
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 159 (2019) 505–513

1877-0509 © 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.
10.1016/j.procs.2019.09.205

10.1016/j.procs.2019.09.205 1877-0509

© 2019 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of KES International.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2019) 000–000
www.elsevier.com/locate/procedia

23rd International Conference on Knowledge-Based and Intelligent Information & Engineering
Systems

Automatic wide field registration and mosaicking of OCTA images
using vascularity information

Macarena Dı́aza,b,∗, Joaquim de Mouraa,b, Jorge Novoa,b, Marcos Ortegaa,b

aFaculty of Informatics, Department of Computing, University of A Coruña, A Coruña, Spain
bCITIC-Research Center of Information and Communication Technologies, University of A Coruña, A Coruña, Spain

Abstract

Optical Coherence Tomography Angiography (OCTA) constitutes a novel ophthalmological image modality that is characterized
for being a non-invasive capture technique that allows a profound analysis of the vascular characteristics of the eye fundus. Given
the restricted field of view of the eye fundus that offers each scan, the specialists frequently capture several complementary images
that may be simultaneously analyzed to offer a complete and accurate diagnosis of the patient.

In this work, we propose a fully automatic method to register complementary OCTA images and provide compositions for the
same patient, generating a wide field of representation that allows a simpler and more direct analysis than the traditional tedious
manual procedures. To achieve this, we based our proposal in a robust combination of representative features that are filtered by
an accurate identification of the main retinal vasculature. This way, given the characteristic high irregularity in the fundus of the
OCTA images, we avoid many variable areas that may interfere in the registration process, restricting the analysis to the most
representative and stable structure of this image modality, the main retinal vasculature. In particular, we use Speeded-Up Robust
Features (SURF) algorithm to extract representative features in the main vascular region that is extracted using a method that
combines the analysis of the Hessian matrix followed by an hysteresis threshold process. Then, using a K-NN model, we perform
the registration of the resulting features from the different OCTA images to be analyzed. Finally, the Random sample consensus
(RANSAC) method is exploited to produce the final target mosaic. The proposed method presented satisfactory results in the
validation experiments, with accurate values for the MSE index of 1.2566 and 1.6725 pixels for the registration of paired images
an mosaics, respectively.
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1. Introduction

Optical Coherence Tomography Angiography (OCTA) [1] constitutes a recent non-invasive image modality that is
characterized by allowing a detailed visualization of the retinal vascularity. The OCTA capture process is based on the
identification of the blood flow though the vessels in order to identify these variations using retinal consecutive scans
at the same location and time, producing the output OCTA images that highlights the target vascularity. In contrast
to the traditional Fluorescein Angiography (FA) [2], OCTA is a non-invasive image modality that could allow the
identification of representative biomarkers that are necessary for the diagnosis and monitoring of a large variety of
serious vascular pathologies.

In that line, at the moment, different representative clinical studies were published, demonstrating the utility of dif-
ferent biomarkers that may be extracted from OCTA images [3, 4], which may be associated with important patholo-
gies such as diabetic retinopathy [5], retinal vein occlusion [6] or glaucoma [2], among others. In the medical field,
and more specifically in ophthalmology, computational automatic approaches and frameworks demonstrated their
huge impact and utility in improving and facilitating the expert’s work of monitoring and diagnosis of many patholo-
gies [7, 8]. Due to the novelty of the OCTA image modality, there are still few computational proposed approaches,
mainly based on the direct extaction of biomarkers [9, 10, 11], and their corresponding analysis. In particular, Dı́az et
al. [9, 10], proposed different methods to measure the vascular density regions in OCTA images as well as to accu-
rately segment the foveal avascular zone. Also, Guo et al. [11] proposed a neural network to automatically extract the
avascular regions of the OCTA images.

The lack of a wide field representation of the retina is the main disadvantage of individual OCTA images. Given that
the capture device extracts a fixed and restricted area of the eye fundus, typically 3 × 3 or 6 × 6 millimeters (mm), the
visualization of large areas commonly needs more than one overlapping scan to capture all the regions to be studied.
This involves a complex and tedious analysis of several separated OCTA images for the same diagnostic process.
At present, there are some capture devices that capture larger regions, typically 12 × 12 mm, but still representing
low values and presenting important disadvantages. In particular, given that the extraction process is in a larger area,
the detail level is significantly lower, being also the quality of the image poorer. Moreover, the vessels appear more
blurred as well as more noisy artifacts are present in the output image given the imprecise acquisition process. For
these reasons, the specialists typically prefer the use of more restricted fields of view, capturing several overlapping
OCTA images. This approach is benefited from the quality of OCTA images with higher zoom level, presenting less
artifacts and a higher level of details, but hardening the diagnostic process with the simultaneous analysis of the
required complementary OCTA images. In this context, the automatic availability of a complete mosaic, registering
the images, is extremely useful to facilitate and fasten the revision process of the specialists.

At this moment, this approach is scantly used in OCTA imaging. In fact, there is only one work that deals with this
complex issue in the state of the art. Thus, Wang et al. [12] proposed a method to solve the explained composition
problem using the Speeded-Up Robust Features (SURF) algorithm to directly extract accurate keypoints and descrip-
tors from the entire raw OCTA images. Then, with these features and the Random sample consensus (RANSAC)
algorithm, the composition is achieved. The main limitation of the OCTA images is the significant level of noise and
the background irregularity that are produced by the capture process and the retinal tissues that may interfere in the
identification of representative keypoints to be aligned. For that reason, the registration process in this image modality
constitutes a more challenging issue than in other practical domains.

Hence, in this work, we propose an accurate and improved method that combines the robust extraction of keypoints
using SURF but being conditionated by the main representative characteristic of the OCTA images: the main retinal
vessel tree. This way, we guarantee the identification of usefull keypoints, avoiding the detection of keypoints in many
noisy regions that may confuse the registration process. Firstly, we extract the vessels using an approach that analyzes
the Hessian matrix followed by a hysteresis based threshold to extract the vascular regions [13]; then, we exploit the
identified vascular information to restrict the extraction of the keypoints and descriptors with SURF and assemble the
target mosaic with RANSAC.

This paper is organized as follows: in Section 2, we explain the proposed methodology to register the OCTA images
and produce the target mosaics; in Section 3, the designed experiments to validate and compare the method as well
as the obtained results are presented and explained; finally, in Section 4, we discuss the obtained results and compare
them with the state of the art.
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Fig. 1: Main steps of the proposed methodology.

2. Methodology

The proposed methodology, represented in Fig. 1, is divided into four main steps. First, a preprocessing stage
is applied to the input OCTA image to facilitate the posterior stages of the proposed method. Second, the vessel
extraction is performed to filter the representative useful vascular regions of the OCTA images. For this second step,
we use a method [13] that was specifically adapted to the characteristics of this problematic. Then, the keypoints and
descriptors are extracted using the SURF algorithm, being exploited in different alternative approaches: first, these
features are extracted from the original image, following the state of the art and that will be serve as comparison
to motivate the utility of using the vascular region; and second, the extraction of these features is performed on the
preprocessed OCTA image, being preserved only those from the extracted vessel regions. Finally, with the extracted
features, the registration process is performed to reach the target mosaic. The Mean Square Error (MSE) metric is
employed to measure the performance of the registration process.

2.1. Image preprocessing

OCTA images are characterized by a bright irregular noise over the dark background. As said, this noise could
affect the extraction of the keypoints in the application of SURF. For this reason, we designed a preprocessing step
where the target noise is reduced. Due to the constitution of this noise, we decided to apply a morphological top hat
operator followed by a median filter [14]. Hence, with the morphological top hat operator, we enhance the vessels
over the background; and with the median filter, the noisy pixels are reduced by the median of the neighborhood,
smoothing briefly the OCTA image but preserving the mains structures over the OCTA image. Figs. 2 (b) and (f) show
illustrative examples of application of this step.

2.2. Vessel extraction

As said, in this methodology, we use the main vascularity information to restrict the analysis to the relevant areas
of the image and avoid other problematic noisy and variable regions. For this reason, we need to segment the vessels
from the input OCTA image and construct the mask based on this extraction to be posteriorly used in the keypoints
identification process. To make this vascular segmentation, we based our proposal in the work that was proposed
in [13], being specifically adapted to this new challenging scenario. This vessel segmentation is mainly based on a
enhancement of the vascularity using the Hessian matrix followed by an hysteresis based thresholding process to
segment the previously enhanced vessels. Once the vessels are extracted, the method removes isolated points, product
of the previous segmentation process. Additionally, before the application of the subsequent steps of the methodology,
we apply a morphological dilation operator to obtain an inclusive region with a vessel mask that also complementary
includes the surrounding information of the vessels and not only the restricted main pixels of these vessels. Figs. 2
(c), (d), (g) and (h) present representative examples of application of this stage.

2.3. Extraction of the keypoints and descriptors

Using the preprocessed OCTA image and its extracted vascular structure, we proceed with the identification of the
representative keypoints and their descriptors to, posteriorly, perform the registration process of the OCTA images
and produce the final mosaic. In particular, two different approaches were implemented and tested in this stage:
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Preprocessing and vascular extraction stages. (a) and (e) Input OCTA images. (b) and (f) Image results after applying the top hat operator
and the median filter. (c) and (g) Image results after applying the vessel extraction process. (d) and (h) Vessels extracted and dilated superposed to
the input OCTA image.

• Approach 1: we extract the keypoints and their descriptors directly in the preprocessed OCTA image. This
approach is in line with the proposal of the state of the art [12], but being applied in our case over the enhanced
image.
• Approach 2: we extract the keypoints and descriptors in the preprocessed OCTA image, but conditioning their

identification to the extracted vascular region.

In both cases, the SURF algorithm [15] was used to find the representative keypoints and their corresponding
descriptors. This algorithm is characterized by their invariability with the pixel values, scaling and rotating, as well
as a fast and robust performance. This presents important advantages that make this algorithm suitable for this image
modality, also being previously applied in this issue [12]. In Fig. 3, we can see representative examples of the keypoints
extraction process using each described approach.

2.4. OCTA image registration

The composition process is performed by the progressive pairing of new input OCTA images to the resultant
mosaic. The following subsections depict this process in detail.

2.4.1. Exhaustive search
Given that these input OCTA images can be paired in different order, and consequently produce different results,

we decided to prioritize then with the best registration order. To do this, we performed an exhaustive search of the
best possible registration of paired images with the smallest value of MSE. In particular, given that the registration
process is characterized by having a fixed image and a moving image that is transformed, the order of the OCTA image
selection affects to the result of the final mosaic. For this reason, to guarantee the best possible result, we explore all
the permutations of fixed and moving image.
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(a) (b) (c)

(d) (e) (f)

Fig. 3: Examples of the keypoint extraction process using each approach. (a) and (e) Original image. (b) and (f) Keypoints extracted using the entire
preprocessed OCTA image. (c) and (g) Keypoints extracted used the preprocessed OCTA image and filtered with the vascular extracted mask.

2.4.2. Matching keypoints in the images
To make the posterior registration, we need to know the correspondence between the identified keypoints of each

image. To perform this matching, we use the k-Nearest Neighbors (K-NN) [16] algorithm, finding the keypoint cor-
respondence by analyzing the similarities between their descriptors. With this step, each keypoint of one image is
connected with a keypoint in the other image.

2.4.3. Paired image registration
Once we know what are the correspondences between the keypoints of both images, we need to find the Homog-

raphy matrix that provides the necessary perspective transformation for the moving image. This transformation is
obtained using RANSAC [17]. RANSAC is a non determinist algorithm that selects paired points and search for the
best transformation between them. With this transformation based on the selected paired points, it is necessary to
check if the whole paired points are matched between them. RANSAC tests with different sets of paired points and
transformations and selects the best configuration, extracting its Homography matrix. With the extracted Homography
matrix, we apply the transformation to the moving image that is joined with the fixed image, obtaining therefore the
resultant paired output image. In Fig. 4, we can see an example of application of this step.

2.4.4. Final mosaic construction
The resultant paired image is used as the new fixed image containing the method with the search of the best

registration with the remaining input OCTA images. This step is repeated until all the images are aggregated to the
constructed output mosaic.
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(a) (b) (c)

Fig. 4: Example of application of the K-NN step. (a) Input images. (b) Paired points between the input images. (c) Final mosaic result.

(a) (b) (c)

Fig. 5: Example of application of the paired image registration and production of the final OCTA mosaic. (a) Input images. (b) Example of paired
images. (c) Final OCTA mosaic.

3. Experimental Results

To prove the suitability of the proposed method, we used a complete and heterogeneous set of OCTA images and
different validation experiments that were applied to this dataset. All the tests were made with both approaches that
were explained before, comparing their results to perform the analysis and reach the conclusions, in Section 4, of this
work.

3.1. Image dataset

The used dataset contains several OCTA images that were captured from 10 patients. In particular, they present a
resolution of 6 × 6 mm in superficial plexus for left and right eyes. Each eye include 3 or 4 images from the macular
area, temporal area and center area. Summarizing, we have a total of 54 OCTA 6× 6 mm images at superficial plexus.
These OCTA images were taken using the Optical Coherence Tomography capture device DRI OCT Triton; Topcon
Corp, with a resolution of 320×320 pixels. Having in mind the 3 or 4 images per eye of 10 patients, we could perform
the different experiments over individual pairs of overlapping images as well as over complete OCTA mosaics. In
particular, we retrieved 19 mosaics and 49 overlapping image pairs.
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3.2. Validation

To measure the performance of the method, we used the Mean Square Error (MSE) [18] metric that is commonly
used in similar validation processes. In particular, with the MSE metric, we can measure the distances between the
positions of the keypoints and their ideal positions. This measurement is made with the indexes of the keypoint
positions in the moving images after its transformation and the indexes of the keypoints in the fixed images. We
calculated the MSE measurement in each registration as follows:

MS E =
1
N

N∑
i=0

(Ŷi − Yi)2 (1)

where Y contains the original points (x,y) of the fixed image and Ŷ indicate the points (x̂, ŷ) obtained with the
transformation in the moving image.

In Table 1, we can see the obtained results using the MSE metric with each approach over the entire used image
dataset. Hence, we calculated the MSE measurement over the paired images as well as the complete mosaics. In this
second scenario, we computed the global MSE of the mosaic as the average of each registered image to the global
mosaic. Additionally, we converted the calculated MSEs values in pixels to mm, to know the real impact of this error
in the real scale of the eye fundus.

As said, we tested both explained approaches. The first one is in line with the state of the art, but being applied over
the preprocessed images herein presented, baseline for comparison with the vascular approach. The second approach
include the alternative strategy, filtering the region of interest and analysis by the main retinal vessel tree.

Generally, both approaches provided satisfactory results, returning mean MSE values that are significantly low, in
terms of pixels and mm, given the analyzed resolutions. Additionally, as we can see, the second approach improves
significantly the results of the basic alternative. This is motivated by the explained concept that the general background
of the OCTA images is highly irregular and may alter significantly from over scan to another. In contrast, the main
retinal vessel tree is stable, being the keypoints more representative and similar between scans. Therefore, those
keypoints are more robust and desirable to find the registration between overlapping OCTA images.

Table 1: MSE results using each presented approach.

Approach Paired images Mosaics
MSE Offset MSE Offset

1 2.1463 px 40.2431 µm 2.1296 px 39.9300 µm
2 1.2566 px 23.5612 µm 1.6725 px 31.3593 µm

4. Discussion and Conclusions

A significative variety of pathologies affects directly the retinal micro-circulation, being a sensitive part of the
whole circulatory system, not only for diseases of the eye but also for other systemic ones. Thus, hypertension or
diabetes and others as glaucoma may produce vision impairment, even deriving in irreversible blindness in their final
stages. However, their early identification and diagnosis could prevent this drastic consequences.

In ophthalmology, as in many other medical domains, it is very common the use of different image modalities to
support the clinical procedures of diagnosis and monitoring. Among them, OCTA imaging is the most recent modality,
being characterized by a non invasive and quick extraction process, which is more comfortable and less invasive for
the patients. This image modality allows the visualization of the retinal vasculature, as its predecessor, the fluorescein
angiography, but non-invasively, providing a great improvement. Due to the novelty of the OCTA images, there are still
few clinical studies that demonstrate their utility, specially in comparison with other consolidated ophthalmological
image modalities, like the color fundus retinography or the mentioned fluorescein angiography. All the studies are
significantly recent, still appearing new ones that demonstrate the potential uses of the OCTA images. The main
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inconvenience of the OCTA image modality is that the captured and represented region of the eye fundus is typically
short, with dimensions of 3 × 3 or 6 × 6 mm in most of the used cases. In order to improve the analysis of the OCTA
images in the diagnostic procedures, it is desirable a greater wide field of representation.

For this reason, it is proposed in this work the automatic registration of complementary OCTA images and the
subsequent construction of retinal OCTA mosaics, providing accurate results. The proposal firstly implements a pre-
processing stage, applying a top hat operator to enhance the vessels as well as a median filter to reduce the background
noise of the OCTA images. Then, the method exploits the robust properties of the SURF algorithm to extract repre-
sentative keypoints and descriptors that are necessary to make the posterior registration. Given the high complexity
and the significative background irregularity of the OCTA images that is produced by capture imperfections and the
retinal tissues, the general extraction of the keypoints using SURF is combined with the analysis of domain related
characteristics. In particular, the keypoints are restricted to the main retinal vessel tree, the main structure of the
eye fundus, specially visible in the OCTA images and that is stable over different capturing processes. Using K-NN,
we find the matches of the keypoints between the images to, posteriorly, construct the desired registration with the
RANSAC method. In general terms, the proposal offers an accurate performance in terms of the analysis using the
MSE metric, outperforming the general application of using directly the entire image.

As future work, we propose an extension of the analyzed dataset by including other typically used configurations
as deep plexus OCTA images, which are characterized by their difficulty based on the absence of main vessels that
are typically present in superficial plexus. With these images, we propose the adaptation of the proposed method to
the particular characteristics of this configuration of OCTA image. Hence, we also intend the inclusion of 3 × 3 mm
OCTA images to obtain mosaics with a higher quality level; also 12 × 12 mm OCTA images may be studied to obtain
a larger vision and complement the doctor’s work of analyzing and monitoring different vascular diseases.
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