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Abstract

Estimation errors in both the expected returns and the covari-
ance matrix hamper the constructing of reliable portfolios within the
Markowitz framework. Robust techniques that incorporate the uncer-
tainty about the unknown parameters are suggested in the literature.
We propose a modification as well as an extension of such a technique
and compare both with another robust approach. In order to elimi-
nate oversimplifications of Markowitz’ portfolio theory, we generalize
the optimization framework to better emulate a more realistic invest-
ment environment. Because the adjusted optimization problem is no
longer solvable with standard algorithms, we employ a hybrid heuris-
tic to tackle this problem. Our empirical analysis is conducted with a
moving time window for returns of the German stock index DAX100.
The results of all three robust approaches yield more stable portfolio
compositions than those of the original Markowitz framework. More-
over, the out-of-sample risk of the robust approaches is lower and less
volatile while their returns are not necessarily smaller.

Keywords: Hybrid heuristic algorithm, Markowitz, Robust opti-
mization, Uncertainty sets.
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1 Introduction

An investor’s primary objective is to optimally allocate his financial resources
among a given choice of assets. This allocation is traditionally modeled fol-
lowing Markowitz (1952), the first to explicitly quantify the important trade-
off between risk and return within the process of portfolio selection. The
model assumes a market of K assets with multivariate normally distributed
expected returns, given in the (K × 1)−vector µ, and a (K×K)−covariance
matrix of returns Σ. Efficient portfolios can be constructed if the weights
wi of the assets i = 1, ..., K, are chosen such that the following problem is
solved:

max
w

(1 − λ)w′µ − λ
√

w′Σw (1)

subject to
w′lK = 1

where lK = (1, ..., 1)′ and w = (w1, ..., wK)′. The weighting parameter
λ ∈ [0, 1] can be interpreted as a risk aversion parameter, since it takes into
account the trade-off between risk (measured by σp =

√
w′Σw) and return of

the portfolios. Repeatedly solving (1) for several values λ ∈ [0, 1] yields the
efficient frontier. This framework is called the Mean-Variance-Optimization
(MVO) approach.

In order to eliminate certain oversimplifications of Markowitz’ portfolio
theory, the framework can be adjusted by side conditions to better emulate
a more realistic investment environment. Hence, in this paper, the asset
weights are restricted to be only within a lower (wl ≥ 0) and an upper
(wu ≤ 1) bound, meaning that short-selling is prohibited. Furthermore, fol-
lowing, e.g., Maringer (2005), the limited divisibility of assets is considered
as well as the fact that investors must pay transaction costs. The former
ensures the minimum fraction of the investor’s capital endowment V being
invested in asset i with price Pi is Pi/V , corresponding to one piece of asset i.
These constraints lead to discrete weights wi = niPi/V , where ni ∈ N

+
0 . The

transaction costs are modeled as a composite of a fixed payment cf per asset
traded plus a fraction cv of the volume niPi, i.e. cvniPi. As a result of the
transaction costs and the integer constraints, it is likely that the investor’s
capital endowment cannot be entirely invested into assets; the remainder R
will be held in cash. Moreover it appears to be unrealistic to hold as many
different assets as possible in order to diversify the risk of the portfolio. Port-
folios with a very large number of different assets may become impractical
to handle for administrative reasons (Maringer 2005). In order to take this
issue into account, a limit Kmax < K on the number of different assets held
in a portfolio p is introduced (Chang et al. 2000). A subset Ip ⊂ {1, ..., K}
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containing Kef
max ≤ Kmax assets’ indices i is introduced to represent a specific

portfolio’s constituents. The subscript I denotes vectors and matrices corre-
sponding to the asset indices in Ip.

1 Taking these constraints into account
the optimization problem becomes:

max
n

(1 − λ)

[

(
∑

i∈I
niPi(1 + µi) − Ci

)

+ Rp

V
− 1

]

− λ

(

√

w′
IΣIwI

)

(2)

subject to

wi = niPi

V
∀ i ∈ Ip discrete portfolio weights

ni ∈ N
+
0 ∀ i ∈ Ip integer constraints

Ci = cf + cpniPi ∀ i ∈ Ip transaction costs

Rp = V −
∑

i∈Ip
(niPi + Ci) residual cash holdings

w′
IlKef

I
+

(
∑

i∈I
Ci)+Rp

V
= 1 budget constraint

wl ≤ wi ≤ wu ∀ i ∈ Ip no short-selling

#Ip = Kef
max ≤ Kmax cardinality constraint

Due to its complexity, a discrete search space, and multiple optima,
problem (2) will be optimized with a modified hybrid heuristic algorithm
(HHA) introduced by Maringer and Kellerer (2003). Heuristic algorithms
have been employed in the field of portfolio optimization since Dueck and
Winker (1992). An overview of heuristic optimization techniques is provided
by Gilli and Winker (2009) and in finance by Maringer and Winker (2007).

In order to optimize either problem with real world data, estimators µ̂i

and Σ̂ for the true (but unknown) parameters µi and Σ must be used. Es-
timation errors will inevitably occur that coincide with a high sensitivity to
changes in the input parameters of MVO-portfolios. Michaud (1989) argues
that Markowitz’ portfolio theory is error-maximizing, because those assets in
a portfolio that get overweighted (underweighted) have the largest (smallest)
expected return-variance-ratios, and that these exact assets also exhibit the
highest probability of large (small) estimation errors. There is a vast litera-
ture addressing this problem ranging from restricting portfolio weights (e.g.
Frost and Savarino 1988) to Bayesian approaches (e.g. Black and Litterman
1991) and resampling methods (e.g. Michaud 1998). More recently proposed
methods can be categorized as robust estimation and robust optimization

approaches.

1I represents an individual, i.e. a portfolio. This nomenclature will become clear later.
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Robust estimation focuses on robust statistical procedures to estimate µ̂

and Σ̂, which are less sensitive to outliers and might result in more robust
portfolios. While Maronna et al. (2006) provide an overview of robust es-
timators, the contributions by, e.g., Cavadini et al. (2001), Lauprete et al.

(2002), Perret-Gentil and Victoria-Feser (2004), Welsch and Zhou (2007),
Genton and Ronchetti (2008), DeMiguel and Nogales (2009), and Winker et

al. (2009) belong to this class of robust estimation approaches.
In contrast to robust estimation, the idea of robust optimization is to

explicitly incorporate the uncertainty about the parameters into the opti-
mization process. Therefore, instead of considering a single point estimate,
uncertainty sets are used that contain a certain selection of point estimates.
With the objective of constructing a portfolio that exhibits good character-
istics for many possible scenarios, the portfolio is optimized under the worst-
case-scenario for the given uncertainty set. The articles by, e.g., Goldfarb
and Iyengar (2003), Tütüncü and Koenig (2004), Ceria and Stubbs (2006),
Bertsimas and Pachamanova (2008), and Zymler et al. (2009) apply this idea
in different ways. Fabozzi et al. (2007) provide a comprehensive overview. In
this paper, we enrich this choice of robust optimization techniques with an
approach that upgrades the technique of Ceria and Stubbs (2006) by an un-
certainty set for the portfolio risk. Moreover, we propose refined proceedings
for the computation of uncertainty sets. Our results are compared empiri-
cally to those obtained by to the approaches of Tütüncü and Koenig (2004)
and Ceria and Stubbs (2006). To solve optimization problem (2) for these
robust approaches the aforementioned HHA is employed.

The rest of the paper is structured as follows: Chapter 2 describes the op-
timization algorithm as well as the implemented robust techniques. Chapter
3 presents empirical results for daily German stock returns before Chapter 4
concludes.

2 The implemented techniques

As previously mentioned, the methods to construct uncertainty sets vary over
different robust approaches. However, as this paper employs the optimizer
HHA, it is explained in some detail first. Afterwards the robust techniques
and their combination with the HHA are addressed.

2.1 The Optimizer: Hybrid Heuristic Algorithm

Maringer and Kellerer (2003) introduced a novel heuristic in a successful
application to a portfolio selection problem. The authors’ intent was to
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overcome certain shortcomings of local search algorithms such as Simulated
Annealing (SA) (Kirkpatrick et al. 1983). While the shortcomings are the
dependence on the single search agent’s starting point and the rapidly in-
creasing peril of getting stuck in local optima when the problem complexity
increases, these algorithms also exhibit the advantage of a relatively precise
search within a predefined (local) neighborhood. Population based methods,
such as genetic algorithms, work with multiple search agents that consti-
tute a greater global search potential and consequently a greater capacity to
cope with rather complex problems. In order to include the advantages of
both local and population based methods, the proposed hybrid algorithm of
Maringer and Kellerer (2003) has (i) more than one starting point and (ii) an
entire population of communicating search agents. However, a precise search
is preserved through (iii) embedding an SA-algorithm.

After initializing a population of Pop search agents Ip, p = 1, ..., Pop,
that represent portfolios and are termed individuals, the three phases Modi-

fication, Evaluation and Replacement are repeated over a predefined number
of generations g. In the Modification Phase an SA-algorithm is conducted
independently for all individuals and the Evaluation Phase ranks these in-
dividuals according to their objective function values. In the Replacement

Phase the worst individuals are replaced either by so-called Clones, i.e., exact
copies of the current populations’ best individuals, or by so-called Averaged

Idols, i.e., individuals that combine characteristics which have been proven
to be successful in other individuals. In contrast to, e.g., genetic algorithms,
experience does not only get passed on by two parents, but by an entire group
of successful individuals. Moreover, in combination with the SA-algorithm
in the Modification Phase, this arrangement of the phases helps to find a
successful combination of assets, i.e., a core structure, in earlier generations,
before it then contributes to assigning proper portfolio weights to this core
structures’ assets.

The hybrid heuristic algorithm (HHA) that we employ in this paper is
based on the algorithm by Maringer and Kellerer (2003). Our advancements
modify primarily two aspects.2 Firstly, as the embedded local search strategy
we use a Threshold Accepting (TA) algorithm (Dueck and Scheuer 1990).
Therefore, impairments in the objective function are accepted determinis-

tically instead of stochastically whenever they do not exceed a predefined
threshold Tt, t = 1, ..., thresh, that decreases as t grows and the algorithm
matures over the generations g respectively. Similar to the TA in Gilli and
Këllezi (2002) the step size Ut ∈ [Umin, Umax], that is applied in the Modifi-

cation Phase and that defines the neighborhood of an individual Ig
p , is also

2A detailed description of the HHA can be found in Appendix 1.
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deterministic. Secondly, the Replacement Phase is written in such a way that
the worst individuals only get replaced if the opponents’ objective function
values are not worse by more than the current threshold value Tt.

3 This
additional application of the TA-acceptance rule only becomes relevant if an
unsuccessful individual is ought to be replaced by an Averaged Idol.4

The threshold sequence {Tt} has a strong influence on the performance
of the HHA, since it determines the tolerance towards impairments. Hence,
the numerical values should consider the “typical” difference in the objective
function value that is caused by a search step, which is, in turn, dependent
on the step size Ut. Following Fang and Winker (1997) a data driven choice
of the threshold sequence is applied. This is done by initially carrying out
1, 000 search steps (for each step size) in the fashion of the Modification Phase

with the only difference being that all new solutions are accepted without
reservation. Next, an empirical distribution for each step size is obtained by
the absolute differences between consecutively computed objective function
values, denoted f(|∆F |t). Then, the threshold values are defined as quantiles
of the empirical distributions that result from different step sizes. In order to
gradually decrease the tolerance towards impairments and promote a greedy
search, decreasing quantiles are taken and the least value is set to Tthresh = 0.

2.2 Robustification: Tütüncü and Koenig approach

Tütüncü and Koenig (2004) (TK) attempt to capture the uncertainty re-
garding the parameters µ and Σ in their uncertainty sets STK

µ and STK
Σ by

carrying out the following three steps. Firstly, the historical data sample is
bootstrapped, e.g., 1, 000 times, with a moving block bootstrap-procedure
(MBB)5 (Efron and Tibshirani 1993). Secondly, the means µ̂s and covari-
ance matrices Σ̂s of these bootstrap samples are computed. Thus, 1, 001
point estimators are gained. Thirdly, based on the 1, 001 mean vectors, STK

µ

is defined in such a way that it includes independently for each asset i a
choice of the middle (1 − α)100 percent of all µ̂i,s. In the same component

3 For the problem at hand, empirical tests indicate that the additional application of
the TA-acceptance rule in the Replacement Phase leads to superior results compared to
both versions with a certain replacement and versions that only replace individuals in the
case of an improvement (results mot reported, but available on request).

4The alternative to an Averaged Idol, i.e a Clone of one of the most successful indi-
viduals, definitely exhibits a better objective function value and replaces the unsuccessful
solution with certainty.

5Although the TK-approach ignores certain dependencies between the assets (as will be
explained), for simplicity reasons, this MBB-procedure is used in all bootstrap applications
due to its capability of capturing possible (auto)correlations within the historical return
data.
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wise manner, a choice of the middle (1−α)100 percent of the 1, 001 drawings
available for each component in Σ̂s defines STK

Σ .
With the objective of constructing a portfolio that exhibits good charac-

teristics for many possible scenarios of the point estimators, the portfolio is
optimized under the uncertainty sets’ worst-case-scenarios. Due to the no-
short-selling constraint in (2), the worst-case-expected return µ̂TK

W possible
in STK

µ is given by the (α/2)100 percent quantile independently for each asset
i. It is important to notice that this procedure ignores all correlations among
the K expected returns. This is problematic, since exactly these correlations
will often avoid a simultaneous occurrence of the worst-case-situation for all
assets. Even more problematic is the component wise construction of the

worst-case-covariance matrix Σ̂
TK

W . Because short-selling is forbidden, the
worst-case for each (co)variance is given by the largest value in STK

Σ , i.e. by
the (1 − α/2)100 percent quantile of the corresponding positions’ entries in
the 1, 001 covariance matrices Σ̂s. Due to the picking of single components

from different covariance matrices, there is no assurance that Σ̂
TK

W is positive
definite.

The constructed parameters µ̂TK
W and Σ̂

TK

W are then used as the inputs for
problem (2), which is optimized with the HHA. The outcome is a stochastic
approximation of the global maximum represented by the elitist’s (robust)
portfolio ITK

∗ , i.e. the best (robust) portfolio found.

2.3 Robustification: Ceria and Stubbs approach

Ceria and Stubbs (2006) (CS) only consider the uncertainties regarding the
expected returns and neglect the uncertainties regarding the covariance ma-
trix. Their reasoning for this procedure is the finding from Chopra and
Ziemba (1993) that cash-equivalent losses due to errors in estimates of ex-
pected returns are an order of magnitude greater than those for errors in
estimates of variances or covariances. SCS

µ is constructed as a K-dimensional
ellipsoid that defines a region which envelopes the joint deviation of the es-
timator µ̂ from its true value µ with a given confidence level 1 − α:

(µ − µ̂)′Ω−1(µ − µ̂) ≤ κ2
(1−α),K (3)

In expression (3), Ω represents the (K×K)-covariance matrix of the expected
returns and κ2

(1−α),K the inverse cumulative distribution function value of a
chi-squared distribution with K degrees of freedom and level of significance
α. The worst-case-scenario in the CS-approach is defined by the maximum
joint deviation, i.e. by the maximum deviation of the true return from its
estimator that theoretically can occur within ellipsoid (3). Thus, it is given
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by solving the Lagrangian:

µ̂CS
W = arg max

µ θ
L(µ, θ)

= arg max
µ θ

{

w′µ̂ − w′µ − θ

2

[

(µ − µ̂)′Ω−1(µ − µ̂) − κ2
(1−α),K

]}

= µ̂ −

√

κ2
(1−α),K

w′Ωw
Ωw (4)

Equation (4) shows that the (K × 1)-mean vector µ̂ is component wise pe-
nalized in such a way that the larger an asset’s portfolio weight w is, the
greater the asset’s penalty becomes. Due to the penalty’s positive dependence
on w it (partly) compensates the error-maximizing characteristic of MVO-
portfolios. Moreover, considering the expected returns’ correlations through
Ω when constructing the worst-case-scenario is reasonable.6 Of course, Ω
is not known and has to be estimated with the given data sample. For
a few types of return estimators µ̂, Stubbs and Vance (2005) give sugges-
tions. In the case of stationary returns and historical means for µ̂ one can

use Ω̂
CS

= T−1Σ̂.7 Assigning a probability 1 − α with which the ellipsoid
envelopes the true expected return-vector is only valid if the return distribu-
tion is elliptical (see, e.g., Fang et al., 1990) so that κ2

(1−α),K actually has its
attributed meaning.

Due to the constraint that limits the number of different assets held to
Kmax, equation (4) has to be adjusted to the dimensions of the considered
individual Ip, p = 1, ..., Pop. As before, this is denoted with an index I:

µ̂CS
I,W = µ̂0,I −

√

√

√

√

κ2
(1−α),Kef

max

w′

I
Ω̂CS

I
wI

Ω̂CS

I
wI (5)

During optimization of problem (2) with the HHA, the penalized return (5)
is applied for each of the Pop individuals whenever their fitness is computed.
The elitist ICS

∗ defines the robustly optimized portfolio of the CS-approach.

2.4 Robustification: An Extension of the CS-approach

We enrich the robust optimization techniques with an approach that up-
grades the technique of Ceria and Stubbs (2006) by an uncertainty set for

6Assets with larger (co)variances will c.p. be penalized stronger and vice versa. There-
fore, unlike in the TK-approach, an independent simultaneous occurrence of the worst-
case-situation for all assets will be prevented.

7 T denotes the amount of return observations used to estimate Σ̂.
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the covariance matrix Σ. Our extended model is denoted as ECS-approach.
Furthermore, while SECS

µ is also constructed with an ellipsoid similar to (3),
its components are computed in a refined way. Firstly, as is shown in Algo-

rithm 1, the estimator for the matrix Ω is generated using the MBB-technique
as follows: the historical return sample is bootstrapped 5, 000 times to al-
low for the computation of an identical number of µ̂-vectors (1: to 3:). The

gained sequences are then used to calculate Ω̂
ECS

(4:) out of which only those

components are written into Ω̂
ECS

I that correspond to the assets held by an
individual I (5:).

Algorithm 1 ECS-Covariance Matrix for Expected Returns.
1: Generate 5, 000 return samples s with the MBB-technique
2: Compute the expected return vectors µ̂s, s = 1, ..., 5, 000
3: Build K expected return sequences {µ1,s}, ..., {µK,s}, each of length 5, 000

4: Estimate a covariance matrix Ω̂
ECS

from these sequences

5: Ω̂
ECS

I consists of only those components that correspond to the assets held

Secondly, as is shown in Algorithm 2, the ellipsoid’s size is also determined
using the MBB-technique. To this end the historical return sample (with
mean-vector µ̂0) is bootstrapped 10, 000 times to allow for the computation
of an identical number of mean-vectors µs, s = 1, ..., 10, 000 (1: to 2:).8 Out
of each (K×1)-vector µs, Kmax assets are randomly picked and written into
µs,I (4:). These µs,I can be interpreted as the true expected return vectors

Algorithm 2 Size of the ECS-Ellipsoid for Expected Returns.
1: Generate 10, 000 return samples s with the MBB-technique
2: Compute mean vectors µs, s = 1, ..., 10, 000
3: for s = 1 to 10, 000 do

4: Choose randomly Kmax assets from the (K × 1) − vector µs that define µs,I

5: Insert µs,I with the corresponding assets’ Ω̂
ECS

I and µ̂0,I into ellipsoid (3)
6: Obtain the joint deviation τs

7: end for

8: Determine the (1 − α)100 percent quantile f1−α(τ)

and must be inserted together with their estimators µ̂0,I as well as with Ω̂
ECS

I

into an ellipsoid such as (3) to obtain 10, 000 joint deviations τs (5: to 6:).
The (1 − α)100 percent quantile of the generated distribution function f(τ)

8 Algorithm 2 generates a larger number of bootstrap samples compared to Algorithm
1, due to the latter algorithm’s memory requirements of the procedures in line (4:).
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is then used to replace κ2
(1−α),Kef

max
. Thus, the worst-case-return is given by:

µ̂ECS
I,W = µ̂0,I −

√

f1−α(τ)

w′

I
Ω̂ECS

I
wI

Ω̂ECS

I
wI (6)

The usage of f1−α(τ) rather than κ2
(1−α),Kef

max

has the advantage of not hav-

ing to make assumptions regarding the asset return distribution. However,
randomly choosing Kmax out of K assets as well as the application of the

MBB-technique for generating both Ω̂
ECS

and µs lead to stochastic quantiles
f1−α(τ).9

The crucial extension in the ECS-approach is the construction of an un-
certainty set for Σ. Analogous to the returns, the portfolio risk’s worst-case
is defined by the maximum joint deviation of the portfolio’s true variance
w′Σw from its estimator w′Σ̂w that theoretically can occur within an ellip-
soid. Again this ellipsoid is considered through a constraint in a Lagrangian.
Hence, the portfolio’s worst-case covariance matrix is given by:10

Σ̂
ECS

I,W = arg max
ΣI θ

{

w′

I
ΣIwI − w′

I
Σ̂IwI

− θ

2

[

(ΣI − Σ̂I)
′Θ−1

I
(ΣI − Σ̂I) − Φ

]}

(7)

By using the definitions ηI = vec(ΣI), W I = 2(wIw
′

I
) − dg(wIw

′

I
) as well

as ωI = vec(W I) expression (7) can be rewritten as:11

Σ̂
ECS

I,W = vec−1

(

arg max
η θ

{

ω′

I
ηI − ω′

I
η̂I

− θ

2

[

(ηI − η̂I)
′Θ−1

I
(ηI − η̂I) − Φ

]})

= vec−1

(

arg max
η θ

L(ηI, θ)

)

= Σ̂I,0 + vec−1

(

√

Φ

ω′

I
ΘIωI

ΘIωI

)

. (8)

9Empirical tests show that the variation in the distribution functions and their quantiles
f1−α(τ) is negligible when they are based on 10, 000 bootstrapped values τs.

10The expression is already considering that an individual can only hold Kmax < K
assets, which is, as usual, denoted by the index I.

11Here, the vec(·)-operator is columnwise stacking the components within the lower
triangle of a matrix to a vector. A (K × K)-matrix A results in the ([K2 + K]/2 × 1)-
vector vec(A). The vec−1-operator reverses this operation and restores the original matrix
A. The dg(·) operator sets all elements off the main diagonal to a value of zero.

10



In equations (7) and (8), ΘI represents the covariance matrix of the com-
ponents in vector ηI , i.e., the covariance matrix of the [(Kef

max)
2 + Kef

max]/2
asset returns’ (co)variances. The estimator Θ̂ is generated by applying the

MBB-technique analogously to generating Ω̂
ECS

(see Algorithm 1). Also, the
ellipsoid’s size Φ has to be determined via MBB, since the distribution of η̂I

is unknown. To this end, as depicted in Algorithm 3, the historical return
sample (with the stacked covariance matrix η̂0) is bootstrapped 10, 000 times
and the same number of stacked covariance matrices ηs, s = 1, ..., 10, 000,
is computed (1: to 2:). Out of each ηs-vector those components are written
into ηI,s that correspond to Kmax randomly chosen assets (4:). Together with

Algorithm 3 Size of the ECS-Ellipsoid for Covariance Matrices.
1: Generate 10, 000 return samples s with the MBB-technique
2: Compute the stacked covariance matrices ηs, s = 1, ..., 10, 000
3: for s = 1 to 10, 000 do

4: Define ηs,I by only those components from ηs that correspond to Kmax randomly
chosen assets

5: Insert µs,I with the corresponding assets’ Θ̂
ECS

I and η̂0,I into an ellipsoid as in (7)

6: Obtain the joint deviation φs

7: end for

8: Determine the (1 − α)100 percent quantile f1−α(τ)

their corresponding Θ̂I these 10, 000 ηI,s as well as η̂I,0 are inserted into the
ellipsoid to compute 10, 000 joint deviations φs (5: to 6:). The (1 − α)100
percent quantile of the generated distribution function f(φ) is then used as
the ellipsoid’s size, i.e., Φ = f1−α(φ) (8:).12 The penalized covariance matrix
is given by:

Σ̂
ECS

I,W = Σ̂I,0 + vec−1

(

√

f1−α(φ)

ω′

I
Θ̂IωI

dg(Θ̂I)ωI

)

(9)

Unlike in equations (5) and (6), in equation (9) it cannot be assumed that
the weighted sum of the components in a covariance matrix’ row is positive.13

In order to ensure Σ̂
ECS

I,W to be a penalized covariance matrix, only the main

diagonal components of Θ̂I , i.e., the variances of the returns’ (co) variances,
are used. The interpretation of equation (9) is as follows: the greater a
(co)variance’s variance, the more the historically estimated (co)variance will

12 Empirical tests indicated that the quantity of bootstrap samples was sufficient to
ensure a small enough variation.

13In Ω̂
EC

I and Ω̂
ECS

I the variances can be assumed to be greater than the (absolute)
covariances, since in the empirical application daily stock returns were used.
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be penalized. Also, due to a positive dependence of the penalization on the
weights, the error-maximization is (partly) compensated. Both the penalized
return (6) and the covariance matrix (9) are applied for each of the Pop
individuals whenever their fitness is computed. The elitist IECS

∗ defines the
robustly optimized portfolio in the ECS-approach.

3 Computational results

For the empirical analysis, firstly, several parameter values in problem (2)
have to be set. Therefore, an investor is assumed whose utility function cor-
responds to λ = 0.6. She has an endowment of V = 1, 000, 000 Euro to be
invested into a maximum of Kmax = 7 stocks that are constituents of the
German index DAX100 on March 16th, 2006.14 Stocks can be purchased for
their previous closing price with costs cf = 10 Euro and cv = 0.005. The

parameters µ̂0 and Σ̂0 are based on 250 daily log-returns. The results are
transformed into monthly values, since the investor is assumed to rebalance
the portfolio once a month. The value α determines the most extreme pa-
rameter values that are still included in the uncertainty sets. The smaller
α is, the greater an uncertainty set will be, and thus the greater the worst-
case estimation errors will be. Hence, α can be interpreted as a parameter
that captures the investor’s tolerance for estimation errors. We assume the
investors utility function to correspond to α = 0.05.

Secondly, the HHA has to be parameterized. The minimum step size is
set to Umin = 0.0004 corresponding to 400 Euro. The maximum step size
is set to Umax = 0.3 to ensure the trial of enough asset combinations for
the case Kmax = 7. Through extensive empirical testing the following pa-
rameterizations have been found to result in a sufficiently reliable stochastic
outcome: Pop = 100, thresh = 30, iter = 15, and steps = 8.15 Hence
360,100 objective function values are computed.

Thirdly, to evaluate a portfolio’s performance with respect to its robust-
ness, a moving time window procedure is implemented. After the portfolio is
optimized and held for 21 subsequent out-of-sample trading days, the window
of 250 trading days is moved forward by 21 days. Then a new optimization
is run and the resulting portfolio is again held for 21 out-of-sample trading
days before the window is moved again and so forth.16 The sample spans

14Two firms were removed from the sample due to missing data.
159,000 portfolios were optimized testing a large spectrum of possible parameter settings

(results not reported, but available on request). The list of parameters also contains:
π = 15, ǫ = 10, pc = 0.7, and pr = 1 (see Appendix 1).

16Whenever a window is moved so that the samples’ observations are updated, new
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from March 17th, 2005 to January 21st, 2008, allowing for the construction
of 23 portfolios.17

Table 1: Out-of-sample performance
objective function value portfolio return portfolio risk

win MVO TK CS ECS MVO TK CS ECS MVO TK CS ECS
1 -3.04 -3.30 -3.14 -2.62 -0.25 -4.60 -0.75 -2.07 4.89 2.44 4.73 2.99
2 -4.05 -3.95 -4.29 -4.05 4.00 -3.09 2.67 -1.23 9.42 4.53 8.93 5.93
3 -14.48 -6.70 -12.51 -8.01 -14.28 -6.65 -11.49 -8.30 14.62 6.73 13.19 7.82
4 -3.39 -2.25 -2.71 -2.25 -2.76 -0.89 -1.11 -0.56 3.80 3.15 3.81 3.38
5 -1.19 -0.96 -1.19 -0.94 2.70 2.07 2.65 1.96 3.78 2.98 3.76 2.87
6 -1.79 -1.50 -1.74 -1.48 -2.15 -1.48 -1.98 -1.47 1.56 1.52 1.58 1.50
7 -0.63 -0.53 -0.61 -0.40 2.01 1.56 2.07 1.91 2.40 1.92 2.40 1.94
8 -0.64 -0.61 -0.64 -0.35 1.65 1.40 1.63 2.93 2.17 1.95 2.15 2.54
9 -0.60 -0.62 -0.23 -1.18 2.49 1.37 2.65 0.29 2.66 1.94 2.14 2.16

10 -2.20 -0.57 -2.23 -1.35 0.75 2.16 0.65 1.42 4.16 2.38 4.11 3.19
11 -1.25 -1.19 -1.24 -0.55 1.14 0.91 0.86 2.46 2.85 2.59 2.64 2.56
12 -4.08 -2.90 -3.70 -2.82 -3.66 -2.85 -3.43 -2.40 4.36 2.93 3.87 3.10
13 -0.54 -0.44 0.05 0.00 3.43 3.42 4.21 5.07 3.19 3.01 2.72 3.37
14 -2.83 -2.86 -3.43 -2.07 1.57 1.46 3.10 -1.91 5.76 5.73 7.78 2.18
15 -2.05 -1.73 -2.04 -2.07 -0.44 -0.18 -0.92 -0.82 3.12 2.76 2.79 2.90
16 -1.27 -1.20 -1.21 -0.75 2.72 0.17 2.48 2.06 3.93 2.11 3.68 2.62
17 -8.79 -6.24 -8.60 -6.84 -10.82 -9.69 -11.55 -8.76 7.44 3.95 6.64 5.56
18 -3.66 -1.54 -1.52 -2.93 0.01 1.67 2.64 0.27 6.10 3.69 4.30 5.07
19 1.12 1.09 0.93 0.89 6.52 5.51 5.91 6.06 2.47 1.86 2.39 2.55
20 -1.68 -2.86 -2.34 -2.71 4.97 -2.47 0.64 0.07 6.11 3.12 4.32 4.56
21 -8.72 -4.70 -7.43 -5.84 -10.74 -3.80 -9.41 -6.74 7.38 5.30 6.11 5.23
22 -4.85 -2.63 -4.45 -2.93 -5.65 -2.09 -4.84 -2.89 4.32 2.99 4.18 2.96
x̄ -3.21 -2.19 -2.92 -2.33 -0.76 -0.73 -0.61 -0.57 4.84 3.16 4.46 3.50

µ̄
ef
p - - - - -0.61 -0.44 -0.41 -0.40 - - - -
σx 3.42 1.88 3.05 2.17 5.26 3.41 4.73 3.70 2.87 1.32 2.64 1.51

Table 1 summarizes for all approaches the actual objective function value, portfolio return, and portfolio
risk, measured as the return volatility. In each column x̄ represents the mean and σx the standard
deviation. Since problem (2) is optimized for each time window win as if there would not already exist
a portfolio, the reduction of transaction costs due to holding similar portfolios in subsequent periods is

ignored. The return that approximately considers the reduced costs is given by µ̄
ef
p .

Table 1 shows the out-of-sample performance of the MVO and all ro-
bust approaches, in which the former serves as a benchmark. It can be seen
that the mean risks are lower and the mean returns are higher for all three
robust approaches compared to the MVO-approach. In addition, smaller
variations around these better mean values can be observed. Among the
robust approaches, on average TK- and ECS-portfolios exhibit the lowest
risks, whereas ECS- and CS-portfolios exhibit the highest returns. The fact
that also the highest return is on a very low absolute level is mainly caused
by using historical means as estimators and by the conservative choice of
the transaction costs.18 However, since our aim is to examine portfolios

threshold sequences, parameters, and distributions (when applicable) must be computed
for each approach.

17All used return series were shown to be stationary according to the ADF-test as well
as the KPSS-test.

18The construction of portfolios based on estimators with such a limited forecast quality
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regarding their robustness-properties, a low absolute level of returns that
all portfolios equally ”suffer” from might be of minor importance. The ro-
bust approaches’ advantages become most apparent when investigating ac-
tual bad-case-scenarios, e.g., periods 3, 17, and 21. While, e.g., in period
3 the TK-approach achieves a return that is twice as high and a risk that
is half as high as that of the MVO-approach, in actual good-case-scenarios,
e.g., period 19, the return is only a little smaller while the risk is still lower.
A similar tendency can be observed for all robust approaches.19

Table 2: MVO-approach
fluctuation of composition portfolio weights of stock No. forecast errors

win TraS ToR IdS RoF 7 30 34 48 95 eF eµ eσ

1 - - - - - - - - - -3.20 -7.86 0.09
2 37,477 0.31 5(7) 1.08 - - - - - -4.43 -4.86 4.15
3 32,739 0.37 5(7) 2.73 22.85 - - - - -14.22 -20.80 9.84
4 75,427 0.74 2(7) 19.91 57.20 - - - - -2.33 -6.40 -0.39
5 31,570 0.28 4(7) 2.27 50.43 - 5.18 8.26 - 0.02 -0.10 -0.09
6 13,724 0.14 6(7) 1.75 54.80 - 3.17 7.25 - -0.75 -5.62 -2.50
7 25,894 0.23 5(7) 4.13 46.98 9.79 7.10 10.67 - 0.47 -0.81 -1.32
8 19,794 0.26 4(7) 0.40 46.50 9.62 7.61 10.23 - 0.13 -1.47 -1.19
9 12,205 0.16 6(7) 2.97 47.59 16.53 10.11 7.39 - 0.20 -0.65 -0.77

10 11,896 0.13 5(7) 1.18 46.61 14.71 10.29 6.41 - -1.38 -2.12 0.89
11 14,631 0.26 4(7) 3.61 42.34 20.87 11.53 9.19 - -0.38 -1.73 -0.52
12 6,473 0.10 6(7) 1.87 43.00 16.20 12.06 10.56 - -3.04 -5.87 1.16
13 16,142 0.29 4(7) 6.31 56.41 11.42 5.63 - - 0.69 2.19 0.31
14 19,031 0.19 4(7) 1.41 56.60 8.69 - - - -1.73 0.28 3.07
15 21,259 0.43 4(7) 7.73 37.65 14.11 - - 10.32 -1.09 -2.68 0.03
16 22,217 0.62 3(7) 3.02 - - - - 13.60 -0.52 -0.80 0.34
17 16,868 0.42 4(7) 2.84 - - - - 18.08 -8.46 -16.23 3.28
18 30,358 0.66 3(7) 9.55 - - - - 36.63 -2.79 -4.87 1.40
19 28,048 0.45 3(7) 6.99 - - - - 32.72 1.99 2.90 -1.39
20 10,475 0.26 5(7) 4.81 - - - - 41.05 -0.91 0.16 1.63
21 6,169 0.39 5(7) 3.24 - - - - 38.36 -7.85 -16.15 2.31
22 16,121 0.39 4(7) 3.92 - - - - 32.46 -3.60 -9.53 -0.35
23 16,404 0.43 4(7) 3.64 - - - - 26.41 - - -

a)22.042 0.34 4.32 4.33 b)34.36 12.18 8.89 4.27 30.73 f)-2.42 -4.68 0.91
c)9.06 3.78 2.92 1.55 10.62 g)-3.54 -6.03 h)2.19

d)31 e)19.97 i)5.05 8.44 j)3.36

Table 2 summarizes the results of the MVO-approach. The values within the framed line a) show mean
values; lines b) and c) show the full range of fluctuation and the standard deviation (each in percentage
points) of the assets’ portfolio weights. All displayed stocks were held for at least six subsequent periods.
The number of stocks held for a minimum of two subsequent periods is given by value d), whereas e) is the
averaged ratio of the weight’s standard deviation resulting from the sequences d) and the corresponding
weight’s mean (in percent); lines f), g) and i) show mean forecast errors, mean negative (in h) positive)
forecast errors, and root mean negative (in j) positive) squared forecast errors.

To gain further meaningful insight, Table 2 exhibits the portfolio com-
positions as well as the forecast errors. There, TraS (traded stocks) shows
the traded volume measured in pieces of stocks and ToR (turnover ratio) is

apparently contributes only little to good out of sample properties. Instead, this procedure
solely contributes to a construction of portfolios that exhibit good in-sample risk-return
characteristics.

19This can also be gathered from Figure 1 in Appendix 2.
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the priced traded volume relative to the twofold capital endowment, both
in period win compared to win − 1; the number of identical stocks in these
subsequent periods is given by IdS (Kef

max is shown in parenthesis) and RoF
is their averaged range of fluctuation. It is obvious that the MVO-approach
exhibits an overall high fluctuation in the portfolio composition. On average
22,042 pieces of stocks are traded to rebalance the portfolio in each period.
It is, however, noticeable that four out of the seven stocks are simultaneously
held in periods win ∈ [7; 12], for which reason this might be considered as a
more stable period, as can be seen by all variables; e.g., the average turnover
ratio is only about half as high and TraS exhibits an average value of only
12,985 in that period.

The last three columns of Table 2 show the differences between actually
realized and predicted objective function values (multiplied by 100), portfolio
returns, and portfolio volatilities. An examination of the portfolio returns’
forecast errors shows that the actual (out-of-samples) performance is worse
than its expectation in 18 out of 22 periods. The return was on average over-
estimated by 4.68 percentage points, as is shown by the mean forecast error.
A mean overestimation of 6.03 percentage points (as shown by the mean
negative forecast error) as well as the root mean negative squared forecast
error of 8.44 provide more detail about the extent of the return overestima-
tion. The corresponding results for the portfolio risk are, as expected, better.
Nevertheless, the mean forecast error also points in the unfavorable direction,
i.e., the portfolio risk is on average underestimated by almost one percentage
point. Due to λ = 0.6 the objective function’s mean forecast error is between
that of the return and the risk. However, since both underestimating risk
and overestimating return increases the objective function’s forecast error,
on average no error compensation takes place. The average actual return
(risk) of -0.76 (4.84) percent is by the magnitude of the displayed errors
lower (higher) than its expected average value of 3.92 (3.93) percent.

The results of the TK-approach are shown in Table 3. Although the re-
turn predictions improved compared to the MVO-approach, there is still on
average, despite optimizing for the theoretical worst-case-scenario, an over-
estimation of 0.23 percentage points present. In contrast, the risk’s mean
forecast error of −0.48 percentage points shows that on average the risk is no
longer underestimated. The surprising observation that the expected risk of
the MVO-portfolios in some periods is greater than that of the TK-portfolios
(see Figure 1 in Appendix 2) can be explained as follows: compared to the
expected (worst-case) returns that are mostly close to zero, the expected
(co)variances are high. In addition, by weighting the risk heavier through
λ = 0.6, the objective function value is greatly determined by the portfolio
risk. Thus, an implicit movement towards the minimum-variance-portfolio
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(MVP) takes place. As can be seen in periods 14, 19, and 20, the portfo-
lio is only diversified among six stocks, which must be seen critically and is
originally caused by many negative returns in the worst-case-scenario. How-
ever, the aforementioned mechanism contributes to portfolio diversification
so that not solely stocks with positive returns are picked due to the implicit
risk-overweighing.20 Yet whenever the return’s norm is too large, this mech-
anism fails such as in periods 14, 19, and 20. The movement toward the

Table 3: TK-approach
fluctuation of composition portfolio weights of stock No. forecast errors

win TraS ToR IdS RoF 7 12 30 48 64 eF eµ eσ

1 - - - - - - - - - -0.94 -5.92 -1.40
2 17,684 0.35 4(7) 2.43 - - - - - -2.56 -4.24 0.72
3 21,942 0.46 4(7) 4.36 23.78 - - - - -6.12 -6.74 3.15
4 28,768 0.56 4(7) 14.58 54.86 - 10.30 4.21 - 0.53 -0.74 -1.33
5 14,296 0.17 6(7) 3.11 44.50 - 9.42 7.31 - 1.86 3.16 -1.19
6 6,832 0.11 7(7) 3.04 54.00 - 9.25 8.34 - 1.29 -1.02 -2.84
7 6,200 0.12 6(7) 2.65 49.92 - 10.12 13.37 - 2.29 1.97 -2.32
8 14,223 0.17 5(7) 1.43 51.63 - 12.42 13.44 8.32 2.00 1.52 -2.03
9 5,479 0.09 7(7) 2.47 49.25 - 17.88 10.34 11.41 1.12 1.77 -1.98

10 5,545 0.10 6(7) 1.86 49.47 - 16.49 10.31 6.42 0.98 2.55 -1.48
11 13,674 0.18 5(7) 1.66 48.58 - 18.79 8.34 5.08 1.74 1.52 -1.08
12 5,601 0.09 7(7) 2.69 54.10 - 12.43 10.21 4.21 -0.67 -1.72 -0.49
13 9,757 0.20 6(7) 4.28 67.41 3.24 9.35 - 2.03 2.20 4.74 -0.18
14 5,708 0.12 5(6) 2.54 74.75 2.16 6.08 - - 0.07 2.27 2.46
15 16,954 0.36 5(7) 6.92 51.22 11.40 5.16 - 5.28 -0.19 0.14 -0.57
16 5,359 0.10 5(7) 2.03 50.73 11.22 - - 5.31 1.07 0.86 -0.65
17 6,149 0.15 4(7) 1.11 52.90 10.32 - - 4.23 -5.55 -9.79 1.15
18 13,288 0.42 4(7) 4.46 43.66 16.31 - - 2.34 -0.81 2.78 0.42
19 4,208 0.16 5(6) 6.04 32.12 13.80 - - 7.61 2.88 6.13 -1.76
20 2,388 0.10 5(6) 3.17 41.03 11.54 - - 4.34 -0.70 -1.88 -0.40
21 5,484 0.16 5(7) 3.18 40.99 8.26 - - 4.31 -3.73 -2.34 1.93
22 9,248 0.34 6(7) 6.91 28.72 15.44 - - 8.13 -0.41 -0.02 -0.72
23 6,384 0.19 6(7) 3.43 31.79 15.61 - - - - - -

a)10.237 0.21 5.32 3.83 b)50.97 6.02 13.63 9.23 9.38 f)-0.16 -0.23 -0.48
c)11.69 2.05 4.16 2.75 2.43 g)-2.17 -3.44 h)1.64

d)20 e)28.72 i)3.02 4.56 j)1.90

Table 3 summarizes the results of the TK-approach for α = 0.05 with the usual key data (explained for
Table 2). The weights of those stocks are listed that were held for at least eight subsequent periods.

MVP also explains the differences in the portfolio compositions between the
MVO- and the TK-approach.21 Indicated by all variables, the TK-portfolios’
compositions are more stable; e.g., the turnover rate is about one third lower
and the traded stocks with an average of 10,237 are about half as many as
in the MVO-approach. With an average IdS of 5.32, on average one stock
less is exchanged per period. In three periods no stocks get exchanged in
the TK-portfolio. Stocks are generally held for longer periods, which is most
apparent for stock No.7 but it can be seen also by the amount of stocks that

20On average, four stocks in the portfolio exhibit negative expected returns.
21Setting λ = 0.8 only in the MVO-approach creates a portfolio composition that is

more similar to that of the TK-approach.
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are held for at least two periods (20 versus 31 in the MVO-approach).22

The CS-approach (see Table 4) exhibits only minor improvements of the
mean forecast error compared to the MVO-approach. On average the actual
portfolio returns are still 3.15 percentage points lower than predicted. But
considering a less conservative penalization of the portfolio returns, this is not
surprising. Even though the CS-approach does not penalize the covariance
matrix, the portfolio risk’s forecast error measures are slightly better than
the benchmark. Nevertheless, the necessity of an uncertainty set for the
covariance matrix is apparent, e.g., in period 14, where the CS-portfolio risk
exceeds that of the MVO-approach by more than two percentage points (see
Table 1). As can be seen by the stocks held, the corresponding periods,

Table 4: CS-approach
fluctuation of composition portfolio weights of stock No. forecast errors

win TraS ToR IdS RoF 7 30 34 48 95 eF eµ eσ

1 - - - - - - - - - -2.85 -7.00 0.08
2 39,609 0.44 4(7) 1.09 - - - - - -4.19 -4.12 4.24
3 35,850 0.46 5(7) 2.69 31.45 - - - - -11.88 -16.19 9.00
4 44,638 0.65 2(7) 10.35 49.01 - - 9.48 - -1.28 -3.22 -0.01
5 16,977 0.18 5(7) 2.00 47.73 - 5.08 10.35 - 0.40 0.91 -0.05
6 13,264 0.14 6(7) 1.76 52.71 - 3.32 9.40 - -0.30 -4.37 -2.41
7 24,786 0.21 5(7) 3.68 46.14 10.38 6.96 11.48 - 0.84 0.16 -1.30
8 20,949 0.26 4(7) 0.43 46.11 9.54 6.92 10.68 - 0.44 -0.67 -1.18
9 9,589 0.09 7(7) 2.70 47.54 15.68 8.81 7.77 - 0.93 0.61 -1.15

10 8,492 0.05 6(7) 0.75 47.05 14.42 8.94 7.34 - -1.07 -1.38 0.87
11 18,995 0.27 4(7) 3.19 41.64 18.51 10.23 9.31 - -0.06 -0.95 -0.54
12 8,183 0.10 6(7) 2.10 43.63 13.40 9.89 10.25 - -2.30 -4.49 0.85
13 13,606 0.24 5(7) 5.01 57.31 9.36 5.15 - - 1.54 3.97 0.08
14 11,134 0.15 6(7) 2.89 54.03 7.22 2.04 - - -2.18 2.43 5.25
15 21,312 0.34 5(7) 8.01 42.09 11.35 - - 7.72 -0.85 -2.17 -0.03
16 25,426 0.72 2(7) 4.70 - - - - 11.58 -0.14 -0.02 0.22
17 14,163 0.32 5(7) 2.42 - - - - 14.89 -7.88 -15.55 2.77
18 17,422 0.50 4(7) 7.77 - - - - 25.96 -0.20 0.55 0.69
19 9,016 0.15 6(7) 1.93 - - - - 27.29 2.17 3.73 -1.13
20 10,699 0.29 5(7) 1.63 - - - - 28.64 -1.18 -1.51 0.96
21 13,268 0.48 4(7) 3.98 - - - - 32.60 -6.14 -12.96 1.60
22 10,781 0.38 4(7) 1.92 - - - - 28.06 -2.86 -7.14 0.00
23 8,903 0.37 5(7) 2.96 - - - - 21.82 - - -

a)18.048 0.31 4.77 3.36 b) 25.85 11.29 8.19 5.50 24.88 f)-1.78 -3.15 0.86
c)6.20 3.37 2.65 1.61 8.16 g)-2.84 -5.45 h)2.05

d)28 e)18.97 i)4.26 7.52 j)3.28

Table 4 summarizes the results of the CS-approach for α = 0.05 with the usual key data (explained for
Table 2). The weights of those stocks are listed that were held for at least eight subsequent periods.

and their weights’ standard deviations, the portfolio is similar to that of the
MVO-approach, even if it is slightly more stable. The turnover ratio is about
ten percent, TraS about 20 percent, and the range of fluctuation about one
percentage point lower.

22It is to be noticed here, that these 20 stocks are held longer and that this relatively
small number is not the result of more stocks being held for only one period.
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Table 5 shows the ECS-portfolios, which, with a value of only -0.02, pro-
duced the lowest mean forecast error for the risk of all approaches. However,
this result of exhibiting on average almost no forecast error is put into per-
spective when also considering the other forecast error measures for the risk.
Also the portfolio return is predicted more accurately than that of both the
MVO-and the CS-portfolios.

Table 5: ECS-approach
fluctuation of composition portfolio weights of stock No. forecast errors

win TraS ToR IdS RoF 7 13 16 30 95 eF eµ eσ

1 - - - - - - 10.26 - - -0.94 -2.69 -0.22
2 33,056 0.62 2(7) 6.18 - - - - - -2.56 -3.26 2.09
3 31,413 0.57 3(7) 5.95 19.03 - 18.04 - - -6.12 -8.43 4.58
4 41,195 0.53 3(7) 8.10 32.74 8.93 18.77 13.91 - 0.53 0.78 -0.37
5 21,730 0.18 6(7) 2.34 29.46 10.44 17.86 9.05 - 1.86 3.63 -0.68
6 5,659 0.07 7(7) 2.07 31.24 12.52 14.55 9.49 - 1.29 -0.04 -2.18
7 8,701 0.14 6(7) 1.63 32.02 13.72 12.97 10.99 - 2.29 3.24 -1.66
8 31,635 0.31 4(7) 2.37 39.20 13.89 12.17 12.32 - 2.00 3.43 -1.06
9 26,295 0.24 5(7) 2.27 36.23 10.87 9.01 11.48 - 1.12 1.19 -1.07

10 2,434 0.04 7(7) 1.03 36.93 12.41 7.34 11.11 - 0.98 2.35 -0.07
11 7,181 0.13 6(7) 1.60 37.00 14.45 8.30 12.45 - 1.74 3.32 -0.69
12 27,550 0.34 4(7) 4.56 49.00 10.64 6.52 11.82 - -0.67 -2.13 -0.31
13 13,111 0.24 4(7) 4.20 56.60 8.43 - 8.41 6.18 2.20 5.47 -0.02
14 11,572 0.23 4(7) 1.32 53.46 8.87 0.07 9.07 7.23 0.07 -1.59 -1.17
15 14,743 0.38 4(7) 5.13 37.94 - - 9.68 9.25 -0.19 -0.92 -0.30
16 16,347 0.34 4(7) 4.08 28.20 0.12 - - 11.98 1.07 1.93 -0.50
17 11,175 0.32 5(7) 3.99 28.95 - - - 10.48 -5.55 -10.36 2.33
18 24,820 0.71 3(7) 19.21 5.51 - - - 32.55 -0.81 -0.66 0.90
19 17,822 0.37 4(7) 6.46 15.88 - - - 25.98 2.88 5.57 -1.09
20 2,538 0.09 7(7) 2.59 6.96 - - - 27.38 -0.70 -0.58 0.78
21 12,269 0.33 5(7) 4.70 16.93 - - - 24.28 -3.73 -7.64 1.12
22 27,910 0.51 4(7) 4.88 - - 0.17 - 15.13 -0.41 -2.14 -0.75
23 17,153 0.52 4(7) 2.13 0.24 0.10 - - 14.37 - - -

a)18.469 0.33 4.59 4.40 b) 51.09 6.02 12.25 5.50 26.37 f)-0.16 -0.43 -0.02
c)13.60 2.05 4.42 1.61 8.70 g)-2.17 -3.37 h)1.97

d)19 e)22.74 i)3.02 4.73 j)2.36

Table 5 summarizes the results of the ECS-approach for α = 0.05 with the usual key data (explained for
Table 2). The weights of those stocks are listed that were held for at least nine subsequent periods.

Even though most portfolio compositions’ key data seem to indicate only
minor improvements in the stability of the ECS-portfolios compared to MVO-
portfolios, this observation, with its impact on transaction costs, is primar-
ily caused by relatively many stocks held for only one period (not shown).
Only 19 stocks were held for a minimum of two subsequent periods which
is the most stable result of all approaches. Furthermore, similar to the TK-
approach, in three periods (6,10, and 20) no stocks get exchanged and holding
periods of the displayed stocks are relatively long. Except for period 22, stock
No. 7 is held in the same periods, but with less extreme weights and a lower
standard deviation as in the TK-approach. The importance of stock No. 13,
that did not appear in another approach, is presumably caused by its small
(co)variances’ variances, which is not (satisfactorily) considered in the other
approaches. Therefore stock No. 13 is penalized less heavily and is conse-
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quently more likely to be picked than stocks that exhibit smaller historical
(co)variances.23

To sum up, the robustification techniques lead to an improvement com-
pared to the MVO-approach. This improvement is possible due to a reduced
risk that is not necessarily accompanied by the corresponding lower returns.
Among the robust approaches the TK- and the ECS-approach clearly out-
perform the CS-approach.

4 Conclusion

In this work different robust optimization techniques are empirically tested
within a complex optimization problem that emulates a realistic investment
environment. The employed hybrid heuristic algorithm is well capable of
tackling the complexity of the resulting optimization problems. We find that
the explicit incorporation of the uncertainty about the true (but unknown)
parameters into the optimization process leads overall to superior results over
the MVO-approach. The portfolio compositions are shown to be more stable
and consequently lead to a reduction of the transaction costs. On average the
out-of-sample portfolio risk is lower and accompanied by smaller deviations,
but not necessarily lower returns. This is possible since robust portfolios
exhibit an improved performance in bad-case-scenarios without necessarily a
worse performance in good-case-scenarios.

Although for the used data sample the TK-approach performs slightly
better than the ECS-approach, due to the formers’ shortcomings of not con-
sidering expected returns’ correlations, a possibly singular ”covariance ma-
trix” of returns, and a reduced diversification, it is not considered as the
superior approach. The CS-approach that only uses an uncertainty set for
the expected returns seems to only adjust the MVO-portfolios weights rather
than it constructs a whole new composition. Therefore the CS-approach ex-
hibits the disadvantage of limited effectiveness. Furthermore, the employed
estimator for the expected returns’ covariance matrix needs to rely on dis-
tributional assumptions. If this covariance matrix is generated by the MBB-
technique rather than by linear transformation, on average around 8,000 out
of 9,604 components are larger. This indicates that the distributional as-
sumptions are not met with the consequence of a penalization that is too
small.

The ECS-approach seems to pool some desired characteristics: (i) it offers
uncertainty sets for both the expected return and the covariance matrix in

23This is not true to the same extend for stock No. 16, since it was also part of the
MVO-, the TK-, and the CS-portfolios for some short holding sequences (not shown).

19



an intuitive way. The greater the components deviations are, the greater the
uncertainty and with that the penalization will be. The penalization (ii) takes
correlations into account and (iii) does not rely on distributional assumptions.
The ECS-approach remains also applicable when different (expected return)
estimators are employed. This might become a major interest if portfolios
are based on, e.g., factor models as employed by Gilli and Roko (2008).

The application of different (expected return) estimators is a possible
direction for future research. Beside factor models, also popular techniques
from time series analysis seem to be promsising when incorporated in the
robust portfolio optimization setup. Obviously, future research should also
take further data sets into account to generalize the results found in this
work.

Appendix 1 - The HHA in more Detail

The pseudo code for the HHA is given in Algorithm 4. In generation g = 0,
the algorithm generates and evaluates a population of Pop random solutions
I0
p , p = 1, ..., Pop, that satisfy the constraints (2: to 3:). The solutions I0

p

are referred to as search agents or individuals and represent portfolios that
are not only component wise (stepwise) altered but are also subject to evolu-
tionary procedures. For each step size Ut and threshold value Tt respectively,
where t = 1, ..., thresh, a number of iter generations evolve. The step size
Ut, which linearly decreases from Umax to Umin by ∆U when t increases and
the algorithm matures (5:) (but is held constant for iter generations for fixed

Algorithm 4 Hybrid Heuristic Algorithm.
1: Initialize Pop, thresh, iter, Umin, Umax and ∆U = (Umax − Umin)/thresh
2: Generate a valid initial (g = 0) population of random solutions {I0

p}, p = 1, ..., Pop
3: Evaluate F (I0

p ) ∀ p and determine elitist I0
∗

4: for t = 1 to thresh do

5: Determine the step size Ut = Umax − ∆U · (t − 1)
6: for l = 1 to iter do

7: g = (t − 1) · iter + l
8: → Modification Phase (Algorithm 5)
9: → Evaluation Phase (Algorithm 6)

10: → Replacement Phase (Algorithm 7)
11: end for

12: end for

13: terminate algorithm and report current elitist I∗

t), can be interpreted as a fraction of the total capital endowment V that
is subject to trades between two evolutionary steps. More precisely, these
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trades, which are conducted within the Modification Phase, adjust the indi-
viduals in a component wise manner as it is known from TA. Each generation
g = (t−1)·iter+l, g = 0, ..., thresh·iter, undergoes two more phases, namely
a so-called Evaluation Phase and a so-called Replacement Phase, which rank
and recombine the individuals as it is known from evolutionary algorithms.

In the Modification Phase, shown in more detail in Algorithm 5, the agents
develop independently from each other over steps search steps. In each of
these steps, an amount of ∆ni,p pieces of a randomly picked asset i ∈ I

g
p,

amounting to the step size’s cash equivalent, is sold (3:). Of course, ∆ni,p =
g(·) is a (discrete) function of various parameters of the problem. If the
disposition leads to a drop of the asset’s weight below the lower bound, or if
it leads to a complete clearance of asset i ∈ I

g
p, two proceedings exist: (i) with

probability preplace asset i gets substituted by a random asset k /∈ I
g
p, or (ii)

with probability 1 − preplace asset i is kept with quantity ni,p = wi,p = 0 and
a random other portfolio constituent j ∈ I

g
p, j 6= i, is bought (4: to 6:). In

contrast, if the disposition does not violate the lower bound on the weights, i
is kept in the reduced (but still positive) quantity and, again, a random other
portfolio constituent j ∈ I

g
p, j 6= i, is bought (7: to 9:). Under consideration

of all constraints, the assets j and k respectively are bought from the cash
that was generated by selling asset i. Hence, an altered version of portfolio
Ig
p denoted by I ′g

p is generated. This new solution has to be evaluated (10:)
and compared to the current solution Ig

p . Whenever the objective function

Algorithm 5 Modification Phase (HHA).
1: Initialize pr {Tt},; import {Ig

p}, V, Ut

2: for s = 1 to steps (parallel ∀ p) do

3: Sell ∆ni,p = g(Ut, V, Pi,p...) pieces of a random assets i ∈ I

4: if ni,p = 0 ∧ wi,p < wl then

5: With preplace: buy random asset k /∈ I
g
p versus i ∈ I

g
p

6: With 1 − preplace: buy a random asset j ∈ I
g
p, j 6= i, i ∈ I

g
p ∧ ni,p = wi,p = 0

7: else

8: Buy random asset j ∈ I
g
p, j 6= i

9: end if

10: Evaluate F (I ′gp )
11: if F (I ′gp ) ≥ [F (Ig

p ) − Tt] then

12: Ig
p = I ′gp & update Ig

∗ if necessary
13: end if

14: end for

value (the fitness) is greater than that of the current solution Ig
p , or whenever

the impairment is not greater than the threshold value Tt, the solution I ′g
p

is accepted as the new current solution Ig
p (11: to 12:). This possibility

to accept impairments in the objective function value ultimately enables the
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agents to escape local extrema. Hence, the threshold value can be interpreted
as the tolerance towards impairments; its value decreases with an increasing
t to a final value of Tthresh = 0. If an accepted solution’s objective function
value is also smaller than that of the best found portfolio, the so-called elitist
Ig
∗ , is updated (12:).

After the individuals developed independently from each other, the Eval-

uation Phase, which is presented in Algorithm 6, applies. In that, the Pop
individuals get sorted in an ascending order according to their objective func-
tion values (2:). A selection of promising tendencies that will be reinforced as
well as the selection of unpromising tendencies that might be excluded, i.e.,
the evolutionary component of the HHA, relies on this order as follows. The
π < 0.5Pop best individuals, the so-called prodigies Ig

<x> ∈ {Ig
p}, x = 1, ..., π,

are defined to be ’idols’ for the remaining population (3:).24 This group of
idols, denoted by Πg, is enlarged by the current generation’s elitist Ig

∗ . Hence,
the set of idols is defined by Πg = {Ig

<x>, Ig
∗} (4:). Based on their ranks, the

prodigies’ portfolios are assigned linearly decreasing amplifying factors ag
<x>,

ranging from π + 1 down to 1. The elitist’s amplifying factor is chosen to
be ǫ (5:). Corresponding to Πg the π worst individuals, subsequently called
underdogs, are pooled in set Γg = {Ig

<Pop−(x−1)>} ⊂ {Ig
p} (6:).

Algorithm 6 Evaluation Phase (HHA).
1: Initialize π, ǫ; import {Ig

p}, Pop
2: Rank individuals according to their fitness
3: Define prodigies Ig

<x> ∈ {Ig
p}, x = 1, ..., π

4: Enlarge the set of idols by the elitist, i.e., Πg = {Ig
<x>, Ig

∗}
5: Assign the prodigies linearly decreasing amplifying factors ag

<x>, ranging from π + 1
down to 1; the elitist’s factor is ǫ

6: Define underdogs Ig

<Pop−(x−1)> ∈ {Ig
p}, merged in the set Γg

The last phase in the life of a population’s generation is the Replacement

Phase, shown in Algorithm 7, in which the set of idols, in cooperation with the
amplifying factors, is used to (possibly) replace the π underdogs Ig

<Pop−(x−1)>.
An underdog is replaced with probability pclone by an exact copy, i.e., by

a Clone, of a prodigy. Therefore, each prodigy within Πg gets assigned a
selection probability p(Ig

<x>), that increases with the prodigy’s fitness, i.e.,25

p(Ig
<x>) =

f
[

F (Ig
<x>)

]

ag
<x>

∑π

x=1 f
[

F (Ig
<x>)

]

ag
<x>

, ∀ x (10)

24The index < z > represents the zth-best position in this sorted order.
25In minimization problems the function f[·] transforms low objective function values

into high fitness values. It can be neglected in maximization problems.
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Algorithm 7 Replacement Phase (HHA).

1: Import {Ig
p}, Πg, Γg, π, {ag

<x>}, ǫ
2: if Replacement by Clone (with pclone) (parallel ∀ p ∈ Γg) then

3: Compute selection probabilities according to equation (10)
4: Randomly choose a prodigy Ig

picked ∈ Πg based on p(Ig
<x>)

5: Ig

<Pop−(x−1)> = Ig
picked

6: else

7: Compute averaged weights according to equation (11)
8: Randomly choose Kmax assets i ∈ I

g
Π based on w̄g

i and normalize
9: Make Ig

idol a valid solution and evaluate F (Ig
idol)

10: if F (Ig
idol) ≥ [F (Ig

<Pop+(x−1)>) − Tt] then

11: Ig

<Pop−(x−1)> = Ig
idol; update Ig

∗ if necessary

12: end if

13: end if

The resulting probability distribution is then used to randomly choose a
prodigy to replace the underdog (2: to 5:). Starting from a promising point
in the search space, during the Modification Phase, a Clone will ultimately
develop a different portfolio structure than its twin.

In contrast, an underdog is replaced by a so-called Averaged Idol (instead
of by a Clone) with probability 1−pclone (6:). An Averaged Idol is a solution
that is created based on the idol’s pool of successful asset combinations and
portfolio weights. The different indices of assets that are held by the group of
idols Πg are collected in a set I

g
Π. For each of these assets i ∈ I

g
Π an averaged

weight w̄g
i is computed as follows:

w̄g
i =

∑

n={x:x=1,...,π|i∈I
g
<x>}

wg
i,na

g
<n> + bǫwg

i,∗

∑

i∈I
g
Π

(

∑

n={x:x=1,...,π|i∈I
g
<x>}

wg
i,na

g
<n> + bǫwg

i,∗

) , ∀ i ∈ I
g
Π (11)

where

b =

{

1 if i ∈ I
g
∗

0 else

In equation (11) an averaged weight of asset i ∈ I
g
Π is computed, firstly, by

building the sum (over all idols holding this asset) of the products of this as-
sets’ weights and the idols’ amplifying factors. Secondly, this sum is build for
all assets i ∈ I

g
Π and summed up over all #I

g
Π assets to, thirdly, apply a nor-

malization (7:). The number of different assets held by the idols, #I
g
Π, varies

over the generations and will usually be larger than Kmax. Consequently, a
decision of which assets to include in the Averaged Idol must be taken. This
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selection is executed randomly with w̄g
i as the selection probabilities (8:).

Hence, those assets are more likely to be selected that appear in portfolios of
idols more often and/or with larger portfolio weights.26 The Averaged Idol is
made a valid solution and gets evaluated (9:). It will replace the correspond-
ing underdog, if its objective function value (the fitness) is greater than that
of the underdog, or if the impairment is not greater than the threshold value
Tt (10: to 12:). Hence, the acceptance rule from the Modification Phase is
applied again.27 The idea of Averaged Idols is to exploit not only the expe-
rience of two parents, like it is common in genetic algorithms, but those of a
whole group of successful predecessors as is defined with Πg.

After the Replacement Phase a new generation g = (t−1)·iter+l evolves,
whose individuals will again, firstly, independently develop in the Modifica-

tion Phase, before they, secondly, get ranked in the Evaluation Phase, before,
thirdly, another Replacement Phase follows and so forth. After having re-
duced the threshold and the step size to their minimum values (Tthresh = 0,
Uthresh = Umin) and after having computed Pop+Pop ·thresh ·iter ·steps ob-
jective function values in thresh · iter generations, the algorithm terminates
and reports the current elitist.

26In order to avoid multiple selections of assets into one Averaged Idol, an already
picked asset is excluded from the list of (remaining) options. The ”free probability” gets
distributed over the remaining choices according to their weights.

27The application of a TA in the Modification Phase as well as the additional application
of a TA-acceptance rule in the Replacement Phase are modifications of the algorithm of
Maringer and Kellerer (2003).
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Appendix 2 - Graphical Representation
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Figure 1: robust optimization approaches
All nine graphs in Figure 1 map the time window win on the x-coordinate, while the y-coordinate maps
the objective function value (left column of graphs), the portfolio return (middle column of graphs), and
the portfolio volatility deviation (right column of graphs). The series with markers show actually realized
(out-of-sample) values, while the non-marked series show the corresponding expected values. In all graphs
the dashed lines represent the MVO-approach.
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