46,895 research outputs found

    Relative Robust Portfolio Optimization

    Get PDF
    Considering mean-variance portfolio problems with uncertain model parameters, we contrast the classical absolute robust optimization approach with the relative robust approach based on a maximum regret function. Although the latter problems are NP-hard in general, we show that tractable inner and outer approximations exist in several cases that are of central interest in asset management

    Robust Portfolio Optimization with Derivative Insurance Guarantees

    Get PDF
    Robust portfolio optimization aims to maximize the worst-case portfolio return given that the asset returns are allowed to vary within a prescribed uncertainty set. If the uncertainty set is not too large, the resulting portfolio performs well under normal market conditions. However, its performance may substantially degrade in the presence of market crashes, that is, if the asset returns materialize far outside of the uncertainty set. We propose a novel robust portfolio optimization model that provides additional strong performance guarantees for all possible realizations of the asset returns. This insurance is provided via optimally chosen derivatives on the assets in the portfolio. The resulting model constitutes a convex second- order cone program, which is amenable to efficient numerical solution. We evaluate the model using simulated and empirical backtests and conclude that it can out- perform standard robust portfolio optimization as well as classical mean-variance optimization.robust optimization, portfolio optimization, portfolio insurance, second order cone programming

    Portfolio Decisions with Higher Order Moments

    Get PDF
    In this paper, we address the global optimization of two interesting nonconvex problems in finance. We relax the normality assumption underlying the classical Markowitz mean-variance portfolio optimization model and consider the incorporation of skewness (third moment) and kurtosis (fourth moment). The investor seeks to maximize the expected return and the skewness of the portfolio and minimize its variance and kurtosis, subject to budget and no short selling constraints. In the first model, it is assumed that asset statistics are exact. The second model allows for uncertainty in asset statistics. We consider rival discrete estimates for the mean, variance, skewness and kurtosis of asset returns. A robust optimization framework is adopted to compute the best investment portfolio maximizing return, skewness and minimizing variance, kurtosis, in view of the worst-case asset statistics. In both models, the resulting optimization problems are nonconvex. We introduce a computational procedure for their global optimization.Mean-variance portfolio selection, Robust portfolio selection, Skewness, Kurtosis, Decomposition methods, Polynomial optimization problems

    Robust Portfolio Optimization with a Hybrid Heuristic Algorithm

    Get PDF
    Estimation errors in both the expected returns and the covariance matrix hamper the constructing of reliable portfolios within the Markowitz framework. Robust techniques that incorporate the uncertainty about the unknown parameters are suggested in the literature. We propose a modification as well as an extension of such a technique and compare both with another robust approach. In order to eliminate oversimplifications of Markowitzā€™ portfolio theory, we generalize the optimization framework to better emulate a more realistic investment environment. Because the adjusted optimization problem is no longer solvable with standard algorithms, we employ a hybrid heuristic to tackle this problem. Our empirical analysis is conducted with a moving time window for returns of the German stock index DAX100. The results of all three robust approaches yield more stable portfolio compositions than those of the original Markowitz framework. Moreover, the out-of-sample risk of the robust approaches is lower and less volatile while their returns are not necessarily smaller.Hybrid heuristic algorithm, Markowitz, Robust optimization, Uncertainty sets.

    Portfolio Optimization Based on Robust Estimation Procedures

    Get PDF
    Implemented robust regressio technology in portfolio optimization. Constructed optimized portfolio based on robust regression estimations. Compared the portfolio performance with optimized portfolio which is based on ordinary least square estimation

    Worst-Case Value-at-Risk of Non-Linear Portfolios

    Get PDF
    Portfolio optimization problems involving Value-at-Risk (VaR) are often computationally intractable and require complete information about the return distribution of the portfolio constituents, which is rarely available in practice. These difficulties are further compounded when the portfolio contains derivatives. We develop two tractable conservative approximations for the VaR of a derivative portfolio by evaluating the worst-case VaR over all return distributions of the derivative underliers with given first- and second-order moments. The derivative returns are modelled as convex piecewise linear or - by using a delta-gamma approximation - as (possibly non-convex) quadratic functions of the returns of the derivative underliers. These models lead to new Worst-Case Polyhedral VaR (WCPVaR) and Worst-Case Quadratic VaR (WCQVaR) approximations, respectively. WCPVaR is a suitable VaR approximation for portfolios containing long positions in European options expiring at the end of the investment horizon, whereas WCQVaR is suitable for portfolios containing long and/or short positions in European and/or exotic options expiring beyond the investment horizon. We prove that WCPVaR and WCQVaR optimization can be formulated as tractable second-order cone and semidefinite programs, respectively, and reveal interesting connections to robust portfolio optimization. Numerical experiments demonstrate the benefits of incorporating non-linear relationships between the asset returns into a worst-case VaR model.Value-at-Risk, Derivatives, Robust Optimization, Second-Order Cone Programming, Semidefinite Programming

    Robust portfolio selection problem under temperature uncertainty

    Get PDF
    In this paper, we consider a portfolio selection problem under temperature uncertainty. Weather derivatives based on different temperature indices are used to protect against undesirable temperature events. We introduce stochastic and robust portfolio optimization models using weather derivatives. The investorsā€™ different risk preferences are incorporated into the portfolio allocation problem. The robust investment decisions are derived in view of discrete and continuous sets that the underlying uncertain data in temperature model belong. We illustrate main features of the robust approach and performance of the portfolio optimization models using real market data. In particular, we analyze impact of various model parameters on different robust investment decisions

    Robust Optimization of Currency Portfolios

    Get PDF
    We study a currency investment strategy, where we maximize the return on a portfolio of foreign currencies relative to any appreciation of the corresponding foreign exchange rates. Given the uncertainty in the estimation of the future currency values, we employ robust optimization techniques to maximize the return on the portfolio for the worst-case foreign exchange rate scenario. Currency portfolios differ from stock only portfolios in that a triangular relationship exists among foreign exchange rates to avoid arbitrage. Although the inclusion of such a constraint in the model would lead to a nonconvex problem, we show that by choosing appropriate uncertainty sets for the exchange and the cross exchange rates, we obtain a convex model that can be solved efficiently. Alongside robust optimization, an additional guarantee is explored by investing in currency options to cover the eventuality that foreign exchange rates materialize outside the specified uncertainty sets. We present numerical results that show the relationship between the size of the uncertainty sets and the distribution of the investment among currencies and options, and the overall performance of the model in a series of backtesting experiments.robust optimization, portfolio optimization, currency hedging, second-order cone programming

    An Entropy Search Portfolio for Bayesian Optimization

    Full text link
    Bayesian optimization is a sample-efficient method for black-box global optimization. How- ever, the performance of a Bayesian optimization method very much depends on its exploration strategy, i.e. the choice of acquisition function, and it is not clear a priori which choice will result in superior performance. While portfolio methods provide an effective, principled way of combining a collection of acquisition functions, they are often based on measures of past performance which can be misleading. To address this issue, we introduce the Entropy Search Portfolio (ESP): a novel approach to portfolio construction which is motivated by information theoretic considerations. We show that ESP outperforms existing portfolio methods on several real and synthetic problems, including geostatistical datasets and simulated control tasks. We not only show that ESP is able to offer performance as good as the best, but unknown, acquisition function, but surprisingly it often gives better performance. Finally, over a wide range of conditions we find that ESP is robust to the inclusion of poor acquisition functions.Comment: 10 pages, 5 figure
    • ā€¦
    corecore