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1. Introduction 

 

The goal of the portfolio manager is to invest in securities that offer returns superior to 

the returns on a benchmark at an acceptable risk. Given the large number of available 

securities, this selection process has to be designed in a systematic fashion, so that it 

allows to be implemented with the help of computers. 

 The state-of-the art methodology for portfolio selection is the use of mathematical 

optimization. Typically one would minimize a quadratic objective function interpreted as 

risk, subject to constraints representing the minimal required return and various policies 

affecting the portfolio construction. Examples of such policies are limitation on the 

maximum position the manager can take in a single security, restriction on short sales or 

the requirement to be fully invested. The solution gives the allocations to be invested in 

the various available securities. 

 The optimization program requires as input parameters, the coefficients of the 

objective and constraint function that express the risk and the expected return for every 

security. In the practice these parameters are not known and have to be estimated from 

observed market returns. The challenge arises from the fact that as market condition shift, 

the risk and expected return of the various securities change. As a result, the input 

parameters of the optimization program have to be re-estimated periodically and the 

portfolio composition has to be rebalanced. The estimation of the parameters can only 

based on observed market data that are still relevant for the period when the rebalanced 
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portfolio is going to be invested. Due to the constantly shifting market conditions, only a 

relatively short period of market history can be used for the estimation. 

 The portfolio problem depends on a large number of parameters that need to be 

estimated on the basis of relatively small samples. In such cases a few outliers can have a 

significant negative effect on the statistical estimates and ultimately on the performance 

of the optimized portfolio based on them. 

 The traditional statistical estimates are based on the least squares method, which 

has ideal theoretical properties for large samples and for normally distributed variables. 

As outlined above, the portfolio manager cannot rely on estimates based on large 

samples. Moreover it is empirically known that distributions of financial returns have 

fatter tails than the normal distribution resulting in more outliers. Least squares 

estimators are very sensitive to outliers, especially if the sample size is not large enough.  

 The objective of the present thesis is to investigate the use of more robust 

estimation procedures in conjunction with portfolio optimization. 

 To reduce the number of parameters that need to be estimated we consider the 

widely used single-index model originally proposed by Sharpe [1] We estimate the 

necessary parameters both by the traditional ordinary least squares regression method and 

by the recently developed robust regression by Huber [2], Yohai and Zamar[3]. We feed 

the output of the two estimation procedures into the portfolio optimization program and 

compare the performance of the resulting portfolios. 

 We perform our comparative analysis on a subset of small capitalization stocks 

from the Russell2000 index, which have sufficiently large daily trading volumes to 

qualify for inclusion in an institutional investment portfolio. We use the Russell 2000 
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index as the benchmark. The reason for our focus on small capitalization stocks is 

twofold. They offer higher returns in exchange for higher risk and, from the statistical 

point of view they give rise to a higher number of outliers than the more stable and 

predictable large companies. Also the mathematical-computational approach is more 

important for small stocks, for which very little fundamental research is available making 

traditional investment analysis more difficult. 

 We compare the performance of two optimized portfolios to an equal weighted 

passive portfolio and to the Russell 2000 index over the 16 business quarters between Jan 

1, 2000 and Dec 31, 2003. This interval covers both good and difficult, turbulent periods 

of US financial markets. The two optimized portfolios are rebalanced quarterly. Trading 

costs resulting from the rebalancing are subtracted from the portfolio values. The 

parameters needed for the optimizer are based on price data from preceding quarters. One 

of the portfolios is using the ordinary least squares regression estimates the other one is 

based on robust regression. 

 

2. Background 

 

2.1 The minimum risk, required return portfolio problem 

A Portfolio is a collection of n securities. The return on the portfolio Rp is a weighted 

sum of the returns on the individual securities: 

∑
=

=
n

i
iip RxR

1
       (1.1) 
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Where xi is the investment in the security i. The daily returns Ri on security i is a random 

variable. They are assume to be independent between different days and correlated 

among the various securities on the same day. The expected daily return ai of security i 

and the covariance σij between two securities are defined as: 

ii REa = ,     (1.2) 

and ))(( jjiiij aRaRE −−=σ    (1.3) 

Using this notation, the expected return of the portfolio ap and the variance of the daily 

returns of  the portfolio can be expressed as: 
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The variance of the portfolio returns is considered the portfolio risk. The objective of the 

minimum risk, required return portfolio problem is to find portfolio weights 

to  T
nxxxX ),,,( 21 L=

Minimize XX T Σ  

Subject to             (1.6) required
T aaX ≥

And possible to some more constraints on the weights  T
nxxxX ),,,( 21 L=

Typical addition constraints are: 
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Px
n

i
i =∑

=1
     (1.7) 

meaning that the entire value P must be invested, or  

nizPxi ,,1,0 L=≤≤     (1.8) 

which means that no short positions are allowed and that not more than the fraction 

 of the entire value can be invested in a single security. 10 ≤≤ z

Expressions (1.6-1.8) define a (linearly) constrained quadratic optimization problem. 

Efficient algorithms for the solution of this optimization problem exist, but they require 

that the input quantities a, Σ (and z, P) are known. 

 In reality security prices, and hence the security returns Ri are random variables 

whose realizations can be observed. The expected values ai and covariances σij are not 

known. They need to be estimated from a statistical sample of daily returns. The quality 

and hence the usefulness of the results of the portfolio optimization problem critically 

depend on the quality of the statistical estimates of these input parameters. 

In portfolio analysis one is faced with the challenge of two conflicting demands. 

Good quality statistical estimates require large sample size. A rule of thumb is that the 

number of observations must be at least as large as the number of the different elements 

of the covariance matrix. For a portfolio involving 100 securities this would mean 

observations from 5050 trading days, which is about 20 years. This is obviously not 

possible. Since market conditions change much more rapidly. Using outdated 

observations would result in estimates that are irrelevant to current or future market 

conditions 
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The next section outlines an approach to significantly reduce the number of 

parameters that need to be estimated. 

 

2.2 The single index model 

 

 The purpose of the single index model is to express the large number of 

covariances between the individual securities though a significantly smaller number of 

parameters. To make this possible we make the crucial assumption that the sole reason 

for the correlation between two securities is their dependence on a common market index. 

In other words that there are no direct connections between the movements of the 

securities, only the indirect connection through the market index. This can be formally 

expressed in the following form: 

0),( =ji eeE

imiii eRR ++= βα      (2.1) 

Here Rm is the return on the market index and ei is a zero mean random error term, 

Specific to security i. The key assumption is that the ei’s are independent of (or 

uncorrelated with) Rm and all other ej’s with i ≠ j. Formally, the assumptions can be 

written as: 

0=ieE      (2.2) 

0)]([ =− mmi RReE          (2.3) 

0)( =jieeE      (2.4) 

22var eiii Eee σ==             (2.5) 
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22)(var mmmm RRER σ=−=     (2.6) 

Using the regression model (2.1), elements of the variance-covariance matrix can be 

expressed in the form: 

2222
eimiiii σσβσσ +==    (2.7) 

2
mjiij σββσ =          (2.8) 

Under the additional assumptions of the single index model the n(n+1)/2 different 

elements of the variance-covariance matrix can be expressed by 2n+1 parameters βI σei
2 

σm
2. This is a significant reduction of the number of parameters with will need to be 

estimated from samples rij, rmj of observed security and market returns. Here, j = 1…J 

runs over the days which are providing the statistical sample of the historical returns. 

 

2.3 Ordinary least squares (OLS) regression method 
 

The traditional way to estimate the regression parameters αI, βI and σei is the least squares 

method. This chooses the parameters  , which minimize the sum of squared 

differences between the left and right hand sides of the regression equation(2.1) for the 

observed sample. 
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 Under a set of standard assumptions, usually referred as the Gauss-Morkov 

assumptions, the OLS regression estimates have the desirable properties of unbiasedness 
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and effectiveness. This means that they are the best possible estimates in the sense that 

their estimated error has mean zero and minimal variance.  

 Despite of these desirable theoretical properties, ordinary least squares are not 

ideally suited to estimated the parameters αi, βi and σei for the financial problem of the 

single index model. 

  One of the fundamental Gauss-Morkov assumptions underpinning the OLS 

method is the requirement that the error terms ei are normally distributed. This implies 

that the daily securities returns Ri, conditionally on the index returns Rm, would also be 

normally distributed. Empirical evidence does not support these assumptions. Outliers are 

much more frequent in equity return than what would follow from the fast declining tails 

of the normal distribution. It is, in fact, generally accepted that the distributions of 

security returns have “fat tails”. 

 The measure of frequent outliers destroys the desirable statistical properties of the 

OLS estimates. In practical terms this means that OLS estimates are overly sensitive to 

outliers. One or tow outsized daily return can have a disproportional strong influence on 

the alpha or beta estimates making a security to appear much more or much less desirable 

than it should be.  

 

2.4 The robust regression method 

 

To estimate the regression coefficients in the presence of fat-tailed distributions, new 

estimation methods need to be developed, that suppressed the outsized effects of the 

outliers. The key is either to systematically cut out the outliers or to use a penalty 
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function that is growing less rapidly for large error terms than the quadratic function 

does. 

Compare to OLS procedure, robust regression procedures try to devise estimators 

that are not strongly affected by small deviations from the model assumptions, also it has 

good efficiency at the assumed model (Huber 1981[2]). Robust regression procedures are 

also useful when automated regression analysis is required. It will automatically guard 

against influence of outlying cases in this situation. Numerous robust regression 

procedures have been developed, such as least median squares, M-estimate, Least 

trimmed squares. In our study, we have chosen Robust MM-estimate procedure for 

computing estimates of beta. In this section we descript the robust MM-estimate. 

MM-estimate method, introduced by Yohai [3], is a high breakdown and a high 

efficient estimate method. The general features of robust MM-estimator are: 

1.In data-oriented term, robust MM fit is minimally influenced by outliers. 

2.In probability-oriented term, the robust fit minimizes the maximum possible bias of the 

coefficient estimates. 

MM-estimator is two-step procedure. First the initial estimate is obtained by S-estimate 

procedure, and then it is refined by an M-estimate procedure. 

1) S-estimate is defined by minimize the dispersion of the residuals. Suppose we have k 

observations, the initial S-estimate is the value  that: 0β̂

))(,),(),((minˆ
21

0 ββββ
β krrrs L=         (4.1) 

with final scale estimator         (4.2) ))ˆ(,),ˆ(),ˆ(( 00
2

0
1 βββσ krrrs L=

∧

The dispersion is defined as solution of  
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ρ is loss function, it must satisfy the following conditions: 

1. ρ is symmetric and continuously differentiable, and ρ(0)=0 

2. There exist c >0, such that ρ is strictly increasing on [0,c] and constant on [c,∞) 

2) M-estimate, the objective of M-estimate is: 
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Where ri is residual, and ρ is symmetric loss function with a unique minimum at zero,  

The M-estimate is obtained by solve the equation:    
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Where ψ is derivate of ρ, and  is robust scale estimate for residual 
∧
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The result of robust M-estimate and S-estimate depend on the loss function ρ. In our 

study we use optimal loss function, introduce in Yohai and Zamar [4]. This is because it 

has better efficiency and bias control properties. The optional function is: 
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Where c is tuning constant and h1=-0.972, h2= 0.864, h3=-0.052, and h4= 0.002. Figure 

2.1 shows the optimal loss function: 
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Figure 2.1 Optimal loss function 

 

The MM-estimate method first computes initial S-estimate , then final M-estimate is 

to find local minimum that is nearest .  

0β̂

0β̂

For more details on numerical algorithms see Marazzi [4] 

 

2.5 Parameter estimate examples 

 

In these section, we provides two motivating examples of robust estimates, we 

also compare the result with OLS estimates.  

Table 1 displays the result estimations for two companies (LSCC, MEDX) by 

using Robust MM-estimate method and OLS method.  The samples for parameter 

estimations are quarterly stock data. 
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Table 1 

Company LSCC (1999 4th Quarter) MEDX (1999 2nd Quarter) 

Methods OLS Robust MM OLS Robust MM 

Alpha (intercept) 0.02118898 0.003543713 0.0098 -0.0110 

Beta (slop) -2.180122 2.847663 2.1269 -0.1648 

Standard Error  2.4460 0.6931 1.2843 0.8960 

Figure 2.2 displays the scatter plots of daily stock returns versus returns for Russell2000 

index for the two companies. The solid straight line is the robust fit and dash line is the 

OLS fit.  

 

Figure 2.2. OLS and Robust Estimates for Two firms 

 

From Table1, The parameter-based robust regression procedure are significantly different 

from those based on OLS regression procedure. From Figure 2.2, we can see there is one 

extreme outlying case in both plots. These extreme outlying cases are leverage points. 

They involve large residuals and have dramatic effect on the fitted least squares 

regression function. Since robust MM-estimate procedure dampens the influence of 
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outlying case, as compared to OLS estimation, in an effort to provide a better fit for the 

majority of cases, the outlying cases had less affect on robust MM-estimator. In LSCC 

case, the beta estimated by OLS is -2.180122. This indicates the stock return has negative 

relation with Russell2000 index return. From robust MM-estimate the beta is 2.847663, 

which implies the stock has about 2.85 times volatile as market and has 2.85 times 

expected market return. From Figure2.2, It appears that majority data agree with robust 

estimates. If we remove the outlying case from data, the beta estimated by OLS is 

2.838372, which is very close to robust MM-estimate. This example shows that only one 

outlying case can make significant change in value of OLS estimates and robust MM-

estimator provides more desirable estimation. Similar, in MEDX, OLS overestimated the 

value of alpha and beta due to presence of outliers.  

From Table1, our examples also show that outliers can substantially influence, not only 

the OLS estimates of the betas, but also influence the estimated alphas. Under the single 

index model, the covariance matrix ∑ is computed from betas and required return 

constraint is base on alphas. Since ∑ and alphas are inputs for optimizer, the quality of 

those estimations will substantially affect the result of optimization procedure, 

furthermore, it will affect the performance of optimized portfolio. In section 3, we will 

show how the quality of estimations affects the performance of portfolio. 

  

3. Portfolio optimization: 
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3.1 Dataset 

We download daily history data for all Russell 2000 index components from 

http://financial.yahoo.com, from 2000 stocks we selected 83 stocks. These stocks satisfy 

the following requirement: (a) the average trading volume of each stock is above one 

million shares per trading day.  This requirement means that investor will not suffer big 

bid-ask spreads transaction cost. (b) Each stock has more than a 5-year trading history. 

This provides us enough history data to compare the performance between different 

portfolios. Our portfolio includes these 83 stocks. 

3.2 Covariance matrix construction and constraints  

Under single index model, we can build covariance matrix for the portfolio by using 

betas, error variances, and market variance. In our study, we use robust-MM regression 

and OLS regression method to estimate these parameters, then use the results we build 

the covariance matrix. The covariance matrix and estimated alphas are the inputs for 

optimization procedure. 

To construct the optimized portfolio, the objective function, which has to be minimized, 

is: XX T Σ  

In our study, the constraints that must hold for minimizing the objective function are: 

1) All money should be fully invested in all stocks 

∑
=

=
n

i
i investmenttotalx

1
 or  ∑  1

1
=

=

n

i
iw

Where xi is the amount of money invested in security i, and wi=xi/P 

2) The required daily excess return of portfolio should be not less than 0.1%. 

∑
=

≥
n

i
iiw

1
%1.0α  
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3) No short allowed 

83...100 =≥≥ iforworx ii  

4) The maximum amount of money invested in one stock must less or equal to 5% 

total portfolio value.  

83...1%5%5 =≤×≤ iforworPx ii  

We use these constraints combined with covariance matrix as inputs for portfolio 

optimization procedure. 

 

3.3 Portfolio performance comparison 

We constructed four different portfolios for comparison, they are:  

• Portfolio1: Russell 2000 index portfolio 

• Portfolio2: Equal weighted portfolio, which invested the equal amount of money 

into 83 securities. 

• Portfolio3: The optimized portfolio based on OLS estimates.  

• Portfolio4: The optimized portfolio based on robust estimates. 

Among these four portfolios, the portfolio3 and portfolio4 have to be adjusted by 

quarterly based on quarterly parameter estimations. 

To compare the performance among these four portfolios, we divided our 

comparison to two steps. In the first step, for each stock we estimated the parameters 

based on the one-quarter data, and then we use optimization procedure to construct the 

optimized portfolio for this one-quarter data. There is no prediction procedure involved in 

this step. The portfolio3 and portfolio4 are constructed based on the realized OLS 

estimates and robust estimates respectively.  The reason behind this is that many 
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available prediction methods can be chosen, and such prediction procedures might have 

unexpected effects on the results. In second step, we predict the parameters based on 

history data, and then use them as optimizer inputs to construct the optimized portfolios. 

We describe the procedure and result for each step in following section.  

In the first step, we selected all stock daily return data from 1/2/2000 to 

12/31/2003. The data has been divided by quarterly, totally 16 quarters for each stock. 

For each quarter, we estimate alphas, betas, and error variances for all stocks by using 

Robust MM-estimate procedure and OLS procedure. Also the quarterly variance of 

Russell2000 index has been computed. We compute the covariance matrixes based on 

these result. Since there are 83 stocks in portfolio, the covariance matrix is matrix 

for each quarter. Now we have all inputs for portfolio optimization procedure. By using 

portfolio optimization procedure, the Portfolio3, and Portfolio4 are constructed. The 

optimized portfolio is only used for current quarter. Based on the output, the portfolio 

performance and risk will be easily computed. We repeat same procedure for all 16 

quarters. The initial investment for next quarter is base on the last day portfolio value of 

current quarter. Since we need adjust portfolio quarterly, the transaction costs, such as 

brokerage fee, bid-ask spreads, are considered in our study. We assume the transaction 

costs will be 1% of the total amount of money that involves in adjusting portfolio. This 

cost will be abstracted from portfolio at beginning of each quarter. The Figure 3.1 

displays the portfolio value during four-year period. 

8383×
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Figure 3.1 

Green Line: Portfolio1. Orange Line: Portfolio2. Blue Line: Portfolio3.  Purple Line: Portfolio4 

 

The Figure3.2 displays quarterly risk for four portfolios during the 4-year period 
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Figure 3.2 Portfolio Risk 

Green Line: Portfolio1. Orange Line: Portfolio2. Blue Line: Portfolio3.  Purple Line: Portfolio4 

 

Figure3.2 shows that equal weighted portfolio has highest risk over four-year time period. 

The risks for Portfolio1, Portfolio3, and Portfolio4, are very close. This implies we didn’t 

suffer higher risks in order to get higher returns. From Figure3.1 and Figure 3.2, during 

4-year period, the Portfolio4 has the best performance. At end of 2003, the total portfolio 

value of Portfolio1, Portfolio2, Portfolio3, and Portfolio4 were  $1103338.3, $1693959.2 

$ 6306223.9, and $9487728 respectively. 

At this point, we see that the robust MM-estimate provides more reliable 

estimates than OLS for history data. However, in the real world, there are more people 
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interested in estimator prediction. Next step of our study is to predict betas, alphas, and 

error variances base on history estimates.   

To construct a predicted covariance matrix, we need enough history betas, and 

error variances. For each stock we chose 32-week history data to predict the beta, alpha, 

error variance for next quarter. For example, if we want forecast beta for 1st quarter of 

2000, we choose daily return data from 5/21/1999 to 12/31/1999 (32weeks) as history 

data. We use moving window method to get sequence parameter estimations. Our 

window size is12 weeks long, each time robust MM-estimate and OLS procedure have 

been used to estimate betas and error variances from daily return data that inside the 

window, after that, we move window forward by one week, and estimate betas and error 

variances. We keep moving window until we reach the end of history data. Since each 

time only small portion of data has been changed, this then will help us to capture the 

trend of estimated parameters. By using moving window method on 32 weeks data, we 

will get 20 group estimated parameters.  

 

For each stock we predict 16 quarterly betas, alphas, and error variances by using history 

data; also, we use same method to predict the market variance. Based on all these 

predictions, the covariance matrix is constructed. We use portfolio optimization 

procedure to construct optimized portfolio. As we did in the first step, we compute 

portfolio values, portfolio risks for each portfolio during 4-year period. Figure 3.3 

displays the portfolio values for four portfolios. 
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Figure 3.3 

Green Line: Portfolio1. Orange Line: Portfolio2. Blue Line: Portfolio3.  Purple Line: Portfolio4 

From Figure 3.3, we can see the result is consistent with result in Figure 3.1. At end of a 

4-year period, the total portfolio value of Portfolio4, Portfolio3, equal weighted portfolio 

and Russell2000 portfolio are  $ 3897492.5, $3000923.5, 1693959.2 and 1103338.3 

respectively. The transaction cost also been considered in portfolio calculation. Figure 3.4 

displays the risks associated with each portfolio. 
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Figure 3.4 Portfolio Risk 

Green Line: Portfolio1. Orange Line: Portfolio2. Blue Line: Portfolio3.  Purple Line: Portfolio4 

 

From Figure 3.4, the risk for Russell2000 and equal weighted portfolio are the same as 

they are in Figure3.2. The portfolio risk for the robust portfolio and OLS portfolio are 

higher than they are in Figure3.2, but they are still close to each other and close to market 

risk level. Also, The biggest difference between Figure3.2 and Figure3.4 is in 3rd quarter 

of 2001. This is because September 11th tragedy happened in that Quarter. In Figure 3.2, 

the optimized portfolios were based on realized parameters, so the optimized portfolios 

only included the stocks that are not sensitive to September 11th event. In Figure 3.4, the 

optimized portfolios were based on predicted parameters. Since it is impossible to predict 
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September 11th event, so the optimized portfolio included some stock that are sensitive to 

the tragedy.  This is the reason why in that quarter the risks of two optimized portfolio 

were significantly increased. 

 Based on portfolio performance analysis, the optimized portfolio based on robust 

regression estimates is the most efficient portfolio among four portfolios. Since the 

performance of optimized portfolios directly reflect the quality of the estimated 

parameters, which are the inputs of optimization program, so our study conclude that for 

small capitalization firms, the robust regression procedure is the preferred procedure for 

alpha, beta, error variance estimations.  

 

4. Summary  

The robust regression technology is relatively new statistical technology. The research 

and implementation of the robust regression in financial industry also are very new 

topics. The goal of our study is to investigate the use of robust estimation procedures in 

conjunction with portfolio optimization. The efficient optimization algorithm exists and 

has been implemented in different software packages. The quality of the results depends 

on the quality of inputs of the optimization program. To provide reliable parameter 

estimations is the extremely important task for portfolio manager. Based on the consistent 

results from our portfolio performance analysis, we suggest that for small cap companies, 

the robust regression procedure provides more desirable parameter estimations than 

ordinary least squares regression procedure does. Our study also suggests that the stock 

selection process can be designed in a systematic fashion. 
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Appendix. 

 

The stock tickers for 83 stocks: 

AAI AAII ABGX ACAI ADIC ADPT AEOS AKS AMR ANDW ARRS ASYT 

ATVI AYE BEV BJ BORL BRKS CAL CBB CCK CCUR CDE CMGI 

CMOS CMS CNET CRAY CRUS CVTX CYMI CYTC ELNK ERES GNSS GNTA 

GT GTI GTW GW HL HLIT HLYW IGL KLIC LGND LPX LSCC 

MANU MEDX MENT MESA MGAM MTON MWY NITE NKTR NWAC OSIP PMTC 

PRTL PSUN PWAV RCNC REMC RFMD RGEN SAPE SCHN SCON SFE SGI 

SMTC SRP SSTI SWKS TQNT TTWO VRSO VTSS WWCA YELL ZRAN  
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