207 research outputs found

    Robust RANSAC-based blood vessel segmentation

    Get PDF
    International audienceMany vascular clinical applications require a vessel segmentation process that is able to both extract the centerline and the surface of the blood vessels. However, noise and topology issues (such as kissing vessels) prevent existing algorithms from being able to easily retrieve such a complex system as the brain vasculature. We propose here a new blood vessel tracking algorithm that 1) detect the vessel centerline; 2) provide a local radius estimate; and 3) extracts a dense set of points at the blood vessel surface. This algorithm is based on a RANSAC-based robust fitting of successive cylinders along the vessel. Our method was validated against the Multiple Hypothesis Testing (MHT) algorithm on 10 3DRA patient data of the brain vasculature. Over 30 blood vessels of various sizes were considered for each patient. Our results demonstrated a greater ability of our algorithm to track small, tortuous and touching vessels (96% success rate), compared to MHT (65% success rate). The computed centerline precision was below 1 voxel when compared to MHT. Moreover, our results were obtained with the same set of parameters for all patients and all blood vessels, except for the seed point for each vessel, also necessary for MHT. The proposed algorithm is thereafter able to extract the full intracranial vasculature with little user interaction

    Robust fetoscopic mosaicking from deep learned flow fields

    Get PDF
    PURPOSE: Fetoscopic laser photocoagulation is a minimally invasive procedure to treat twin-to-twin transfusion syndrome during pregnancy by stopping irregular blood flow in the placenta. Building an image mosaic of the placenta and its network of vessels could assist surgeons to navigate in the challenging fetoscopic environment during the procedure. METHODOLOGY: We propose a fetoscopic mosaicking approach by combining deep learning-based optical flow with robust estimation for filtering inconsistent motions that occurs due to floating particles and specularities. While the current state of the art for fetoscopic mosaicking relies on clearly visible vessels for registration, our approach overcomes this limitation by considering the motion of all consistent pixels within consecutive frames. We also overcome the challenges in applying off-the-shelf optical flow to fetoscopic mosaicking through the use of robust estimation and local refinement. RESULTS: We compare our proposed method against the state-of-the-art vessel-based and optical flow-based image registration methods, and robust estimation alternatives. We also compare our proposed pipeline using different optical flow and robust estimation alternatives. CONCLUSIONS: Through analysis of our results, we show that our method outperforms both the vessel-based state of the art and LK, noticeably when vessels are either poorly visible or too thin to be reliably identified. Our approach is thus able to build consistent placental vessel mosaics in challenging cases where currently available alternatives fail

    Generalizable automated pixel-level structural segmentation of medical and biological data

    Get PDF
    Over the years, the rapid expansion in imaging techniques and equipments has driven the demand for more automation in handling large medical and biological data sets. A wealth of approaches have been suggested as optimal solutions for their respective imaging types. These solutions span various image resolutions, modalities and contrast (staining) mechanisms. Few approaches generalise well across multiple image types, contrasts or resolution. This thesis proposes an automated pixel-level framework that addresses 2D, 2D+t and 3D structural segmentation in a more generalizable manner, yet has enough adaptability to address a number of specific image modalities, spanning retinal funduscopy, sequential fluorescein angiography and two-photon microscopy. The pixel-level segmentation scheme involves: i ) constructing a phase-invariant orientation field of the local spatial neighbourhood; ii ) combining local feature maps with intensity-based measures in a structural patch context; iii ) using a complex supervised learning process to interpret the combination of all the elements in the patch in order to reach a classification decision. This has the advantage of transferability from retinal blood vessels in 2D to neural structures in 3D. To process the temporal components in non-standard 2D+t retinal angiography sequences, we first introduce a co-registration procedure: at the pairwise level, we combine projective RANSAC with a quadratic homography transformation to map the coordinate systems between any two frames. At the joint level, we construct a hierarchical approach in order for each individual frame to be registered to the global reference intra- and inter- sequence(s). We then take a non-training approach that searches in both the spatial neighbourhood of each pixel and the filter output across varying scales to locate and link microvascular centrelines to (sub-) pixel accuracy. In essence, this \link while extract" piece-wise segmentation approach combines the local phase-invariant orientation field information with additional local phase estimates to obtain a soft classification of the centreline (sub-) pixel locations. Unlike retinal segmentation problems where vasculature is the main focus, 3D neural segmentation requires additional exibility, allowing a variety of structures of anatomical importance yet with different geometric properties to be differentiated both from the background and against other structures. Notably, cellular structures, such as Purkinje cells, neural dendrites and interneurons, all display certain elongation along their medial axes, yet each class has a characteristic shape captured by an orientation field that distinguishes it from other structures. To take this into consideration, we introduce a 5D orientation mapping to capture these orientation properties. This mapping is incorporated into the local feature map description prior to a learning machine. Extensive performance evaluations and validation of each of the techniques presented in this thesis is carried out. For retinal fundus images, we compute Receiver Operating Characteristic (ROC) curves on existing public databases (DRIVE & STARE) to assess and compare our algorithms with other benchmark methods. For 2D+t retinal angiography sequences, we compute the error metrics ("Centreline Error") of our scheme with other benchmark methods. For microscopic cortical data stacks, we present segmentation results on both surrogate data with known ground-truth and experimental rat cerebellar cortex two-photon microscopic tissue stacks.Open Acces

    MEMO: Dataset and Methods for Robust Multimodal Retinal Image Registration with Large or Small Vessel Density Differences

    Full text link
    The measurement of retinal blood flow (RBF) in capillaries can provide a powerful biomarker for the early diagnosis and treatment of ocular diseases. However, no single modality can determine capillary flowrates with high precision. Combining erythrocyte-mediated angiography (EMA) with optical coherence tomography angiography (OCTA) has the potential to achieve this goal, as EMA can measure the absolute 2D RBF of retinal microvasculature and OCTA can provide the 3D structural images of capillaries. However, multimodal retinal image registration between these two modalities remains largely unexplored. To fill this gap, we establish MEMO, the first public multimodal EMA and OCTA retinal image dataset. A unique challenge in multimodal retinal image registration between these modalities is the relatively large difference in vessel density (VD). To address this challenge, we propose a segmentation-based deep-learning framework (VDD-Reg) and a new evaluation metric (MSD), which provide robust results despite differences in vessel density. VDD-Reg consists of a vessel segmentation module and a registration module. To train the vessel segmentation module, we further designed a two-stage semi-supervised learning framework (LVD-Seg) combining supervised and unsupervised losses. We demonstrate that VDD-Reg outperforms baseline methods quantitatively and qualitatively for cases of both small VD differences (using the CF-FA dataset) and large VD differences (using our MEMO dataset). Moreover, VDD-Reg requires as few as three annotated vessel segmentation masks to maintain its accuracy, demonstrating its feasibility.Comment: Submitted to IEEE JBH

    Topo-Geometric Filtration Scheme for Geometric Active Contours and Level Sets: Application to Cerebrovascular Segmentation

    Get PDF
    One of the main problems of the existing methods for the segmentation of cerebral vasculature is the appearance in the segmentation result of wrong topological artefacts such as the kissing vessels. In this paper, a new approach for the detection and correction of such errors is presented. The proposed technique combines robust topological information given by Persistent Homology with complementary geometrical information of the vascular tree. The method was evaluated on 20 images depicting cerebral arteries. Detection and correction success rates were 81.80% and 68.77%, respectively

    Automatic Wide Field Registration and Mosaicking of OCTA Images Using Vascularity Information

    Get PDF
    [Abstract] Optical Coherence Tomography Angiography (OCTA) constitutes a novel ophthalmological image modality that is characterized for being a non-invasive capture technique that allows a profound analysis of the vascular characteristics of the eye fundus. Given the restricted field of view of the eye fundus that offers each scan, the specialists frequently capture several complementary images that may be simultaneously analyzed to offer a complete and accurate diagnosis of the patient. In this work, we propose a fully automatic method to register complementary OCTA images and provide compositions for the same patient, generating a wide field of representation that allows a simpler and more direct analysis than the traditional tedious manual procedures. To achieve this, we based our proposal in a robust combination of representative features that are filtered by an accurate identification of the main retinal vasculature. This way, given the characteristic high irregularity in the fundus of the OCTA images, we avoid many variable areas that may interfere in the registration process, restricting the analysis to the most representative and stable structure of this image modality, the main retinal vasculature. In particular, we use Speeded-Up Robust Features (SURF) algorithm to extract representative features in the main vascular region that is extracted using a method that combines the analysis of the Hessian matrix followed by an hysteresis threshold process. Then, using a K-NN model, we perform the registration of the resulting features from the different OCTA images to be analyzed. Finally, the Random sample consensus (RANSAC) method is exploited to produce the final target mosaic. The proposed method presented satisfactory results in the validation experiments, with accurate values for the MSE index of 1.2566 and 1.6725 pixels for the registration of paired images an mosaics, respectively.Xunta de Galicia; ED431G/01Xunta de Galicia; ED431C 2016-047This work is supported by the Instituto de Salud Carlos III, Government of Spain and FEDER funds of the European Union through the DTS18/00136 research projects and by the Ministerio de Economía y Competitividad, Government of Spain through the DPI2015-69948-R research project. Also, this work has received financial support from the European Union (European Regional Development Fund - ERDF) and the Xunta de Galicia, Centro singular de investigación de Galicia accreditation 2016-2019, Ref. ED431G/01; and Grupos de Referencia Competitiva, Ref. ED431C 2016-047

    Ultrasound IMT measurement on a multi-ethnic and multi-institutional database: Our review and experience using four fully automated and one semi-automated methods

    Get PDF
    Automated and high performance carotid intima-media thickness (IMT) measurement is gaining increasing importance in clinical practice to assess the cardiovascular risk of patients. In this paper, we compare four fully automated IMT measurement techniques (CALEX, CAMES, CARES and CAUDLES) and one semi-automated technique (FOAM). We present our experience using these algorithms, whose lumen-intima and media-adventitia border estimation use different methods that can be: (a) edge-based; (b) training-based; (c) feature-based; or (d) directional Edge-Flow based. Our database (DB) consisted of 665 images that represented a multi-ethnic group and was acquired using four OEM scanners. The performance evaluation protocol adopted error measures, reproducibility measures, and Figure of Merit (FoM). FOAM showed the best performance, with an IMT bias equal to 0.025 ± 0.225 mm, and a FoM equal to 96.6%. Among the four automated methods, CARES showed the best results with a bias of 0.032 ± 0.279 mm, and a FoM to 95.6%, which was statistically comparable to that of FOAM performance in terms of accuracy and reproducibility. This is the first time that completely automated and user-driven techniques have been compared on a multi-ethnic dataset, acquired using multiple original equipment manufacturer (OEM) machines with different gain settings, representing normal and pathologic case

    In Vivo Photoacoustic Imaging of Anterior Ocular Vasculature: A Random Sample Consensus Approach

    Get PDF
    Visualizing ocular vasculature is important in clinical ophthalmology because ocular circulation abnormalities are early signs of ocular diseases. Photoacoustic microscopy (PAM) images the ocular vasculature without using exogenous contrast agents, avoiding associated side effects. Moreover, 3D PAM images can be useful in understanding vessel-related eye disease. However, the complex structure of the multi-layered vessels still present challenges in evaluating ocular vasculature. In this study, we demonstrate a new method to evaluate blood circulation in the eye by combining in vivo PAM imaging and an ocular surface estimation method based on a machine learning algorithm: a random sample consensus algorithm. By using the developed estimation method, we were able to visualize the PA ocular vascular image intuitively and demonstrate layer-by-layer analysis of injured ocular vasculature. We believe that our method can provide more accurate evaluations of the eye circulation in ophthalmic applications. ? The Author(s) 2017.1110Ysciescopu

    Retinal Fundus Image Registration via Vascular Structure Graph Matching

    Get PDF
    Motivated by the observation that a retinal fundus image may contain some unique geometric structures within its vascular trees which can be utilized for feature matching, in this paper, we proposed a graph-based registration framework called GM-ICP to align pairwise retinal images. First, the retinal vessels are automatically detected and represented as vascular structure graphs. A graph matching is then performed to find global correspondences between vascular bifurcations. Finally, a revised ICP algorithm incorporating with quadratic transformation model is used at fine level to register vessel shape models. In order to eliminate the incorrect matches from global correspondence set obtained via graph matching, we proposed a structure-based sample consensus (STRUCT-SAC) algorithm. The advantages of our approach are threefold: (1) global optimum solution can be achieved with graph matching; (2) our method is invariant to linear geometric transformations; and (3) heavy local feature descriptors are not required. The effectiveness of our method is demonstrated by the experiments with 48 pairs retinal images collected from clinical patients
    corecore