1,608 research outputs found

    Shape description and matching using integral invariants on eccentricity transformed images

    Get PDF
    Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately

    Content based image pose manipulation

    Get PDF
    This thesis proposes the application of space-frequency transformations to the domain of pose estimation in images. This idea is explored using the Wavelet Transform with illustrative applications in pose estimation for face images, and images of planar scenes. The approach is based on examining the spatial frequency components in an image, to allow the inherent scene symmetry balance to be recovered. For face images with restricted pose variation (looking left or right), an algorithm is proposed to maximise this symmetry in order to transform the image into a fronto-parallel pose. This scheme is further employed to identify the optimal frontal facial pose from a video sequence to automate facial capture processes. These features are an important pre-requisite in facial recognition and expression classification systems. The under lying principles of this spatial-frequency approach are examined with respect to images with planar scenes. Using the Continuous Wavelet Transform, full perspective planar transformations are estimated within a featureless framework. Restoring central symmetry to the wavelet transformed images in an iterative optimisation scheme removes this perspective pose. This advances upon existing spatial approaches that require segmentation and feature matching, and frequency only techniques that are limited to affine transformation recovery. To evaluate the proposed techniques, the pose of a database of subjects portraying varying yaw orientations is estimated and the accuracy is measured against the captured ground truth information. Additionally, full perspective homographies for synthesised and imaged textured planes are estimated. Experimental results are presented for both situations that compare favourably with existing techniques in the literature

    Shape localization, quantification and correspondence using Region Matching Algorithm

    Get PDF
    We propose a method for local, region-based matching of planar shapes, especially as those shapes that change over time. This is a problem fundamental to medical imaging, specifically the comparison over time of mammograms. The method is based on the non-emergence and non-enhancement of maxima, as well as the causality principle of integral invariant scale space. The core idea of our Region Matching Algorithm (RMA) is to divide a shape into a number of “salient” regions and then to compare all such regions for local similarity in order to quantitatively identify new growths or partial/complete occlusions. The algorithm has several advantages over commonly used methods for shape comparison of segmented regions. First, it provides improved key-point alignment for optimal shape correspondence. Second, it identifies localized changes such as new growths as well as complete/partial occlusion in corresponding regions by dividing the segmented region into sub-regions based upon the extrema that persist over a sufficient range of scales. Third, the algorithm does not depend upon the spatial locations of mammographic features and eliminates the need for registration to identify salient changes over time. Finally, the algorithm is fast to compute and requires no human intervention. We apply the method to temporal pairs of mammograms in order to detect potentially important differences between them

    Edge Potential Functions (EPF) and Genetic Algorithms (GA) for Edge-Based Matching of Visual Objects

    Get PDF
    Edges are known to be a semantically rich representation of the contents of a digital image. Nevertheless, their use in practical applications is sometimes limited by computation and complexity constraints. In this paper, a new approach is presented that addresses the problem of matching visual objects in digital images by combining the concept of Edge Potential Functions (EPF) with a powerful matching tool based on Genetic Algorithms (GA). EPFs can be easily calculated starting from an edge map and provide a kind of attractive pattern for a matching contour, which is conveniently exploited by GAs. Several tests were performed in the framework of different image matching applications. The results achieved clearly outline the potential of the proposed method as compared to state of the art methodologies. (c) 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Object tracking using active appearance models

    Get PDF

    Invariance of visual operations at the level of receptive fields

    Get PDF
    Receptive field profiles registered by cell recordings have shown that mammalian vision has developed receptive fields tuned to different sizes and orientations in the image domain as well as to different image velocities in space-time. This article presents a theoretical model by which families of idealized receptive field profiles can be derived mathematically from a small set of basic assumptions that correspond to structural properties of the environment. The article also presents a theory for how basic invariance properties to variations in scale, viewing direction and relative motion can be obtained from the output of such receptive fields, using complementary selection mechanisms that operate over the output of families of receptive fields tuned to different parameters. Thereby, the theory shows how basic invariance properties of a visual system can be obtained already at the level of receptive fields, and we can explain the different shapes of receptive field profiles found in biological vision from a requirement that the visual system should be invariant to the natural types of image transformations that occur in its environment.Comment: 40 pages, 17 figure

    Mathematical Imaging and Surface Processing

    Get PDF
    Within the last decade image and geometry processing have become increasingly rigorous with solid foundations in mathematics. Both areas are research fields at the intersection of different mathematical disciplines, ranging from geometry and calculus of variations to PDE analysis and numerical analysis. The workshop brought together scientists from all these areas and a fruitful interplay took place. There was a lively exchange of ideas between geometry and image processing applications areas, characterized in a number of ways in this workshop. For example, optimal transport, first applied in computer vision is now used to define a distance measure between 3d shapes, spectral analysis as a tool in image processing can be applied in surface classification and matching, and so on. We have also seen the use of Riemannian geometry as a powerful tool to improve the analysis of multivalued images. This volume collects the abstracts for all the presentations covering this wide spectrum of tools and application domains

    Computing global shape measures

    Get PDF
    Global shape measures are a convenient way to describe regions. They are generally simple and efficient to extract, and provide an easy means for high level tasks such as classification as well as helping direct low-level computer vision processes such as segmentation. In this chapter a large selection of global shape measures (some from the standard literature as well as other newer methods) are described and demonstrated
    corecore