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Abstract

We study a currency investment strategy, where we maximize the re-
turn on a portfolio of foreign currencies relative to any appreciation of
the corresponding foreign exchange rates. Given the uncertainty in the
estimation of the future currency values, we employ robust optimization
techniques to maximize the return on the portfolio for the worst-case for-
eign exchange rate scenario. Currency portfolios differ from stock only
portfolios in that a triangular relationship exists among foreign exchange
rates to avoid arbitrage. Although the inclusion of such a constraint in the
model would lead to a nonconvex problem, we show that by choosing ap-
propriate uncertainty sets for the exchange and the cross exchange rates,
we obtain a convex model that can be solved efficiently. Alongside robust
optimization, an additional guarantee is explored by investing in currency
options to cover the eventuality that foreign exchange rates materialize
outside the specified uncertainty sets. We present numerical results that
show the relationship between the size of the uncertainty sets and the dis-
tribution of the investment among currencies and options, and the overall
performance of the model in a series of backtesting experiments.

Key words: robust optimization, portfolio optimization, currency hedg-
ing, second-order cone programming

1 Introduction

Since Markowitz’s seminal work on portfolio optimization and the benefits of di-
versification [23], academic research in portfolio optimization has received great
attention and developed to a mature area of operations research. In recent
years, researchers have begun to investigate international investment and port-
folios that comprise both national and international assets as a further way to
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increase diversification and reduce risk. It is expected that international assets
have a lower correlation with national assets than the latter amongst themselves.

Grubel [13] was the first to describe and quantify the gains from international
diversification. He concludes that international diversification of portfolios could
bring a new source of gains and at the same time have an important impact on
policy making, as international capital movements are a function not only of
interest rate differentials, but also depend on the growth rates of asset holdings
in both countries. A later study by Levy and Sarnat [17] concludes on the risk
reduction gains from international diversification, measured by the variance of
a portfolio. The authors suggest to invest in developing countries together with
developed ones: although the risk associated with developing countries may be
higher, their returns are also less correlated with the returns from developed
countries, and therefore allow to minimize the overall portfolio variance.

The first results on gains exclusively from foreign currency holdings were
reported by Levy [18]. His work aims at finding an alternative way to reduce
the foreign exchange risk by using a portfolio balancing approach, as following
the collapse of the Bretton Woods system in the early 70’s, exchange rates were
now able to float freely. He shows that in the period from January 1971 to
July 1973, US investors could have made significant gains by holding foreign
currencies only. In a mixed portfolio of currencies and stocks, though generally
stocks yielded a higher return than currencies, optimal portfolios would still have
a significant proportion of currencies as these had lower standard deviations
and lower correlation with stocks, therefore contributing to risk diversification.
Recently, in the period following the introduction of the EUR, the USD suffered
a constant depreciation against some of the major currencies (see Table 1),
which created similar opportunities for US investors to profit from investing in
these currencies.

Currencies Appr. Rate (%) Std. (%)

EUR 0.46 2.53
GBP 0.01 2.23
JPY 0.43 2.46
CHF 0.45 2.47
CAD 0.30 2.02
AUD 0.28 3.20

Table 1: Monthly average appreciation rate and standard deviation of major foreign
currencies against the USD from Jan-02 to Dec-08

However, international portfolios carry an additional risk related to unfa-
vorable movements of the foreign exchange rates. The issue of hedging the
currency risk, and consequently of determining the optimal hedge ratio and of
deciding on which financial instrument to use became more and more relevant.
Black [3] introduced in 1989 the concept of “universal hedging”, arguing that
investors should always hedge their foreign assets, equally for all countries, but
never 100%. His “universal hedging” formula has only three inputs based on
averages across countries of the following parameters: i) excess expected return
on the world market portfolio; ii) volatility of the world market portfolio; and
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iii) exchange rate volatility.
Eun and Resnick [8] argue that the studies from Grubel [13] and Levy and

Sarnat [17] overstated the actual gains from international diversification as they
do not account for parameter uncertainty that affects the estimation of returns.
They argue that the risk inherent to foreign exchange rates can eliminate or
reduce substantially the gains of an international portfolio due to their own
volatility and their positive correlation with the stock returns. Two methods
are proposed to reduce this risk: (i) diversification through the investment in
several currencies, and (ii) a hedging strategy that sells the expected foreign
currency returns at the forward rate. The effectiveness of this strategy depends
on how accurate the investor’s estimates are relative to the future returns. The
authors conclude that hedged portfolios dominated non-hedged ones. Similar
results have also been reported by other authors, see Glen and Jorion [12],
Larsen and Resnick [16], and Topaloglou et al. [31]. The latter implemented
a multi-stage stochastic programming model and jointly determined the asset
weights and the corresponding hedge ratios for the international currencies. A
survey of the topic may be found in Shawky et al. [25].

In all of the approaches mentioned, the hedging instrument was always the
forward rate, with little attention given to currency options. In 1983, Giddy
[11] studied the application of foreign exchange options, the relationship be-
tween forward rates and currency options, and their pricing methodology. He
concludes that options were a more adequate hedging instrument than forwards
when the future revenues were uncertain. However, he does not test his hy-
pothesis with real market data. In the same year, Garman and Kohlhagen [10]
developed a pricing model for currency options based on the Black & Scholes
[4] model for stock options. Steil [27] argues that the “Giddy rule” is based
on a false premise, as the underlying contingency — receiving or not receiving
a future revenue — is not the same as the one underlying the option, which
is the foreign exchange rate. He tests both hedging strategies using forwards
and options for three different expected utility maximization functions and con-
cluded on the poor performance of options compared to forward rates. Similar
conclusions were reached by Topaloglou et al. [29, 30], where the Conditional
Value-at-Risk is used as a risk measure.

In order to incorporate the uncertainty associated with the estimation of the
relevant parameters, we propose to combine robust optimization with currency
options to protect against a depreciation of the foreign currencies. We expand
on the work of Rustem and Howe [24], who present both a strategical and a
tactical model for robust currency hedging. Robust optimization differs from
other uncertainty reduction techniques by incorporating uncertainty directly in
the model, as returns are not assumed deterministic, but as random variables
which may be realized within a prespecified uncertainty set. Already in 1973,
Soyster [26] discussed the optimization over a collection of sets, but only in
1998 did the technique gain widespread attention with the simultaneous works
of Ben-Tal and Nemirovski [2] and El-Ghaoui [6]. We refer the reader to Ben-Tal
et al. [1] for a recent survey of robust optimization and its applications.

Although currencies are not commonly seen as investment asset, the added
risk of an international portfolio has been thoroughly studied in the literature.
The focus of these studies, however, has been on currencies from the perspec-
tive of an investor on assets, that is, an investor who manages a portfolio of
foreign assets and wishes to account for the currency risk and return. In con-
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trast, this paper focuses on portfolios of currencies and, in particular, on the
problem of hedging against a depreciation of the foreign exchange rates. The
main contributions of our work may be summarized as follows:

1. Application of robust optimization to the problem of allocating invest-
ments between several currencies with different patterns of risk and re-
turn.

2. Analysis of the impact of the triangular relationship between foreign ex-
change rates in the model, particularly of the convexity issues that arise.
Suggestion of solutions in order to overcome those same issues.

3. Description of a hedging strategy that minimizes the currency risk by in-
cluding currency options, and implementation of a model that combines
currency options with robust optimization. We take on a portfolio per-
spective and simultaneously consider all currencies. That way, we aim to
avoid over-conservativeness in the hedging strategy.

4. Presentation of numerical results that describe the relationship between
the size of the uncertainty set and the total investment in options. Presen-
tation of a series of backtesting experiments that assess the performance of
both strategies — robust optimization with and without currency options
— relative to the Markowitz risk minimization approach.

The rest of the paper is organized as follows. Section 2 presents the robust
portfolio optimization model, the distinguishing features of a currency portfolio,
and the approach followed to guarantee convexity of the model. In Section 3
we extend the model to include currency options and explain how the investor
is further insured against depreciations of the foreign currencies. We also show
how robust optimization can be used together with currency options as a global
hedging strategy. Section 4 presents numerical results that compare both models
with and without currency options. We conclude in Section 5.

2 Robust Portfolio Optimization

We consider a portfolio that comprises n different foreign currencies, taking
the USD as our base currency. The return on a currency is measured by the
ratio between the expected future spot exchange rate and the spot exchange
rate today. We denote by Ei and E0

i the expected future and the current spot
exchange rates, respectively. Both quantities are expressed in terms of the base
currency per unit of the foreign currency i. The expected return on a specific
currency i is then described by ei = Ei/E0

i . In the Markowitz framework [23] we
would want to maximize our expected portfolio return given some risk measure,
in this case the variance of the portfolio. The formulation of our problem would
be:

max
w∈Rn

e′w (1)

s. t. w′Σw ≤ σtarget

1′w = 1

w ≥ 0
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The variable w denotes the vector of currency weights in the portfolio, while
the parameter Σ represents the covariance matrix of the currency returns. Pa-
rameter σtarget denotes the maximum level of risk the investor is willing to take.
Throughout this article, variables or parameters in bold face denote vectors.
We denote by 1 a vector of all ones, whose dimension is clear from the context.

Although the Markowitz model stimulated a significant amount of research,
the mean-variance framework has also been subject to criticism due its lack of
robustness. Model (1) is deterministic: it assumes that the expected returns are
given, and it does not account for their random nature. Small changes in the
value of the parameters, however, may pull the solution far from the optimum
or even render it infeasible. Robust optimization assumes that there is a degree
of uncertainty in these estimates: future returns are not certain, but random,
and they may take any value within a predetermined uncertainty set. This
uncertainty set represents the investor’s expectations about the future currency
returns and can be constructed according to some probabilistic measures.

Because we would like our solution to be robust to changes in the param-
eter values, we will maximize our portfolio return in view of the worst-case
currency returns within the specified uncertainty set. We formulate the robust
counterpart of problem (1) as:

max
w∈Rn

min
e∈Θe

e′w (2)

s. t. 1′w = 1

w ≥ 0

Parameter e designates a random variable that represents the real currency
returns, and which we assume are within the uncertainty set Θ. This uncertainty
set can be described in several ways, of which the most widely used ones are
range intervals and ellipsoids. In our models, we define Θe as:

Θe = {e ≥ 0 : (e − ē)′Σ−1(e − ē) ≤ δ2}, (3)

which describes an ellipsoid that is centered at the expected returns ē and ro-
tated and scaled by the covariance matrix of the returns. Ellipsoidal uncertainty
sets were first described by Ben-Tal and Nemirovski [2]. They reflect the idea
of a joint confidence region (the differences between the returns and their esti-
mates are weighted by the covariance matrix), as opposed to an individual one
like in hyper-rectangular sets. Note that, we optimize our portfolio in view of
the worst possible outcome of the currency returns. As a result, we are bound to
obtain at least the return exhibited by the objective value as long as the returns
are realized within the uncertainty set. This is called the non-inferiority prop-
erty of robust optimization and provides a guarantee to the investor regarding
future returns. Although in principle, the covariance matrix is also subject to
uncertainty, its statistical estimation is much easier and hence more accurate
than the estimation of the returns. Furthermore, mean-variance problems are
much less sensitive to deviations from the estimate of the covariance matrix
than to estimates of the returns [9]. Therefore, we have not taken into account
the uncertainty caused by the estimation of the covariance matrix.
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However, foreign exchange rates have a particular feature that distinguishes
them from other investment assets such as stocks or bonds. If we define two
exchange rates relative to a base currency, for example, the USD versus the
EUR (USD/EUR) and the USD versus the GBP (USD/GBP), then we auto-
matically define an exchange rate between the EUR and the GBP as well. This
triangular relationship between exchange rates must be observed at all times,
since otherwise arbitrage opportunities would arise and the market mechanisms
would drive this relationship back to its equilibrium. Robust optimization, on
the other hand, takes into account all possible returns within the uncertainty
set. Hence, we need to add a new constraint to the model which enforces this
triangular relationship to be respected. With n currencies in the model, the
number of cross exchange rates is n(n − 1)/2. If we define as Xij the cross ex-
change rate between Ei and Ej , that is, Xij is the number of units of currency
i that equals one unit of currency j, then:

Ei ·
1

Ej
· Xij = 1 (4)

In analogy to our previous notation, X0
ij denotes the current spot cross

exchange rate, while xij is the return on the cross exchange rate. We may modify
this equation to express the future exchange rates in terms of the currency
returns and the spot exchange rates:

E0
i ei ·

1

E0
j ej

· X0
ijxij = 1

⇔ [E0
i · 1

E0
j

· X0
ij ] · [ei ·

1

ej
· xij ] = 1

⇔ ei ·
1

ej
· xij = 1

Including this constraint, however, will make the problem nonconvex. Note
that although we need to model and estimate the future returns of the cross
exchange rates, they do not have a direct impact on our objective function.
In fact, the only effect of the cross exchange rates is to constrain further the
uncertainty set originally defined for the exchange rates, that is, to render the
model less conservative. We express the uncertainty associated with the returns
of the cross exchange rates as intervals centered at the estimate, and subse-
quently make use of the triangular relationship to simplify the expression and
eliminate the cross exchange rate returns from the model. The choice of inter-
vals for the uncertainty sets of the cross exchange rates is merely for the sake
of exposition. We could have also chosen ellipsoidal uncertainty sets, as these
can be efficiently approximated by polyhedra. We are then able to reformulate
the triangulation constraint as a linear expression and maintain the convexity
of the model. We define Θx as the uncertainty set associated with the returns
of the cross exchange rates, where:

Θx = {x ≥ 0 : l ≤ x ≤ u} (5)

The returns on the cross exchange rates may be replaced by their corre-
sponding ratio and the nonlinear expression may be simplified to a linear one:
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lij ≤ xij ≤ uij , ∀i, j = 1, . . . , n, i ≤ j

⇔ lij ≤ ej

ei
≤ uij

⇔ lijei ≤ ej ≤ uijei
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(a) Size of the uncertainty sets depending on
the parameter δ
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(b) Restriction of the ellipsoidal uncertainty set
due to the triangulation requirement

Figure 1: Uncertainty sets. Both figures were constructed with the Ellipsoidal Toolbox
developed by Kurzhanskiy [15].

This simplification leads to the transformation of n(n − 1)/2 nonconvex
inequalities into n(n − 1) linear ones. For two currencies, Figure 1a represents
different uncertainty sets for different values of the parameter δ. Including the
triangulation constraint in the model restricts the size of the uncertainty set
as shown in Figure 1b. We define A as the coefficient matrix reflecting all
the triangular relationships between the foreign exchange rates. A consists of
n(n − 1) rows and n columns. We redefine our uncertainty set Θe to include
this new constraint:

Θe = {e ≥ 0 : (e− ē)
′
Σ−1(e− ē) ≤ δ2 ∧Ae ≥ 0} (6)

Robust optimization uses duality theory to reformulate the inner minimiza-
tion problem of model (2) as a maximization problem for a fixed vector w of
weights. The inner minimization problem determines the worst possible out-
come of the currency returns and may be formulated as:

min
e∈Rn

e′w (7)

s. t. ‖Σ−1/2(e− ē)‖ ≤ δ

Ae ≥ 0

e ≥ 0,

where the operator ‖·‖ denotes the Euclidean two-norm. Problem (7) is a
second-order cone program [5], and its dual may be written as, [5, 19]:
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max
k,y,v

ē′(w − A′k − y) − δv (8)

s. t. ‖Σ1/2(w − A′k − y)‖ ≤ v

k,y, v ≥ 0

In the case of second-order cone programs, strong duality holds, that is, as
long as both problems are feasible, the value of the objective function of the dual
problem is equal to the value of the objective function in the primal problem.
Our problem now becomes:

max
w

max
k,y,v

ē′(w − A′k − y) − δv (9)

s. t. ‖Σ1/2(w − A′k− y)‖ ≤ v

1′w = 1

w,k,y, v ≥ 0,

which simplifies to:

max
w,k,y

ē′(w − A′k − y) − δ‖Σ1/2(w − A′k − y)‖ (10)

s. t. 1′w = 1

w,k,y ≥ 0

Problems (2) and (10) are equivalent, but (10) constitutes a tractable formula-
tion that can be easily computed with a modern conic optimization software.

Note how this formulation is similar to the original Markowitz formulation
[23]. In problem (10), however, we penalize the expected returns objective via
the standard deviation of the portfolio returns instead of the variance. The
advantage of the robust approach is that the parameters determining the size
of the uncertainty sets may be chosen to reflect some probabilistic measures.
El-Ghaoui et al. [7] shows that:

max
w

{−w′e | (e− ē)′Σ−1(e − ē) ≤ δ2
ω}

is equivalent to finding the worst-case ω-Value-at-Risk over all exchange rate
return distributions whose first two moments coincide with ē and Σ, if δ is set
to

√

(1 − ω)/ω. However, an investor may wish to minimize the risk while at
the same time demanding a minimum expected return. In that case, we may
include a further constraint in the problem:

E[e] = w′ē ≥ etarget (11)

Maximizing in view of the worst possible outcome of the future returns en-
sures the investor with a guarantee that the portfolio value at maturity date will
always be at least as high as the objective value of (10). The investor is pro-
tected against any depreciation of the foreign exchange rates that materializes
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within the uncertainty set, and hence robust optimization provides guarantees
against the currency risk without the need to enter into any hedging agreement.
The main disadvantage of this approach is that it only protects the portfolio
value for fluctuations inside the uncertainty set. If the future spot exchange
rates fall outside this set, robust optimization does not provide any guarantees.
In the next section we present an additional strategy which includes investing in
currency options to hedge against the possibility of the foreign exchange rates
falling outside the uncertainty set.

3 Hedging and Robust Optimization

Although robust optimization insures the investor against exchange rate fluc-
tuations within the uncertainty set, the investor is left without any guarantees
if the exchange rates materialize outside the uncertainty set. Insurance against
the latter case can be obtained by using currency options, which allow to lock
in a priori chosen exchange rates.

Although the focus of our work is on the use of currency options, forwards
and currency futures are also popular hedging instruments. The latter, however,
are binding agreements and do not offer the investor the flexibility to move away
from it. They are therefore more appropriate for situations when the amount
to be paid or received in the future is known with certainty, see Giddy [11].

Options entitle the investor to a right, and not to an obligation, to buy (call)
or sell (put) a particular asset at a specified strike price at a certain point in
the future, see Hull [14]. Currency options are similar to other options, but
the strike price considered here is a foreign exchange rate. Buying a put option
on EUR versus USD with a strike price of $1.25 gives the right to transform
EUR into USD at the rate of $1.25 at the maturity date. Whether the investor
chooses to exercise the option will depend on the spot exchange rate at maturity.
We consider only European options, therefore options may only be exercised at
maturity.

We assume that for each currency the investor has a set of m available put
and call options with different premiums and strike prices. We denote by Ei

the future spot exchange rate and by Kil the strike price of the lth option on
the ith currency. We can compute the payoff Vil of the lth option on currency
i versus the USD as:

V call
il = max{0, Ei − Kil} (12)

V put
il = max{0, Kil − Ei} (13)

Assume now that a portfolio comprises of one unit of currency i and one put
option on currency i with a strike price Kil. At maturity date, the payoff of the
portfolio would be:

Vport = Ei + max{0, Kil − Ei}
= max{Ei, Kil} (14)

Hence, by including a put option corresponding to currency i in the portfolio,
we are able to lock the foreign exchange rate at Kil. The aim of including
currency options in the portfolio is therefore to guarantee a minimum return for
the extreme cases where the exchange rates materialize outside the uncertainty
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set. If the realized exchange rate is higher than the strike price, the option
will not be exercised and the investor may still benefit from the corresponding
appreciation. This flexibility is a differentiating characteristic of options relative
to other instruments such as forward contracts and futures: the latter two are
binding agreements that lock the investor into a predefined exchange rate.

The price of this increased flexibility is the premium of the option, which
must be paid upfront and which is incurred independently from the exercise
of the option. Currency options are priced by the Garman-Kohlhagen model
[10], which can be derived from the Black-Scholes model [4] by assuming that
currencies are equivalent to stocks with a known dividend yield, namely the risk
free rate prevailing at the foreign country.

In the subsequent analysis, we follow the notation in Lutgens [21] and the
approach in Zymler et al. [33]. We define as ed the vector of returns and as wd

the vector of weights of the options. If pil is the price of the lth put option on
currency i, then its return can be calculated as:

ed
il = max

{

0,
Kil − Ei

pil

}

(15)

The value of the future spot exchange rate may be rewritten as a function
of the return on the ith currency ei by taking into account the relationship
Ei = E0

i ei,

ed
il = f(ei) = max

{

0,
Kil − E0

i ei

pil

}

, (16)

which leads to a simplified expression, that we will be using in the following
formulations of our model:

ed
il = f(ei) = max{0, ail + bilei} with ail =

Kil

pil
and bil = −E0

i

pil
(17)

Similarly, if cil is the price of the lth call option on currency i, its return may
be expressed as:

ed
il = f(ei) = max{0, ail + bilei} with ail = −Kil

cil
and bil =

E0
i

cil
(18)

As in the previous section, our investor wishes to maximize the portfolio
return in view of the worst-case currency returns, while assuming that these
will materialize within the uncertainty set Θe as defined in (6).

max
w,wd∈Rn

min
e∈Θe

ed=f(e)

e′w + ed′

wd (19)

s. t. 1′(w + wd) = 1

w,wd ≥ 0

Note that the option returns are written as a function of the currency returns.
Following the same procedure as in the previous section, we will reformulate the
inner minimization problem as a maximization problem by using duality theory.
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The minimization problem is concerned with finding the worst-case currency
returns.

min
e,ed

e′w + ed′

wd (20)

s. t. ‖Σ−1/2(e− ē)‖ ≤ δ

Ae ≥ 0

ed ≥ a + be

e, ed ≥ 0

The dual of problem (20) may be formulated as:

max
k,y,u,v

ē′(w − A′k − y + b′u) − δv + a′u (21)

s. t. ‖Σ1/2(w − A′k − y + b′u)‖ ≤ v

u ≤ wd

k,y,u, v ≥ 0

Strong duality holds as problem (7) is a second-order cone program, which
means that as long as they are feasible, the primal and dual problem have the
same objective function values. Hence, we can replace the inner minimization
problem in problem (19):

max
w,wd,k,y,u

ē′(w − A′k − y + b′u)− δ‖Σ1/2(w − A′k − y + b′u)‖+ a′u (22)

s. t. 1′(w + wd) = 1

u ≤ wd

w,wd,k,y,u ≥ 0

By using robust optimization, the investor is protected against any depreci-
ation of the foreign exchange rates within the uncertainty set. Adding currency
options to the model provides a “cap” on the value of the future foreign ex-
change rates. In the event of the foreign exchange rates materializing outside
the uncertainty, robust optimization provides no guarantees. However, if the put
options held in the portfolio correspond to the same number of units of foreign
currency as the portfolio holdings (hedge ratio of 1), the investor is guaranteed
with a minimum return given by the strike price of the put options. If this is
not the case, however, the investor is left without any guarantees.

We would like to insure our portfolio further, even in a situation of a sharp
depreciation of the foreign exchange rates, that is, if they were to materialize
outside the uncertainty set. We reformulate our model in order to include an
additional constraint guaranteeing a minimum return, expressed as a percentage
of the worst-case portfolio return, for all the possible values of the currency
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returns such that e ≥ 0. We change the formulation of our problem in order to
include this new constraint:

max
w,wd,φ

φ (23a)

s. t. e′w + ed′

wd ≥ φ, ∀e ∈ Θe, e
d = f(e) (23b)

e′w + ed′

wd ≥ ρφ, ∀e ≥ 0, ed = f(e) (23c)

1′(w + wd) = 1 (23d)

w,wd ≥ 0 (23e)

We have already seen how to reformulate the inner minimization problem
corresponding to constraint (23b) as a maximization problem. We will follow
the same approach for constraint (23c).

min
e,ed

e′w + ed′

wd (24)

s. t. ed ≥ a + be

e, ed ≥ 0

The dual of this linear problem can be formulated as:

max
t

a′t (25)

s. t. w + b′t ≥ 0

t ≤ wd

t ≥ 0

As strong duality also holds for linear problems, we may replace the objective
function of problem (25) in our original problem (23a), already including the
reformulation of constraint (23b) as well:

max
w,wd,k,y,u,t

φ (26)

s. t. ē′(w − A′k − y + b′u) − δ‖Σ1/2(w − A′k− y + b′u)‖ + a′u ≥ φ

a′t ≥ ρφ

w + b′t ≥ 0

1′(w + wd) = 1

u ≤ wd

t ≤ wd

w,wd,k,y,u, t ≥ 0

Note that neither the currency returns nor the currency option returns enter
in the final formulation (26). This is a tractable problem which can be solved
efficiently by any second-order cone optimization software.
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As before, if the investor wishes to move away from the minimum risk solu-
tion, a constraint on the expected return may be added to the model:

E[e] = w′ē ≥ etarget.

We have chosen not to include the options return in this constraint as this
would cause a distortion on our solution. On the one hand, our goal when
including currency options is from a hedging strategy point of view, that is, we
want to protect the portfolio return from depreciations in the foreign exchange
rates and not to speculate on options. On the other hand, because options are
leveraged assets and we are optimizing in view of the worst possible outcome of
the currency returns, the optimal solution would be to invest the full budget on
“in-the-money” options and not on currencies. Note how the hedging strategy
presented has a portfolio point of view and it does not focus on any individual
currency. The investor does not limit the weights of the currency options to the
weights of the respective currency holdings. The guaranteed portfolio when the
foreign exchange rates materialize outside the uncertainty set is defined by the
investor and does not depend on the individual depreciation of any currency.

In the next section, we present numerical results for the models with and
without considering currency options and assess their performance.

4 Numerical Results

The theoretical framework presented in Sections 2 and 3 will now be used to com-
pute optimal currency portfolios based on real market data. We assume an US
investor who wishes to invest in six foreign currencies: EUR, GBP, JPY, CHF,
CAD and AUD. The models were implemented using the modelling language
YALMIP (Lofberg [20]) together with the second-order cone solver SDPT3 (Toh
[28], Tutuncu [32]). Both the expected returns on the foreign exchange rates
and the covariance matrix are constructed from 7 years of monthly data between
January 2002 and December 2008, see Table 2.

Annual Ret. (%) Std. (%) Correl.

EUR 5.64 8.75 1.00
GBP 0.18 7.74 0.77 1.00
JPY 5.32 8.51 0.42 0.16 1.00
CHF 5.52 8.55 0.91 0.69 0.62 1.00
CAD 3.61 7.00 0.56 0.51 0.01 0.41 1.00
AUD 3.43 11.09 0.69 0.65 0.04 0.53 0.78 1.00

Table 2: Distributional parameters of monthly currency returns against the USD
(Jan-02 to Dec-08)

We start by studying the composition of the portfolio and the distribution
of weights between currencies and options for different levels of risk, defined by
ω, and different levels of hedging, defined by ρ.

4.1 Portfolio Composition

In the following analysis, we will designate problem (10) as the robust problem
and problem (26) as the hedging problem. We start by comparing the robust
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model with the Markowitz minimum risk model. In our robust model, the size
of the uncertainty set defined by δω, with δ =

√

(1 − ω)/ω, can be interpreted
as a risk measure, namely, the worst-case VaR [7]. It is expected that as ω
increases, the risk associated with the portfolio increases as well. If we measure
the risk of the portfolio as its variance, we are able to conclude that for higher
values of ω there is an increased value of the variance of the portfolio. The
portfolio composition of problem (10) reflects this increase, as for higher levels
of ω the optimizer concentrates its investment on a single currency. This a
similar behavior to the Markowitz model, with the difference that in this case
the focus is not on the currency with the highest estimated return rate, but on
the one with the highest worst case return rate.

We would like to assess the impact of adding currency options to the port-
folio, and how the insurance provided by the options relates to the guarantees
provided by robust optimization. We consider 50 put options and 50 call options
available in the market, with strike prices ranging between 75% and 125% of the
current spot prices. In the experiments described below, we include a budget
constraint and we do not allow short-selling. Compared to the robust model,
there is a change in the weights allocation between the different currencies, in
favour of the currencies with the highest worst possible returns. In our first set
of experiments we have not considered a minimum expected return, and we have
studied how the worst-case return and the total investment in options changes
relative to the size of the uncertainty set defined by ω. For higher values of
ω (that is, smaller uncertainty sets), the optimal portfolio is comprised mainly
of currencies and not of options. As the uncertainty set increases in size, the
percentage allocated to put options reaches almost 20%, with the remaining
budget distributed among the currencies. Protection against the currency risk
in this situation is made through the acquisition of deep “in-the-money” op-
tions, while for small uncertainty sets this is done by currency diversification.
The worst-case return is constant at 1.0025 (annual rate of 3%) for ω ≤ 80%.
Investment in options is actively “capping” the maximum portfolio loss.

We now add an expected return constraint of an annual average return of 5%.
Because this constraint does not include options, a larger percentage must be
allocated to foreign currency holdings to meet this constraint. In this situation,
not only is the weight of the options in the portfolio considerably lower, but also
the options chosen to invest on are “at-the-money”. In contrast to the previous
case, the worst-case return degrades to values below 0, that is, the worst-case
implies a loss for the investor of about 3%.

Figure 2 shows the trade-off between the two different sets of guarantees
provided by robust optimization and by the currency options. For the same
level of desired hedging of the currency risk (expressed by parameter ρ) a higher
value of ω (i.e., a smaller uncertainty set) leads to an increase of the worst-case
returns. For smaller values of ω, the uncertainty set converges to the full support
of the currency returns, which leads to overly conservative portfolios. We may
then conclude that the worst-case return monotonically increases with ω. In
contrast, for the same size of the uncertainty set ω, a higher level of hedging
(given by ρ) leads to a decrease of the worst-case return. This is because options
are expensive assets, and a higher hedging demand may only be satisfied if at
the same time the worst-case is smaller. Therefore, the worst-case portfolio
return has an inverse relationship with ρ.

The results obtained from our experiments lead us to conclude that the
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Figure 2: Worst-case return for different values of ω and ρ

constraint on the minimum guaranteed return outside the uncertainty (23c)
is not a binding constraint. This conclusion, however, may be flawed due to
estimation problems of the option prices. We have used the Garman-Kohlhagen
model [10] to obtain the option prices. The model assumes that the implied
volatility is constant and neither depends on the strike price of the option nor
on its time to maturity. In reality, however, the volatility depends on the strike
price of the option and exhibits what is known as a “smile”, that is, it is higher
for “out-of-the-money” and “in-the-money” options, while it is lower for “at-
the-money” options, [14]. By considering the same volatility for all the 50 strike
prices tested, we underestimate the option prices, thus the model may choose
to either invest in “deep-in-the-money” options or to generally over-invest in
options, given their low prices. This would make the minimum guaranteed
return constraint (23c) redundant. Given the reasons described above, however,
we have chosen to keep this constraint still in the model when performing the
historical backtesting, which is described next.

4.2 Model Evaluation With Historical Market Prices

We want to assess the performance of our model under real market conditions
by computing the portfolio returns over a long period of time. To this end, we
consider the real currency returns in the period from January 2002 to March
2009 and conduct a backtest with a rolling horizon of twelve months. Every
month we compute the estimated average returns ē, based on the historical
returns from the previous twelve months, and calculate the optimal portfolio
weights. The covariance matrix Σ and the triangulation matrix A are assumed
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to remain the same throughout the time series. At the end of each month, the
portfolio return is computed based on the materialized returns, and the options
are exercised or left to expiry depending on the spot rate. This procedure is
repeated until March 2009 and the accumulated returns are calculated.

Given that currency options are traded mainly over-the-counter, there are
no records of historical prices, but only of three different volatilities that may be
used to construct the volatility smile and compute the option price. Contrary
to the assumptions of the Black & Scholes and the Garman-Kohlhagen models,
the volatility is not constant throughout the spectrum of the strike prices, but is
higher for “out-of-the-money” and for “in-the-money” options, while it is lower
for “at-the-money” options. Moreover, it has been also verified empirically that
options with the same exercise price but with different maturities exhibit differ-
ent implied volatilities, designated as the term structure [14]. The probability
distribution of the currency returns, consequently, is not lognormal, but has
heavier tails, making it more likely for extreme variations of the returns. The
volatility associated to a given strike price may be calculated from the volatility
smile, for which there is an approximate expression, Malz [22]:

σ(δ, T ) = σATM,T − 2rrT

(

δ − 1

2

)

+ 16strT

(

δ − 1

2

)2

(27)

where

δ = e−rdT Φ

[

ln(S/K) + (rd − rf + σ2/2)T

σ
√

T

]

(28)

Expression (28) corresponds to the delta of a call option and is used in the
Garman-Kohlhagen model. The quadratic approximation to the volatility smile
(27) includes three different volatilities: i) σ, corresponding to the implied
volatility of an at-the-money option (delta = 50); ii) risk reversal (rr), the dif-
ference in volatilities between a long out-of-the-money call option and a short
out-of-the-money put option (delta = 25); and iii) strangle (str), the average
of the volatility of two long out-of-the-money call and put options (delta = 25)
minus the volatility of the at-the-money option. The volatility obtained by this
expression can then be used in the Garman-Kohlhagen model to calculate the
option price. We considered an annual risk free rate of 3.32% for the US investor
(based on LIBOR annual rates for the same period).

We have run all of the three models — minimum risk, robust and hedging —
over the period considered, rebalancing the portfolio every month and measuring
the cumulative gains for different values of the parameters ω and ρ. While the
minimum risk model yields an average annual return of 2.8%, the robust model
consistently yields a higher return, from 5.7% (ω = 80%) to 3.9% (ω = 30%).
As the uncertainty set increases the average returns move closer to the values
exhibited by the minimum risk model.

Figure 3 depicts the accumulated wealth when optimizing the portfolio with
the three different models, taking ω = 80% and ρ = 50%. For this particular
parameter choice, the minimum risk model is dominated by both the robust
and the hedging model, while the hedging model clearly outperforms the robust
model, with average annual returns of 14.5% and 5.7% respectively. The hedging
model (26) outperforms the robust model (10) for smaller values of the param-
eter ρ. Without any restriction on the minimum return guarantees outside the
uncertainty set (23c), we may choose expensive, “deep-in-the-money” options,
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Figure 3: Accumulated wealth over the period from Jan02 to Mar09

although only a small number of units. These options will be exercised with high
probabillity and yield a high return per unit as well. In contrast, as we impose a
higher restriction on the minimum return, that, is, as ρ increases (23c), we also
choose options less expensive (i.e.,more “at-the-money”) to be able to buy the
necessary number of units to satisfy the constraint. These options will have a
50% chance of being exercised and therefore returns are potentially lower. Table
(3) illustrates this relationship. Note that the high returns yielded by some of
the models are mainly in the same period where most of the currencies suffered
severe losses, that is, from March 2006 onwards. Options may have played an
important role in this period in protecting the portfolio from depreciations of
the foreign exchange rates.

5 Conclusion

In this paper, we apply robust optimization techniques to a currency only port-
folio. We show that, due to the triangular relationship between foreign exchange
rates, a new non-arbitrage constraint must be added to the model, which seem-
ingly renders the model non-convex. Given that the cross exchange rates do not
have an impact on portfolio return, we may simplify the triangulation constraint
by eliminating the variables referring to the cross exchange rates and obtain a
set of linear constraints. We further extend the robust model to include cur-
rency options as a hedging instrument. We rely on put options to guarantee a
minimum value of the foreign exchange rates and therefore providing a “cap” to
the worst-case portfolio return. The resulting model provides the investor with
two different sets of complementary guarantees: i) robust optimization provides
a non-inferiority guarantee as long as the realized currency returns are within
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ω (%) ρ (%) Annual Ret. (%) ω (%) ρ (%) Annual Ret. (%)

50 0 11.4 70 0 15.2
10 17.1 10 19.3
20 24.6 20 21.4
30 17.1 30 29.9
40 11.9 40 22.9
50 8.5 50 12.8
60 4.9 60 12.5
70 3.2 70 3.9

60 0 15.5 80 0 15.1
10 11.4 10 14.9
20 22.8 20 25.3
30 30.5 30 22.2
40 13.0 40 13.8
50 11.7 50 14.5
60 5.7 60 8.4
70 5.3 70 2.7

Table 3: Average annual return rates for different values of the parameters ω and ρ

the uncertainty set; ii) put options limit the portfolio losses by “stopping” the
depreciation of the foreign exchange up to the value of the strike price.

The suggested approach to the hedging problem has the advantage of be-
ing more flexible than the standard hedging strategies, as it relies on options
and robust optimization and not on forwards or futures. The backtesting ex-
periment conducted with real market data seems to point towards the overall
better performance of the robust and of the hedging model when compared to
the Markowitz minimum risk model. Moreover, we observe that when the impo-
sition on the guaranteed portfolio return for the entire support of the currency
returns is not too restrictive, the hedging model outperforms the robust model.
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