPPING POINT CLOUDS

    Get PDF

    Correcting the Eccentricity Error of Projected Spherical Objects in Perspective Cameras

    Get PDF
    Projective transformation of spheres onto images produce ellipses, whose centers do not coincide with the projected center of the sphere. This results in an eccentricity error, which must be treated in high precision metrology. This article provides closed formulations for modeling this error in images to enable 3-dimensional (3D) reconstruction of the center of spherical objects. The article also provides a new direct robust method for detecting spherical pattern in point clouds. It was shown that the eccentricity error in an image has only one component in the direction of the major axis of the ellipse. It was also revealed that the eccentricity is zero if and only if the center of the projected sphere lies on the camera’s perspective center. The effectiveness of the robust sphere detection and the eccentricity error modeling method was evaluated on simulated point clouds of spheres and real-world images, respectively. It was observed that the proposed robust sphere fitting method outperformed the popular M-estimator sample consensus in terms of radius and center estimation accuracy by a factor of 13, and 14 on average, respectively. Using the proposed eccentricity adjustment, the estimated 3D center of the sphere using modeled eccentricity was superior to the unmodeled case. It was also observed that the accuracy of the estimated 3D center using modeled eccentricity continuously improved as the number of images increased, whereas the unmodeled eccentricity did not show improvements after eight image views. The results of the investigation show that: (i) the proposed method effectively modeled the eccentricity error, and (ii) the effects of eliminating the eccentricity error in the 3D reconstruction become even more pronounced in a larger number of image views

    Automatic Recognition and Digital Documentation of Cultural Heritage Hemispherical Domes using Images

    Get PDF
    Advancements in optical metrology has enabled documentation of dense 3D point clouds of cultural heritage sites. For large scale and continuous digital documentation, processing of dense 3D point clouds becomes computationally cumbersome, and often requires additional hardware for data management, increasing the time cost, and complexity of projects. To this end, this manuscript presents an original approach to generate fast and reliable semantic digital models of heritage hemispherical domes using only two images. New closed formulations were derived to establish the relationships between spheres and their projected ellipses onto images, which fostered the development of a new automatic framework for as-built generation of spheres. The effectiveness of the proposed method was evaluated under both laboratory and real-world datasets. The results revealed that the proposed method achieved as-built modeling accuracy of around 6mm, while improving the computation time by a factor of 7, when compared to established point cloud processing methods

    3D characterization of a Boston Ivy double-skin green building facade using a LiDAR system

    Get PDF
    On the way to more sustainable and resilient urban environments, the incorporation of urban green infrastructure (UGI) systems, such as green roofs and vertical greening systems, must be encouraged. Unfortunately, given their variable nature, these nature-based systems are difficult to geometrically characterize, and therefore there is a lack of 3D objects that adequately reflect their geometry and analytical properties to be used in design processes based on Building Information Modelling (BIM) technologies. This fact can be a disadvantage, during the building's design phase, of UGIs over traditional grey solutions. Areas of knowledge such as precision agriculture, have developed technologies and methodologies that characterize the geometry of vegetation using point cloud capture. The main aim of this research was to create the 3D characterization of an experimental double-skin green facade, using LiDAR technologies. From the results it could be confirmed that the methodology used was precise and robust, enabling the 3D reconstruction of the green facade's outer envelope. Detailed results were that foliage volume differences in height were linked to plant growth, whereas differences in the horizontal distribution of greenery were related to the influence of the local microclimate and specific plant diseases on the south orientation. From this research, along with complementary previous research, it could be concluded that, generally speaking, with vegetation volumes of 0.2 m3/m2, using Boston Ivy (Parthenocissus Tricuspidata) under Mediterranean climate, reductions in external building surface temperatures of around 13 °C can be obtained and used as analytic parameter in a future 3D-BIM-object.The authors at GREiA research group would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is a certified agent TECNIO in the category of technology developers from the Government of Catalonia. The authors at GRAP research group would like to thank the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya (grant 2017 SGR 646), the Spanish Ministry of Economy and Competitiveness (project AGL2013-464 48297-C2-2-R) and the Spanish Ministry of Science, Innovation and Universities (project RTI2018-094222-B-I00). This work is partially supported by ICREA under the ICREA Academia programme. The authors also wish to thank Dr. Jaume Arnó for his contribution in the statistical analysis of the results

    Repurposing existing skeletal spatial structure (SkS) system designs using the Field Information Modeling (FIM) framework for generative decision-support in future construction projects

    Get PDF
    Skeletal spatial structure (SkS) systems are modular systems which have shown promise to support mass customization, and sustainability in construction. SkS have been used extensively in the reconstruction efforts since World War II, particularly to build geometrically flexible and free-form structures. By employing advanced digital engineering and construction practices, the existing SkS designs may be repurposed to generate new optimal designs that satisfy current construction demands of contemporary societies. To this end, this study investigated the application of point cloud processing using the Field Information Modeling (FIM) framework for the digital documentation and generative redesign of existing SkS systems. Three new algorithms were proposed to (i) expand FIM to include generative decision-support; (ii) generate as-built building information modeling (BIM) for SkS; and (iii) modularize SkS designs with repeating patterns for optimal production and supply chain management. These algorithms incorporated a host of new AI-inspired methods, including support vector machine (SVM) for decision support; Bayesian optimization for neighborhood definition; Bayesian Gaussian mixture clustering for modularization; and Monte Carlo stochastic multi-criteria decision making (MCDM) for selection of the top Pareto front solutions obtained by the non-dominant sorting Genetic Algorithm (NSGA II). The algorithms were tested and validated on four real-world point cloud datasets to solve two generative modeling problems, namely, engineering design optimization and facility location optimization. It was observed that the proposed Bayesian neighborhood definition outperformed particle swarm and uniform sampling by 34% and 27%, respectively. The proposed SVM-based linear feature detection outperformed k-means and spectral clustering by 56% and 9%, respectively. Finally, the NSGA II algorithm combined with the stochastic MCDM produced diverse “top four” solutions based on project-specific criteria. The results indicate promise for future utilization of the framework to produce training datasets for generative adversarial networks that generate new designs based only on stakeholder requirements

    Robust Detection of Non-overlapping Ellipses from Points with Applications to Circular Target Extraction in Images and Cylinder Detection in Point Clouds

    Full text link
    This manuscript provides a collection of new methods for the automated detection of non-overlapping ellipses from edge points. The methods introduce new developments in: (i) robust Monte Carlo-based ellipse fitting to 2-dimensional (2D) points in the presence of outliers; (ii) detection of non-overlapping ellipse from 2D edge points; and (iii) extraction of cylinder from 3D point clouds. The proposed methods were thoroughly compared with established state-of-the-art methods, using simulated and real-world datasets, through the design of four sets of original experiments. It was found that the proposed robust ellipse detection was superior to four reliable robust methods, including the popular least median of squares, in both simulated and real-world datasets. The proposed process for detecting non-overlapping ellipses achieved F-measure of 99.3% on real images, compared to F-measures of 42.4%, 65.6%, and 59.2%, obtained using the methods of Fornaciari, Patraucean, and Panagiotakis, respectively. The proposed cylinder extraction method identified all detectable mechanical pipes in two real-world point clouds, obtained under laboratory, and industrial construction site conditions. The results of this investigation show promise for the application of the proposed methods for automatic extraction of circular targets from images and pipes from point clouds

    Field Information Modeling (FIM)™: Best Practices Using Point Clouds

    Get PDF
    This study presented established methods, along with new algorithmic developments, to automate point cloud processing in support of the Field Information Modeling (FIM)™ framework. More specifically, given a multi-dimensional (n-D) designed information model, and the point cloud’s spatial uncertainty, the problem of automatic assignment of point clouds to their corresponding model elements was considered. The methods addressed two classes of field conditions, namely (i) negligible construction errors and (ii) the existence of construction errors. Emphasis was given to defining the assumptions, potentials, and limitations of each method in practical settings. Considering the shortcomings of current frameworks, three generic algorithms were designed to address the point-cloud-to-model assignment. The algorithms include new developments for (i) point cloud vs. model comparison (negligible construction errors), (ii) robust point neighborhood definition, and (iii) Monte-Carlo-based point-cloud-to-model surface hypothesis testing (existence of construction errors). The effectiveness of the new methods was demonstrated in real-world point clouds, acquired from construction projects, with promising results. For the overall problem of point-cloud-to-model assignment, the proposed point cloud vs. model and point-cloud-to-model hypothesis testing methods achieved F-measures of 99.3% and 98.4%, respectively, on real-world datasets

    Robust Segmentation of Planar and Linear Features of Terrestrial Laser Scanner Point Clouds Acquired from Construction Sites

    No full text
    Automated segmentation of planar and linear features of point clouds acquired from construction sites is essential for the automatic extraction of building construction elements such as columns, beams and slabs. However, many planar and linear segmentation methods use scene-dependent similarity thresholds that may not provide generalizable solutions for all environments. In addition, outliers exist in construction site point clouds due to data artefacts caused by moving objects, occlusions and dust. To address these concerns, a novel method for robust classification and segmentation of planar and linear features is proposed. First, coplanar and collinear points are classified through a robust principal components analysis procedure. The classified points are then grouped using a new robust clustering method, the robust complete linkage method. A robust method is also proposed to extract the points of flat-slab floors and/or ceilings independent of the aforementioned stages to improve computational efficiency. The applicability of the proposed method is evaluated in eight datasets acquired from a complex laboratory environment and two construction sites at the University of Calgary. The precision, recall, and accuracy of the segmentation at both construction sites were 96.8%, 97.7% and 95%, respectively. These results demonstrate the suitability of the proposed method for robust segmentation of planar and linear features of contaminated datasets, such as those collected from construction sites
    corecore