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Abstract

Portfolio optimization problems involving Value-at-Risk (VaR) are often computationally
intractable and require complete information about the return distribution of the portfolio
constituents, which is rarely available in practice. These di�culties are further compounded
when the portfolio contains derivatives. We develop two tractable conservative approxi-
mations for the VaR of a derivative portfolio by evaluating the worst-case VaR over all
return distributions of the derivative underliers with given �rst- and second-order moments.
The derivative returns are modelled as convex piecewise linear or�by using a delta-gamma
approximation�as (possibly non-convex) quadratic functions of the returns of the deriva-
tive underliers. These models lead to new Worst-Case Polyhedral VaR (WCPVaR) and
Worst-Case Quadratic VaR (WCQVaR) approximations, respectively. WCPVaR is a suit-
able VaR approximation for portfolios containing long positions in European options expiring
at the end of the investment horizon, whereas WCQVaR is suitable for portfolios containing
long and/or short positions in European and/or exotic options expiring beyond the invest-
ment horizon. We prove that WCPVaR and WCQVaR optimization can be formulated as
tractable second-order cone and semide�nite programs, respectively, and reveal interesting
connections to robust portfolio optimization. Numerical experiments demonstrate the ben-
e�ts of incorporating non-linear relationships between the asset returns into a worst-case
VaR model.

Key words. Value-at-Risk, Derivatives, Robust Optimization, Second-Order Cone Pro-
gramming, Semide�nite Programming

1 Introduction

Investors face the challenging problem of how to distribute their current wealth over a set

of available assets with the goal to earn the highest possible future wealth. One of the �rst

mathematical models for this problem was formulated by Markowitz [17], who observed that a

prudent investor does not aim solely at maximizing the expected return of an investment, but
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also at minimizing its risk. In the Markowitz model, the risk of a portfolio is measured by the

variance of the portfolio return.

Although mean-variance optimization is appropriate when the asset returns are symmetri-

cally distributed, it is known to result in counter intuitive asset allocations when the portfolio

return is skewed. This shortcoming triggered extensive research on downside risk measures. Due

to its intuitive appeal and since its use is enforced by �nancial regulators, Value-at-Risk (VaR)

remains the most popular downside risk measure [14]. The VaR at level ε is de�ned as the

(1− ε)-quantile of the portfolio loss distribution.

Despite its popularity, VaR lacks some desirable theoretical properties. Firstly, VaR is

known to be a non-convex risk measure. As a result, VaR optimization problems usually are

computationally intractable. In fact, they belong to the class of chance-constrained stochastic

programs, which are notoriously di�cult to solve. Secondly, VaR fails to satisfy the subadditivity

property of coherent risk measures [3]. Thus, the VaR of a portfolio can exceed the weighted

sum of the VaRs of its constituents. In other words, VaR may penalize diversi�cation. Thirdly,

the computation of VaR requires precise knowledge of the joint probability distribution of the

asset returns, which is rarely available in practice.

A typical investor may know the �rst- and second-order moments of the asset returns but is

unlikely to have complete information about their distribution. Therefore, El Ghaoui et al. [11]

propose to maximize the VaR of a given portfolio over all asset return distributions consistent

with the known moments. The resulting Worst-Case VaR (WCVaR) represents a conservative

(that is, pessimistic) approximation for the true (unknown) portfolio VaR. In contrast to VaR,

WCVaR represents a convex function of the portfolio weights and can be optimized e�ciently by

solving a tractable second-order cone program. El Ghaoui et al. [11] also disclose an interesting

connection to robust optimization [5, 6, 22]: WCVaR coincides with the worst-case portfolio

loss when the asset returns are con�ned to an ellipsoidal uncertainty set determined through the

known means and covariances.

In this paper we study portfolios containing derivatives, the most prominent examples of

which are European call and put options. Sophisticated investors frequently enrich their port-

folios with derivative products, be it for hedging and risk management or speculative purposes.

In the presence of derivatives, WCVaR still constitutes a tractable conservative approximation
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for the true portfolio VaR. However, it tends to be over-pessimistic and thus may result in unde-

sirable portfolio allocations. The main reasons for the inadequacy of WCVaR are the following.

• The calculation of WCVaR requires the �rst- and second-order moments of the derivative

returns as an input. These moments are di�cult or (in the case of exotic options) almost

impossible to estimate due to scarcity of time series data.

• WCVaR disregards perfect dependencies between the derivative returns and the underlying

asset returns. These (typically non-linear) dependencies are known in practice as they can

be inferred from contractual speci�cations (payo� functions) or option pricing models. Note

that the covariance matrix of the asset returns, which is supplied to the WCVaR model, fails

to capture non-linear dependencies among the asset returns, and therefore WCVaR tends to

severely overestimate the true VaR of a portfolio containing derivatives.

Recall that WCVaR can be calculated as the optimal value of a robust optimization problem

with an ellipsoidal uncertainty set, which is highly symmetric. This symmetry hints at the

inadequacy of WCVaR from a geometrical viewpoint. An intuitively appealing uncertainty set

should be asymmetric to re�ect the skewness of the derivative returns. Recently, Natarajan et

al. [19] included asymmetric distributional information into the WCVaR optimization in order to

obtain a tighter approximation of VaR. However, their model requires forward- and backward-

deviation measures as an input, which are di�cult to estimate for derivatives. In contrast,

reliable information about the functional relationships between the returns of the derivatives

and their underlying assets is readily available.

In this paper we develop novel Worst-Case VaR models which explicitly account for perfect

non-linear dependencies between the asset returns. We �rst introduce the Worst-Case Poly-

hedral VaR (WCPVaR), which provides a tight conservative approximation for the VaR of a

portfolio containing European-style options expiring at the end of the investment horizon. In

this situation, the option returns constitute convex piecewise-linear functions of the underlying

asset returns. WCPVaR evaluates the worst-case VaR over all asset return distributions consis-

tent with the given �rst- and second-order moments of the option underliers and the piecewise

linear relation between the asset returns. Under a no short-sales restriction on the options, we

are able to formulate WCPVaR optimization as a convex second-order cone program, which can

be solved e�ciently [2]. We also establish the equivalence of the WCPVaR model to a robust
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optimization model described in [27].

Next, we introduce the Worst-Case Quadratic VaR (WCQVaR) which approximates the

VaR of a portfolio containing long and/or short positions in plain vanilla and/or exotic options

with arbitrary maturity dates. In contrast to WCPVaR, WCQVaR assumes that the derivative

returns are representable as (possibly non-convex) quadratic functions of the underlying asset

returns. This can always be enforced by invoking a delta-gamma approximation, that is, a

second-order Taylor approximation of the portfolio return. The delta-gamma approximation is

popular in many branches of �nance and is accurate for short investment periods. Moreover, it

has been used extensively for VaR estimation, see, e.g., the surveys by Jaschke [13] and Mina

and Ulmer [18]. However, to the best of our knowledge, the delta-gamma approximation has

never been used in a VaR optimization model. We de�ne WCQVaR as the worst-case VaR over

all asset return distributions consistent with the known �rst- and second-order moments of the

option underliers and the given quadratic relation between the asset returns. WCQVaR provides

a tight conservative approximation for the true portfolio VaR if the delta-gamma approximation

is accurate. We show that WCQVaR optimization can be formulated as a convex semide�nite

program, which can be solved e�ciently [26], and we establish a connection to a novel robust

optimization problem. The main contributions of this paper can be summarized as follows:

(1) We generalize the WCVaR model [11] to explicitly account for the non-linear relationships

between the derivative returns and the underlying asset returns. To this end, we develop

the WCPVaR and WCQVaR models as described above. We show that in the absence of

derivatives both models reduce to the WCVaR model. Moreover, we formulate WCPVaR

optimization as a second-order cone program and WCQVaR optimization as a semide�nite

program. Both models are polynomial time solvable.

(2) We show that both the WCPVaR and the WCQVaR models have equivalent reformulations

as robust optimization problems. We explicitly construct the associated uncertainty sets

which are, unlike conventional ellipsoidal uncertainty sets, asymmetrically oriented around

the mean values of the asset returns. This asymmetry is caused by the non-linear dependence

of the derivative returns on their underlying asset returns. Simple examples illustrate that

the new models may approximate the true portfolio VaR signi�cantly better than WCVaR

in the presence of derivatives.
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(3) The robust WCQVaR model is of relevance beyond the �nancial domain because it consti-

tutes a tractable approximation of a chance-constrained stochastic program that is a�ne in

the decision variables but (possibly non-convex) quadratic in the uncertainties. Although

tractable approximations for chance constrained programs with a�ne perturbations have

been researched extensively (see, e.g., [20]), the case of quadratic data dependence has re-

mained largely unexplored (with the exception of [4, �1.4]).

(4) We evaluate the WCQVaR model in the context of an index tracking application. We show

that when investment in options is allowed, the optimal portfolios exhibit vastly improved

out-of-sample performance compared to the optimal portfolios based on stocks only.

The remainder of the paper is organized as follows. In Section 2 we review the mathematical

de�nitions of VaR and WCVaR. Moreover, we recall the relationship between WCVaR opti-

mization and robust optimization. In Section 3 we highlight the shortcomings of WCVaR in

the presence of derivatives. In Section 4 we develop the WCPVaR model in which the option

returns are modelled as convex piecewise-linear functions of the underlying asset returns. We

prove that it can be reformulated as a second-order cone program and construct the uncertainty

set which generates the equivalent robust portfolio optimization model. In Section 5 we describe

the WCQVaR model, which approximates the portfolio return by a quadratic function of the

underlying asset returns. We show that it can be reformulated as a semide�nite program and

prove its equivalence to an augmented robust optimization problem whose uncertainty set is

embedded into the space of positive semide�nite matrices. Section 6 evaluates the out-of-sample

performance of the WCQVaR model in the context of an index tracking application. Conclusions

are drawn in Section 7.

Notation. We use lower-case bold face letters to denote vectors and upper-case bold face

letters to denote matrices. The space of symmetric matrices of dimension n is denoted by Sn.

For any two matrices X,Y ∈ Sn, we let 〈X,Y〉 = Tr(XY) be the trace scalar product, while the

relation X < Y (X � Y) implies that X−Y is positive semide�nite (positive de�nite). Random

variables are always represented by symbols with tildes, while their realizations are denoted by

the same symbols without tildes. Unless stated otherwise, equations involving random variables

are assumed to hold almost surely. In the case of distributional ambiguity, the equations hold

almost surely with respect to each distribution under consideration.
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2 Worst-Case Value-at-Risk Optimization

Consider a market consisting of m assets such as equities, bonds, and currencies. We denote the

present as time t = 0 and the end of the investment horizon as t = T . A portfolio is characterized

by a vector of asset weights w ∈ Rm, whose elements add up to 1. The component wi denotes

the percentage of total wealth which is invested in the ith asset at time t = 0. Furthermore,

r̃ denotes the Rm-valued random vector of relative assets returns over the investment horizon.

By de�nition, an investor will receive 1 + r̃i dollars at time T for every dollar invested in asset

i at time 0. The return of a given portfolio w over the investment period is thus given by the

random variable

r̃p = wT r̃. (1)

Loosely speaking, we aim at �nding an allocation vector w which entails a high portfolio return,

whilst keeping the associated risk at an acceptable level. Depending on how risk is de�ned, we

end up with di�erent portfolio optimization models.

Arguably one of the most popular measures of risk is the Value-at-Risk (VaR). The VaR at

level ε is de�ned as the (1 − ε)-percentile of the portfolio loss distribution, where ε is typically

chosen as 1% or 5%. Put di�erently, VaRε(w) is de�ned as the smallest real number γ with the

property that −wT r̃ exceeds γ with a probability not larger than ε, that is,

VaRε(w) = min
{
γ : P{γ ≤ −wT r̃} ≤ ε

}
, (2)

where P denotes the distribution of the asset returns r̃.

In this paper we investigate portfolio optimization problems of the type

minimize
w∈Rm

VaRε(w)

subject to w ∈ W,

(3)

where W ⊆ Rm denotes the set of admissible portfolios. The inclusion w ∈ W usually implies

the budget constraint wTe = 1 (where e denotes the vector of 1s). Optionally, the set W

may account for bounds on the allocation vector w and/or a constraint enforcing a minimum

expected portfolio return. In this paper we only require that W must be a convex polyhedron.
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By using (2), the VaR optimization model (3) can be reformulated as

minimize
w∈Rm,γ∈R

γ

subject to P{γ +wT r̃ ≥ 0} ≥ 1− ε

w ∈ W,

(4)

which constitutes a chance-constrained stochastic program. Optimization problems of this kind

are usually di�cult to solve since they tend to have non-convex or even disconnected feasible

sets. Furthermore, the evaluation of the chance constraint requires precise knowledge of the

probability distribution of the asset returns, which is rarely available in practice.

2.1 Two Analytical Approximations of Value-at-Risk

In order to overcome the computational di�culties and to account for the lack of knowledge about

the distribution of the asset returns, the objective function in (3) must usually be approximated.

Most existing approximation techniques fall into one of two main categories: non-parametric

approaches which approximate the asset return distribution by a discrete (sampled or empirical)

distribution and parametric approaches which approximate the asset return distribution by the

best �tting member of a parametric family of continuous distributions. We now give a brief

overview of two analytical VaR approximation schemes that are of particular relevance for our

purposes.

Both in the �nancial industry as well as in the academic literature, it is frequently assumed

that the asset returns r̃ are governed by a Gaussian distribution with given mean vector µr ∈ Rm

and covariance matrix Σr ∈ Sm. This assumption has the advantage that the VaR can be

calculated analytically as

VaRε(w) = −µTrw − Φ−1(ε)
√
wTΣrw, (5)

where Φ is the standard normal distribution function. This model is sometimes referred to as

Normal VaR (see, e.g., [19]). In practice, the distribution of the asset returns often fails to be

Gaussian. In these cases, (5) can still be used as an approximation. However, it may lead to

gross underestimation of the actual portfolio VaR when the true portfolio return distribution is
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leptokurtic or heavily skewed, as is the case for portfolios containing options.

To avoid unduly optimistic risk assessments, El Ghaoui et al. [11] suggest a conservative

(that is, pessimistic) approximation for VaR under the assumption that only the mean values

and covariance matrix of the asset returns are known. Let Pr be the set of all probability

distributions on Rm with mean value µr and covariance matrix Σr. We emphasize that Pr

contains also distributions which exhibit considerable skewness, so long as they match the given

mean vector and covariance matrix. TheWorst-Case Value-at-Risk for portfoliow is now de�ned

as

WCVaRε(w) = min
{
γ : sup

P∈Pr
P{γ ≤ −wT r̃} ≤ ε

}
. (6)

El Ghaoui et al. demonstrate that WCVaR has the closed form expression

WCVaRε(w) = −µTrw + κ(ε)
√
wTΣrw, (7)

where κ(ε) =
√

(1− ε)/ε. WCVaR represents a tight approximation for VaR in the sense that

there exists a worst-case distribution P∗ ∈ Pr such that VaR with respect to P∗ is equal to

WCVaR.

When using WCVaR instead of VaR as a risk measure, we end up with the portfolio opti-

mization problem

minimize
w∈Rm

− µTrw + κ(ε)
∥∥∥Σ1/2

r w
∥∥∥

2

subject to w ∈ W,

(8)

which represents a second-order cone program that is amenable to e�cient numerical solution

procedures.

2.2 Robust Optimization Perspective on Worst-Case VaR

Consider the following uncertain linear program.

minimize
w∈Rm,γ∈R

γ

subject to γ +wT r̃ ≥ 0

w ∈ W

(9)
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Since the asset return vector is uncertain, this model essentially represents a whole family of

optimization problems, one for each possible realization of r̃. Therefore, (9) fails to provide a

unique implementable investment decision. One way to disambiguate this model is to require

that the explicit inequality constraint in (9) is satis�ed with a given probability. By using this

approach, we recover the chance-constrained stochastic program (4). Robust optimization [5, 6]

pursues a di�erent approach to disambiguate the model. The idea is to select a decision which

is optimal with respect to the worst-case realization of r̃ within a prescribed uncertainty set U .

This set may cover only a subset of all possible realizations of r̃ and is chosen by the modeller.

The robust counterpart of problem (9) is then de�ned as

minimize
w∈Rm,γ∈R

γ

subject to γ +wTr ≥ 0 ∀r ∈ U

w ∈ W.

(10)

The shape of the uncertainty set U should re�ect the modeller's knowledge about the asset

return distribution, e.g., full or partial information about the support and certain moments of

the random vector r̃. Moreover, the size of U determines the degree to which the user wants

to safeguard feasibility of the corresponding explicit inequality constraint. The semi-in�nite

constraint in the robust counterpart (10) is therefore closely related to the chance constraint

in the stochastic program (4). For a large class of convex uncertainty sets, the semi-in�nite

constraint in the robust counterpart can be reformulated in terms of a small number of tractable

(i.e., linear, second-order conic, or semide�nite) constraints [5, 6].

An uncertainty set that enjoys wide popularity in the robust optimization literature is the

ellipsoidal set,

U = {r ∈ Rm : (r − µr)TΣ−1
r (r − µr) ≤ δ2},

which is de�ned in terms of the mean vector µr and covariance matrix Σr of the asset returns

as well as a size parameter δ. By conic duality it can be shown that the following equivalence

holds for any �xed (w, γ) ∈ W × R.

γ +wTr ≥ 0 ∀r ∈ U ⇐⇒ −µTrw + δ
∥∥∥Σ1/2

r w
∥∥∥

2
≤ γ (11)
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Problem (10) can therefore be reformulated as the following second-order cone program.

minimize
w∈Rm

− µTrw + δ
∥∥∥Σ1/2

r w
∥∥∥

2

subject to w ∈ W
(12)

By comparing (8) and (12), El Ghaoui et al. [11] noticed that optimizing WCVaR at level ε is

equivalent to solving the robust optimization problem (10) under an ellipsoidal uncertainty set

with size parameter δ = κ(ε), see also Natarajan et al. [19]. This uncertainty set will henceforth

be denoted by Uε.

In this paper we extend the WCVaR model (7) and the equivalent robust optimization

model (10) to situations in which there are non-linear relationships between the asset returns,

as is the case in the presence of derivatives.

3 Worst-Case VaR for Derivative Portfolios

From now on assume that our market consists of n ≤ m basic assets and m − n derivatives.

We partition the asset return vector as r̃ = (ξ̃, η̃), where the Rn-valued random vector ξ̃ and

Rm−n-valued random vector η̃ denote the basic asset returns and derivative returns, respectively.

To approximate the VaR of some portfolio w ∈ W containing derivatives, one can principally

still use the WCVaR model (7), which has the advantage of computational tractability and

accounts for the absence of distributional information beyond �rst- and second-order moments.

However, WCVaR is not a suitable approximation for VaR in the presence of derivatives due to

the following reasons.

The �rst- and second-order moments of the derivative returns, which must be supplied to the

WCVaR model, are di�cult to estimate reliably from historical data, see, e.g., [9]. Note that the

moments of the basic assets returns (i.e., stocks and bonds etc.) can usually be estimated more

accurately due to the availability of longer historical time series. However, even if the means and

covariances of the derivative returns were precisely known, WCVaR would still provide a poor

approximation of the actual portfolio VaR because it disregards known perfect dependencies

between the derivative returns and their underlying asset returns. In fact, the returns of the

derivatives are uniquely determined by the returns of the underlying assets, that is, there exists
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a (typically non-linear) measurable function f : Rn → Rm such that r̃ = f(ξ̃).1 Put di�erently,

the derivatives introduce no new uncertainties in the market; their returns are uncertain only

because the underlying asset returns are uncertain. The function f can usually be inferred

reliably from contractual speci�cations (payo� functions) or pricing models of the derivatives.

In summary, WCVaR provides a conservative approximation to the actual VaR. However, it

relies on �rst- and second-order moments of the derivative returns, which are di�cult to obtain in

practice, but disregards the perfect dependencies captured by the function f , which is typically

known.

When f is non-linear, WCVaR tends to severely overestimate the actual VaR since the co-

variance matrix Σr accounts only for linear dependencies. The robust optimization perspective

on WCVaR manifests this drawback geometrically. Recall that the ellipsoidal uncertainty set

Uε introduced in Section 2.2 is symmetrically oriented around the mean vector µr. If the un-

derlying assets of the derivatives have approximately symmetrically distributed returns, then

the derivative returns are heavily skewed. An ellipsoidal uncertainty set fails to capture this

asymmetry. This geometric argument supports our conjecture that WCVaR provides a poor

(over-pessimistic) VaR estimate when the portfolio contains derivatives.

In the remainder of the paper we assume to know the �rst- and second-order moments of

the basic asset returns as well as the function f , which captures the non-linear dependencies

between the basic asset and derivative returns. In contrast, we assume that the moments of the

derivative returns are unknown.

In the next sections we derive generic Worst-Case Value-at-Risk models that explicitly ac-

count for non-linear (piecewise linear or quadratic) relationships between the asset returns.

These new models provide tighter approximations for the actual VaR of portfolios containing

derivatives than the WCVaR model, which relies solely on moment information.

Below, we will always denote the mean vector and the covariance matrix of the basic asset

returns by µ and Σ, respectively. Without loss of generality we assume that Σ is strictly positive

de�nite.

1For ease of exposition, we assume that the returns of the derivative underliers are the only risk factors

determining the option returns.
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4 Worst-Case Polyhedral VaR Optimization

In this section we describe a Worst-Case VaR model that explicitly accounts for piecewise linear

relationships between option returns and their underlying asset returns. We show that this

model can be cast as a tractable second-order cone program and establish its equivalence to a

robust optimization model that admits an intuitive interpretation.

4.1 Piecewise Linear Portfolio Model

We now assume that the m − n derivatives in our market are European-style call and/or put

options derived from the basic assets. All these options are assumed to mature at the end of

the investment horizon, that is, at time T .

For ease of exposition, we partition the allocation vector as w = (wξ,wη), where wξ ∈ Rn

and wη ∈ Rm−n denote the percentage allocations in the basic assets and options, respectively.

In this section we forbid short-sales of options, that is, we assume that the inclusion w ∈ W

implies wη ≥ 0. Recall that the set W of admissible portfolios was assumed to be a convex

polyhedron.

We now derive an explicit representation for f by using the known payo� functions of the

basic assets as well as the European call and put options. Since the �rst n components of r̃

represent the basic asset returns ξ̃, we have fj(ξ̃) = ξ̃j for j = 1, . . . , n. Next, we investigate the

option returns r̃j for j = n + 1, . . . ,m. Let asset j be a call option with strike price kj on the

basic asset i, and denote the return and the initial price of the option by r̃j and cj , respectively.

If si denotes the initial price of asset i, then its end-of-period price amounts to si(1 + ξ̃i). We

can now explicitly express the return r̃j as a convex piecewise linear function of ξ̃i,

fj(ξ̃) =
1
cj

max
{

0, si(1 + ξ̃i)− kj
}
− 1

= max
{
−1, aj + bj ξ̃i − 1

}
, where aj =

si − kj
cj

and bj =
si
cj
. (13a)

Similarly, if asset j is a put option with price pj and strike price kj on the basic asset i, then its

return r̃j is representable as a di�erent convex piecewise linear function,

fj(ξ̃) = max
{
−1, aj + bj ξ̃i − 1

}
, where aj =

kj − si
pj

and bj = − si
pj
. (13b)
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Using the above notation, we can write the vector of asset returns r̃ compactly as

r̃ = f(ξ̃) =

 ξ̃

max
{
−e,a+ Bξ̃ − e

}
 , (14)

where a ∈ Rm−n, B ∈ R(m−n)×n are known constants determined through (13a) and (13b),

e ∈ Rm−n is the vector of 1s, and `max' denotes the component-wise maximization operator.

Thus, the return r̃p of some portfolio w ∈ W can be expressed as

r̃p = wT r̃ = (wξ)T ξ̃ + (wη)T η̃

= wT f(ξ̃) = (wξ)T ξ̃ + (wη)T max
{
−e,a+ Bξ̃ − e

}
. (15)

4.2 Worst-Case Polyhedral VaR Model

For any portfolio w ∈ W, we de�ne the Worst-Case Polyhedral VaR (WCPVaR) as

WCPVaRε(w) = min
{
γ : sup

P∈P
P
{
γ ≤ −wT f(ξ̃)

}
≤ ε
}

(16)

= min
{
γ : sup

P∈P
P
{
γ ≤ −(wξ)T ξ̃ − (wη)T max

{
−e,a+ Bξ̃ − e

}}
≤ ε
}
,

where P denotes the set of all probability distributions of the basic asset returns ξ̃ with a given

mean vector µ and covariance matrix Σ. WCPVaR provides a tight conservative approximation

for the VaR of a portfolio whose return constitutes a convex piecewise linear (i.e., polyhedral)

function of the basic asset returns.

In the remainder of this section we derive a manifestly tractable representation for WCPVaR.

As a �rst step to achieve this goal, we simplify the maximization problem

sup
P∈P

P
{
γ ≤ −(wξ)T ξ̃ − (wη)T max

{
−e,a+ Bξ̃ − e

}}
, (17)

which can be identi�ed as the subordinate optimization problem in (16).

For some �xed portfolio w ∈ W and γ ∈ R, we de�ne the set Sγ ⊆ Rn as

Sγ = {ξ ∈ Rn : γ + (wξ)T ξ + (wη)T max{−e,a+ Bξ − e} ≤ 0}.
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For any ξ ∈ Rn and nonnegative wη ∈ Rm−n we have

(wη)T max{−e,a+ Bξ − e} = min
g∈Rm−n

{
gTwη : g ≥ −e, g ≥ a+ Bξ − e

}
= max
y∈Rm−n

{
yT (a+ Bξ)− eTwη : 0 ≤ y ≤ wη

}
,

where the second equality follows from strong linear programming duality. Thus, the set Sγ can

be written as

Sγ =
{
ξ ∈ Rn : max

0≤y≤wη

{
γ + (wξ)T ξ + yT (a+ Bξ)− eTwη

}
≤ 0
}
. (18)

The optimal value of problem (17) can be obtained by solving the worst-case probability problem

πwc = sup
P∈P

P{ξ̃ ∈ Sγ}. (19)

The next lemma reviews a general result about worst-case probability problems and will play

a key role in many of the following derivations. The proof is due to Cala�ore et al. [8] but is

repeated in Appendix A.1 to keep this paper self-contained.

Lemma 4.1 Let S ⊆ Rn be any Borel measurable set (which is not necessarily convex), and

de�ne the worst-case probability πwc as

πwc = sup
P∈P

P{ξ̃ ∈ S}, (20)

where P is the set of all probability distributions of ξ̃ with mean vector µ and covariance matrix

Σ � 0. Then,

πwc = inf
M∈Sn+1

{
〈Ω,M〉 : M < 0,

[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ ∈ S
}
, (21)

where

Ω =

Σ + µµT µ

µT 1

 (22)

is the second-order moment matrix of ξ̃.
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Lemma 4.1 enables us to reformulate the worst-case probability problem (19) as

πwc = inf
M∈Sn+1

〈Ω,M〉

s. t.
[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ : max
0≤y≤wη

{γ + (wξ)T ξ + yT (a+ Bξ)− eTwη} ≤ 0

M < 0.
(23)

We now recall the non-linear Farkas Lemma, which is a fundamental theorem of alternatives

in convex analysis and will enable us to simplify the optimization problem (23), see, e.g., [21,

Theorem 2.1] and the references therein.

Lemma 4.2 (Farkas Lemma) Let f0, . . . , fp : Rn → R be convex functions, and assume that

there exists a strictly feasible point ξ̄ with fi(ξ̄) < 0, i = 1, . . . , p. Then, f0(ξ) ≥ 0 for all ξ with

fi(ξ̄) ≤ 0, i = 1, . . . , p, if and only if there exist constants τi ≥ 0 such that

f0(ξ) +
p∑
i=1

τifi(ξ) ≥ 0 ∀ξ ∈ Rn.

We will now argue that problem (23) can be reformulated as follows.

inf 〈Ω,M〉

s. t. M ∈ Sn+1, τ ∈ R, M < 0, τ ≥ 0[
ξT 1

]
M
[
ξT 1

]T − 1 + 2τ
(

max
0≤y≤wη

{γ + (wξ)T ξ + yT (a+ Bξ)− eTwη}
)
≥ 0 ∀ξ ∈ Rn

(24)

For ease of exposition, we �rst �rst de�ne

h = min
ξ∈Rn

max
0≤y≤wη

{γ + (wξ)T ξ + yT (a+ Bξ)− eTwη}.

The equivalence of (23) and (24) is proved case by case. Assume �rst that h < 0. Then, the

equivalence follows from the Farkas Lemma. Assume next that h > 0. Then, the semi-in�nite

constraint in (23) becomes redundant and, since Ω � 0, the optimal solution of (23) is given

by M = 0 with a corresponding optimal value of 0. The optimal value of problem (24) is

also equal to 0. Indeed, by choosing τ = 1/h, the semi-in�nite constraint in (24) is satis�ed

independently of M. Finally, assume that h = 0. In this degenerate case the equivalence follows
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from a standard continuity argument. Details are omitted for brevity of exposition.

It can be seen that since τ ≥ 0, the semi-in�nite constraint in (24) is equivalent to the

assertion that there exists some 0 ≤ y ≤ wη with

[
ξT 1

]
M
[
ξT 1

]T − 1 + 2τ
(
γ + (wξ)T ξ + yT (a+ Bξ)− eTwη

)
≥ 0 ∀ξ ∈ Rn.

This semi-in�nite constraint can be written as

ξ
1


T M +

 0 τ(wξ + BTy)

τ(wξ + BTy)T −1 + 2τ(γ + yTa− eTwη)



ξ

1

 ≥ 0 ∀ξ ∈ Rn

⇐⇒ M +

 0 τ(wξ + BTy)

τ(wξ + BTy)T −1 + 2τ(γ + yTa− eTwη)

 < 0.

Thus, the worst-case probability problem (23) can equivalently be formulated as

πwc = inf 〈Ω,M〉

s. t. M ∈ Sn+1, y ∈ Rm−n, τ ∈ R

M < 0, τ ≥ 0, 0 ≤ y ≤ wη

M +

 0 τ(wξ + BTy)

τ(wξ + BTy)T −1 + 2τ(γ + yTa− eTwη)

 < 0.

(25)

By using (25) we can express WCPVaR in (16) as the optimal value of the following mini-

mization problem.

WCPVaRε(w) = inf γ

s. t. M ∈ Sn+1, y ∈ Rm−n, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ ε, M < 0, τ ≥ 0, 0 ≤ y ≤ wη

M +

 0 τ(wξ + BTy)

τ(wξ + BTy)T −1 + 2τ(γ + yTa− eTwη)

 < 0

(26)

Problem (26) is non-convex due to the bilinear terms in the matrix inequality constraint. It can

easily be shown that 〈Ω,M〉 ≥ 1 for any feasible point with vanishing τ -component. However,
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since ε < 1, this is in con�ict with the constraint 〈Ω,M〉 ≤ ε. We thus conclude that no feasible

point can have a vanishing τ -component. This allows us to divide the matrix inequality in

problem (26) by τ . Subsequently we perform variable substitutions in which we replace 1/τ by

τ and M/τ by M. This yields the following reformulation of problem (26).

WCPVaRε(w) = inf γ

s. t. M ∈ Sn+1, y ∈ Rm−n, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ τε, M < 0, τ ≥ 0, 0 ≤ y ≤ wη

M +

 0 wξ + BTy

(wξ + BTy)T −τ + 2(γ + yTa− eTwη)

 < 0

(27)

Observe that (27) constitutes a semide�nite program (SDP) that can be used to e�ciently

compute the WCPVaR of a given portfolio w ∈ W. However, it would be desirable to obtain

an equivalent second-order cone program (SOCP) because SOCPs exhibit better scalability

properties than SDPs [2]. Theorem 4.1 shows that such a reformulation exists.

Theorem 4.1 Problem (27) can be reformulated as

WCPVaRε(w) = min
0≤g≤wη

−µT (wξ + BTg) + κ(ε)
∥∥∥Σ1/2(wξ + BTg)

∥∥∥
2
− aTg + eTwη, (28)

which constitutes a tractable SOCP.

Proof: The proof follows a similar reasoning as in [11, Theorem 1] and is therefore relegated to

Appendix A.2.

Remark 4.1 In the absence of derivatives, that is, when the market only contains basic assets,

then m = n and w = wξ. In this special case we obtain

WCPVaRε(w) = −µTw + κ(ε)
∥∥∥Σ1/2w

∥∥∥
2

= WCVaRε(w).

Thus, the WCPVaR model encapsulates the WCVaR model (7) as a special case.

The problem of minimizing the WCVaR of a portfolio containing European options can now
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be conservatively approximated by

minimize
w∈Rm

WCPVaRε(w)

subject to w ∈ W,

which is equivalent to the tractable SOCP

minimize γ

subject to wξ ∈ Rn, wη ∈ Rm−n, g ∈ Rm−n, γ ∈ R

− µT (wξ + BTg) + κ(ε)
∥∥∥Σ1/2(wξ + BTg)

∥∥∥
2
− aTg + eTwη ≤ γ

0 ≤ g ≤ wη, w = (w,wη), w ∈ W.

(29)

Recall that the set of admissible portfolios W precludes short positions in options, that is,

w ∈ W implies wη ≥ 0.

4.3 Robust Optimization Perspective on WCPVaR

In Section 2 we highlighted a known relationship between WCVaR optimization and robust

optimization. Moreover, in Section 3 we argued that the ellipsoidal uncertainty set related

to the WCVaR model is symmetric and as such fails to capture the asymmetric dependencies

between options and their underlying assets. In the next theorem we establish that the WCPVaR

minimization problem (29) can also be cast as a robust optimization problem of the type (10).

However, the uncertainty set which generates WCPVaR is no longer symmetric.

Theorem 4.2 The WCPVaR minimization problem (29) is equivalent to the robust optimization

problem

minimize
w∈Rm,γ∈R

γ

subject to −wTr ≤ γ ∀r ∈ Upε

w ∈ W,

(30)

where the uncertainty set Upε ⊆ Rm is de�ned as

Upε =
{
r ∈ Rm : ∃ξ ∈ Rn, (ξ − µ)TΣ−1(ξ − µ) ≤ κ(ε)2, r = f(ξ)

}
. (31)

18



Proof: The result is based on conic duality. We refer to [27, Theorem 3.1] for a complete

exposition of the proof.

Example 4.1 Consider a Black-Scholes economy consisting of stocks A and B, a European call

option on stock A, and a European put option on stock B. Furthermore, let w be an equally

weighted portfolio of these m = 4 assets, that is, set wi = 1/m for i = 1, . . . ,m.

We assume that the prices of stocks A and B are governed by a bivariate geometric Brownian

motion with drift coe�cients of 12% and 8%, and volatilities of 30% and 20% per annum,

respectively. The correlation between the instantaneous stock returns amounts to 20%. The

initial prices of the stocks are $100. The options mature in 21 days and have strike prices of

$100. We assume that the risk-free rate is 3% per annum and that there are 252 trading days

per year. By using the Black-Scholes formulas [7], we obtain call and put option prices of $3.58

and $2.18, respectively.

We want to compute the VaR at con�dence level ε for portfolio w and a 21-day time horizon.

To this end, we randomly generate L=5,000,000 end-of-period stock prices and corresponding

option payo�s. These are used to obtain L asset and portfolio return samples. Figure 1 (left)

displays the sampled portfolio loss distribution, which exhibits considerable skewness due to the

options. The Monte-Carlo VaR is obtained by computing the (1 − ε)-quantile of the sampled

portfolio loss distribution. We also compute the sample means and sample covariance matrix of

the asset returns, which are used for the calculation of WCVaR (7) and WCPVaR (28).

Figure 1 (right) displays the VaR estimates at di�erent levels of ε ∈ [0.01, 0.2]. We observe

that for all values of ε, the WCVaR and WCPVaR values exceed the Monte-Carlo VaR esti-

mate. This is not surprising since these models are distributionally robust and as such provide

a conservative estimate of VaR. Note that the Monte-Carlo VaR can only be calculated accu-

rately if many return samples are available (e.g., if the return distribution is precisely known).

However, WCVaR vastly overestimates WCPVaR. This e�ect is ampli�ed for lower values of ε,

where the accuracy of the VaR estimate matters most. Indeed, for ε = 1%, the WCVaR reports

an unrealistically high value of 497%, which is 7 times larger than the corresponding WCPVaR

value.
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Figure 1: Left: The portfolio loss distribution obtained via Monte-Carlo simulation. Note that negative values represent
gains. Right: The VaR estimates at di�erent con�dence levels obtained via Monte-Carlo sampling, WCVaR, and WCPVaR.

5 Worst-Case Quadratic VaR Optimization

The WCPVaR model su�ers from a number of weaknesses which may make it unattractive for

certain investors.

Firstly, in order to obtain a tractable problem reformulation we had to prohibit short-sales of

options. Although this is not restrictive for investors who merely want to enrich their portfolios

with options in order to obtain insurance bene�ts (see [27]), it severely constrains the complete

set of option strategies that larger institutions might want to include in their portfolios.

Furthermore, we can only calculate and optimize the risk of portfolios comprising options

that mature at the end of the investment horizon. As a result, investors cannot use the model,

for example, to optimize portfolios including longer term options that mature far beyond the

investment horizon.

Finally, the model is only suitable for portfolios containing plain vanilla European options

and can not be used when exotic options are included in the portfolio.

In this section we propose an alternative Worst-Case VaR model which mitigates the weak-

nesses of the WCPVaR model. It is important to note that WCPVaR does not make any

assumptions about the pricing model of the options. Only observable market prices and the

known payo� functions of the options are used to calculate the option returns. In contrast, the

new model proposed in this section requires the availability of a pricing model for the options.

Moreover, it approximates the portfolio return using a second-order Taylor expansion which is

only accurate for short investment horizons.
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5.1 Delta-Gamma Portfolio Model

As in Section 4, we assume that there are n ≤ m basic assets and m−n derivatives whose values

are uniquely determined by the values of the basic assets. However, in contrast to Section 4, we

do not only focus on European style options but also allow for exotic derivatives. Furthermore,

we no longer require that the options mature at the end of the investment horizon.

We let s̃(t) denote the n-dimensional vector of basic asset prices at time t ≥ 0 and assume

that the prices at time t = 0 are known (i.e., deterministic). Moreover, we assume that the value

of any (basic or non-basic) asset i = 1, . . . ,m is representable as vi(s̃(t), t), where vi : Rn×R→ R

is twice continuously di�erentiable.

For a su�ciently short horizon time T , a second-order Taylor expansion accurately approxi-

mates the asset values at the end of the investment horizon. For i = 1, . . . ,m we have

vi(s̃(T ), T )− vi(s(0), 0) ≈ θ̄iT + ∆̄T
i (s̃(T )− s(0)) +

1
2

(s̃(T )− s(0))T Γ̄i(s̃(T )− s(0)),

where

θ̄i = ∂tvi(s(0), 0) ∈ R, ∆̄i = ∇svi(s(0), 0) ∈ Rn, and Γ̄i = ∇2
svi(s(0), 0) ∈ Sn. (32)

The values computed in (32) are referred to as the `greeks' of the assets. We emphasize that the

computation of the greeks relies on the availability of a pricing model, that is, the value functions

vi must be known. Note that the values of the functions vi at (s(0), 0) can be observed in the

market. However, the values of vi in a neighborhood of (s(0), 0) are not observable. The

proposed second-order Taylor approximation is very popular in �nance and is often referred to

as the delta-gamma approximation, see [13].

By using the relative greeks

θi =
T

vi(s(0), 0)
θ̄i, ∆i =

1
vi(s(0), 0)

diag(s(0))∆̄i, Γi =
1

vi(s(0), 0)
diag(s(0))T Γ̄i diag(s(0)),

the delta-gamma approximation can be reformulated in terms of relative returns

r̃i ≈ fi(ξ̃) = θi + ∆T
i ξ̃ +

1
2
ξ̃TΓiξ̃ ∀i = 1, . . . ,m. (33)
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Here we use the (possibly non-convex) quadratic functions fi to map the basic asset returns ξ̃

to the asset returns r̃.

The return of a portfolio w ∈ W can therefore be approximated by

wT r̃ ≈ θ(w) + ∆(w)T ξ̃ +
1
2
ξ̃TΓ(w)ξ̃, (34)

where we use the auxiliary functions

θ(w) =
m∑
i=1

wiθi, ∆(w) =
m∑
i=1

wi∆i, and Γ(w) =
m∑
i=1

wiΓi,

which are all linear in w. We emphasize that, in contrast to Section 4, we now allow for short-

sales of derivatives.

In the remainder of this section we derive a Worst-Case VaR optimization model based on

the quadratic approximation (34).

5.2 Worst-Case Quadratic VaR Model

We de�ne the Worst-Case Quadratic VaR (WCQVaR) of a �xed portfolio w ∈ W in terms of

the Taylor expansion (34).

WCQVaRε(w) = min
{
γ : sup

P∈P
P
{
γ ≤ −wT f(ξ̃)

}
≤ ε
}

= min
{
γ : sup

P∈P
P
{
γ ≤ −θ(w)−∆(w)T ξ̃ − 1

2
ξ̃TΓ(w)ξ̃

}
≤ ε
}

(35)

Note that the WCQVaR approximates the portfolio return wT r̃ by a (possibly non-convex)

quadratic function of the basic asset returns ξ̃.

Theorem 5.1 below shows how the WCQVaR of a portfolio w can be computed by solving

a tractable SDP. We �rst recall the S-lemma, which is a crucial ingredient for the proof of

Theorem 5.1. We refer to Pólik and Terlaky [21] for a derivation and an in-depth survey of its

manifold uses.

Lemma 5.1 (S-lemma) Let fi(ξ) = ξTAiξ, i = 0, . . . , p be quadratic functions of ξ ∈ Rn.
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Then, f0(ξ) ≥ 0 for all ξ with fi(ξ) ≤ 0, i = 1, . . . , p, if there exist constants τi ≥ 0 such that

A0 +
p∑
i=1

τiAi < 0.

For p = 1, the converse implication holds if there exists a strictly feasible point ξ̄ with f1(ξ̄) < 0.

Theorem 5.1 The WCQVaR of a �xed portfolio w ∈ W can be computed by solving the fol-

lowing tractable SDP.

WCQVaRε(w) = inf γ

s. t. M ∈ Sn+1, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ τε, M < 0, τ ≥ 0,

M +

 Γ(w) ∆(w)

∆(w)T −τ + 2(γ + θ(w))

 < 0

(36)

Proof: For the given portfolio w ∈ W and for any �xed γ ∈ R, we introduce the set Qγ ⊆ Rn,

de�ned through

Qγ =
{
ξ ∈ Rn : γ ≤ −θ(w)−∆(w)T ξ − 1

2
ξTΓ(w)ξ

}
. (37)

As in Section 4, the �rst step towards a tractable reformulation of WCQVaR is to solve the

worst-case probability problem

πwc = sup
P∈P

P{ξ̃ ∈ Qγ}, (38)

which can be identi�ed as the subordinate maximization problem in (35). Lemma 4.1 implies

that (38) can equivalently be formulated as

πwc = inf
M∈Sn+1

{
〈Γ,M〉 : M < 0,

[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ ∈ Qγ
}
. (39)

By the de�nition of Q, the semi-in�nite constraint in problem (39) is equivalent to

[
ξT 1

]
(M− diag(0, 1))

[
ξT 1

]T ≥ 0 ∀ξ :
[
ξT 1

]  1
2Γ(w) 1

2∆(w)

1
2∆(w)T γ + θ(w)

 [ξT 1
]T ≤ 0.
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By using the S-lemma and by analogous reasoning as in Section 4.2, we can replace the semi-

in�nite constraint in problem (39) by

∃τ ≥ 0 : M +

 τΓ(w) τ∆(w)

τ∆(w)T −1 + 2τ(γ + θ(w))

 < 0

without changing the optimal value of the problem. Thus, the worst-case probability problem

(38) can be rewritten as

πwc = inf 〈Ω,M〉

s. t. M ∈ Sn+1, τ ∈ R, M < 0, τ ≥ 0

M +

 τΓ(w) τ∆(w)

τ∆(w)T −1 + 2τ(γ + θ(w))

 < 0.

(40)

The WCQVaR of the portfolio w can therefore be obtained by solving the following non-convex

optimization problem.

WCQVaRε(w) = inf γ

s. t. M ∈ Sn+1, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ ε, M < 0, τ ≥ 0

M +

 τΓ(w) τ∆(w)

τ∆(w)T −1 + 2τ(γ + θ(w))

 < 0

(41)

By analogous reasoning as in Section 4.2, it can be shown that any feasible solution of prob-

lem (41) has a strictly positive τ -component. Thus we may divide the matrix inequality in (41)

by τ . After the variable transformation τ → 1/τ and M → M/τ , we obtain the postulated

SDP (36).

Remark 5.1 In the absence of derivatives, that is, if the market only contains basic assets, then

m = n, and the coe�cient functions in the delta-gamma approximation (34) reduce to θ(w) = 0,

∆(w) = w, and Γ(w) = 0. In this special case, the WCQVaR is computed by solving the

24



following SDP.

WCQVaRε(w) = inf γ

s. t. M ∈ Sn+1, τ ∈ R, γ ∈ R

〈Ω,M〉 ≤ τε, M < 0, τ ≥ 0

M +

 0 w

wT −τ + 2γ

 < 0

El Ghaoui et al. [11] have shown (using similar arguments as in Theorem 4.1) that this SDP

has the closed form solution

WCVaR(w) = −µTw + κ(ε)
√
wTΣw, where κ(ε) =

√
1− ε
ε

.

Thus, the WCQVaR model is a direct extension of the WCVaR model (7).

Problem (36) constitutes a convex SDP that facilitates the e�cient computation of the

WCQVaR for any �xed portfolio w ∈ W. Since the matrix inequality in (36) is linear in

(M, τ , γ) and w, one can reinterpret w as a decision variable without impairing the problem's

convexity. This observation reveals that we can e�ciently minimize the WCQVaR over all

portfolios w ∈ W by solving the following SDP.

inf γ

s. t. M ∈ Sn+1, τ ∈ R, γ ∈ R, w ∈ W

〈Ω,M〉 ≤ τε, M < 0, τ ≥ 0

M +

 Γ(w) ∆(w)

∆(w)T −τ + 2(γ + θ(w))

 < 0

(42)

Remark 5.2 Unlike in Section 4, there seems to be no equivalent SOCP formulation for the SDP

(42). In particular, there is no simple way to adapt the arguments in the proof of Theorem 4.1

to the current setting. The reason for this is a fundamental di�erence between the corresponding

SDP problems (27) and (42). In fact, the top left principal submatrix in the last LMI constraint

is independent of w in (27) but not in (42).
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5.3 Robust Optimization Perspective on WCQVaR

We now highlight the close connection between robust optimization and WCQVaR minimization.

In the next theorem we elaborate an equivalence between the WCQVaR minimization problem

and a robust optimization problem whose uncertainty set is embedded into a space of positive

semide�nite matrices.

Theorem 5.2 The WCQVaR minimization problem (42) is equivalent to the robust optimiza-

tion problem

minimize
w∈Rm,γ∈R

γ

subject to − 〈Q(w),Z〉 ≤ γ ∀Z ∈ Uqε

w ∈ W,

(43)

where

Q(w) =

 1
2Γ(w) 1

2∆(w)

1
2∆(w)T θ(w)

 ,
and the uncertainty set Uqε ⊆ Sn+1 is de�ned as

Uqε =

Z =

X ξ

ξT 1

 ∈ Sn+1 : Ω− εZ < 0, Z < 0

 . (44)

Proof: For some �xed portfolio w ∈ W, the WCQVaR can be computed by solving problem

(36), which involves the LMI constraint

M +

 Γ(w) ∆(w)

∆(w)T −τ + 2(γ + θ(w))

 < 0. (45)

Without loss of generality, we can rewrite the matrix M as

M =

V v

vT u

 .
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With this new notation, the LMI constraint (45) is representable as

[ξT 1]

 V + Γ(w) v + ∆(w)

(v + ∆(w))T u− τ + 2(γ + θ(w))

 [ξT 1]T ≥ 0 ∀ξ ∈ Rn

⇐⇒ ξT (V + Γ(w))ξ + 2ξT (v + ∆(w)) + u− τ + 2(γ + θ(w)) ≥ 0 ∀ξ ∈ Rn

⇐⇒ γ ≥ −1
2
ξT (V + Γ(w))ξ − ξT (v + ∆(w))− θ(w)− 1

2
(u− τ) ∀ξ ∈ Rn

⇐⇒ γ ≥ sup
ξ∈Rn

{
−1

2
ξT (V + Γ(w))ξ − ξT (v + ∆(w))− θ(w)− 1

2
(u− τ)

}
.

Thus, the WCQVaR problem (36) can be rewritten as

inf sup
ξ∈Rn

−1
2
ξT (V + Γ(w))ξ − ξT (v + ∆(w))− θ(w)− 1

2
(u− τ)

s. t. V ∈ Sn, v ∈ Rn, τ ∈ R, u ∈ RV v

vT u

 < 0, τ ≥ 0, 〈V,Σ + µµT 〉+ 2vTµ+ u ≤ τε.

(46)

Note that if V + Γ(w) is not positive semide�nite, the inner maximization problem in (46)

is unbounded. However, this implies that any V ∈ Sn is infeasible in the outer minimization

problem unless V + Γ(w) < 0. Therefore, we can add the constraint V + Γ(w) < 0 to

the minimization problem in (46) without changing its feasible region. With this constraint

appended, the min-max problem (46) becomes a saddlepoint problem because its objective is

concave in ξ for any �xed (V,v, u, τ) and convex in (V,v, u, τ) for any �xed ξ. Moreover, the

feasible sets of the outer and inner problems are convex and independent of each other. Thus,

we may interchange the `inf' and `sup' operators to obtain the following equivalent problem, see,

e.g., [10, Theorem 5.1].

max
ξ∈Rn

min − 1
2
ξT (V + Γ(w))ξ − ξT (v + ∆(w))− θ(w)− 1

2
(u− τ)

s. t. V ∈ Sn, v ∈ Rn, τ ∈ R, u ∈ RV v

vT u

 < 0, τ ≥ 0, 〈V,Σ + µµT 〉+ 2vTµ+ u ≤ τε.

(47)

We proceed by dualizing the inner minimization problem in (47). After a few elementary sim-
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pli�cation steps, this dual problem reduces to

max − 1
2
〈Γ(w), ξξT + Y〉 − ξT∆(w)− θ(w)

s. t. Y ∈ Sn, α ∈ R, Y < 0, 1 ≤ α ≤ 1
εα(Σ + µµT )− (ξξT + Y) αµ− ξ

(αµ− ξ)T α− 1

 < 0.

(48)

Note that strong duality holds because the inner problem in (47) is strictly feasible for any ε > 0,

see [26]. This allows us to replace the inner minimization problem in (47) by the maximization

problem (48), which yields the following equivalent formulation for the WCQVaR problem (36).

max − 1
2
〈Γ(w), ξξT + Y〉 − ξT∆(w)− θ(w)

s. t. Y ∈ Sn, ξ ∈ Rn, α ∈ R, Y < 0, 1 ≤ α ≤ 1
εα(Σ + µµT )− (ξξT + Y) αµ− ξ

(αµ− ξ)T α− 1

 < 0

We now introduce a new decision variable X = ξξT + Y, which allows us to reformulate the

above problem as

max − 1
2
〈Γ(w),X〉 − ξT∆(w)− θ(w)

s. t. X ∈ Sn, ξ ∈ Rn, α ∈ R, 1 ≤ α ≤ 1
εα(Σ + µµT )−X αµ− ξ

(αµ− ξ)T α− 1

 < 0, X− ξξT < 0.

By de�nition of Ω as the second-order moment matrix of the basic asset returns, see (22), the

�rst LMI constraint in the above problem can be rewritten as

αΩ−

X ξ

ξT 1

 < 0.
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Furthermore, by using Schur complements, the following equivalence holds.

X− ξξT < 0 ⇐⇒

X ξ

ξT 1

 < 0

Therefore, problem (48) can be reformulated as

max −

〈 1
2Γ(w) 1

2∆(w)

1
2∆(w)T θ(w)

 ,
X ξ

ξT 1

〉

s. t. X ∈ Sn, ξ ∈ Rn, α ∈ R, 1 ≤ α ≤ 1
ε

αΩ−

X ξ

ξT 1

 < 0,

X ξ

ξT 1

 < 0.

Since the objective function is independent of α and Ω � 0, the optimal choice for α is 1/ε; in

fact, this choice of α generates the largest feasible set. We conclude that the WCQVaR for a

�xed portfolio w can be computed by solving the following problem.

max −

〈 1
2Γ(w) 1

2∆(w)

1
2∆(w)T θ(w)

 ,
X ξ

ξT 1

〉

s. t. X ∈ Sn, ξ ∈ Rn, Ω− ε

X ξ

ξT 1

 < 0,

X ξ

ξT 1

 < 0

The WCQVaR minimization problem (42) can therefore be expressed as the min-max problem

min
w∈W

max
Z∈Uqε

−〈Q(w),Z〉, (49)

which is manifestly equivalent to the postulated semi-in�nite program (43).

It may not be evident how the uncertainty set Uqε (de�ned in (44)) associated with the

WCQVaR formulation is related to the ellipsoidal uncertainty set Uε de�ned in Section 2.2. We

now demonstrate that there exists a strong connection between these two uncertainty sets, even

though they are embedded in spaces of di�erent dimensions.

Corollary 5.1 If the constraint Γ(w) < 0 is appended to the de�nition of the set W of admis-
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sible portfolios, then the robust optimization problem (43) reduces to

minimize
w∈Rm,γ∈R

γ

subject to − θ(w)−∆(w)T ξ − 1
2
ξTΓ(w)ξ ≤ γ ∀ξ ∈ Uε

w ∈ W,

(50)

where Uε is the ellipsoidal uncertainty set de�ned in Section 2.2.

Proof: The inner maximization problem in (49) can be written as

max − θ(w)−∆(w)T ξ − 1
2
〈Γ(w),X〉

s. t. X ∈ Sn, ξ ∈ Rn, X− ξξT < 0(Σ + µµT )− εX µ− εξ

(µ− εξ)T 1− ε

 < 0.

By introducing the decision variable Y = X − ξξT as in the proof of Theorem 5.2, the above

problem can be reformulated as

max − θ(w)−∆(w)T ξ − 1
2
ξTΓ(w)ξ − 1

2
〈Γ(w),Y〉

s. t. Y ∈ Sn, ξ ∈ Rn, Y < 0(Σ + µµT )− ε(Y + ξξT ) µ− εξ

(µ− εξ)T 1− ε

 < 0.

(51)

We will now argue that Y = 0 at optimality. This holds due to the following two facts: (i) for

Y = 0 we obtain the largest feasible set, and (ii) we have 〈Γ(w),Y〉 ≥ 0 for all Y < 0 because

Γ(w) < 0 by assumption. Thus problem (51) reduces to

max
ξ∈Rn

− θ(w)−∆(w)T ξ − 1
2
ξTΓ(w)ξ

s. t.

(Σ + µµT )− εξξT µ− εξ

(µ− εξ)T 1− ε

 < 0.

Using similar arguments as in Theorem 4.1 (in particular, see (A.2)), we can show that the
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semide�nite constraint in the above problem is equivalent to

 Σ ξ − µ

(ξ − µ)T κ(ε)2

 < 0 ⇐⇒ (ξ − µ)TΣ−1(ξ − µ) ≤ κ(ε)2.

Thus the original min-max formulation (49) can be reexpressed as

min
w∈W

max
ξ∈Uε

−θ(w)−∆(w)T ξ − 1
2
ξTΓ(w)ξ,

which is equivalent to the postulated robust optimization problem.

Remark 5.3 Note that the robust optimization problem (50) can be reformulated as

minimize
w∈Rm,γ∈R

γ

subject to −wTr ≤ γ ∀r ∈ Uq2ε

w ∈ W,

(52)

where the uncertainty set Uq2ε is de�ned as

Uq2ε =

r ∈ Rm :

∃ξ ∈ Rn such that

(ξ − µ)TΣ−1(ξ − µ) ≤ κ(ε)2 and

ri = θi + ξT∆i + 1
2ξ

TΓiξ ∀i = 1, . . . ,m


In contrast to the simple ellipsoidal set Uε, the set Uq2ε is asymmetrically oriented around µ.

This asymmetry is caused by the quadratic functions that map the basic asset returns ξ to the

asset returns r. As a result, the WCQVaR model may provide a tighter approximation of the

actual VaR of a portfolio containing derivatives than the WCVaR model.

It seems that a min-max formulation (52) with an uncertainty set embedded into Rm is only

available if Γ(w) < 0, that is, if the portfolio return is a convex quadratic function of the basic

assets returns. In general, however, one needs to resort to the more general formulation (43),

in which the uncertainty set is embedded into Sn+1; the dimension increase can compensate for

the non-convexity of the portfolio return function.

Example 5.1 We repeat the same experiment as in Example 4.1 but estimate the portfolio VaR
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Figure 2: Left: The portfolio loss distribution obtained via Monte-Carlo simulation. Note that negative values represent
gains. Right: The VaR estimates at di�erent con�dence levels obtained via Monte-Carlo sampling, WCVaR, and WCQVaR.

after 2 days instead of 21 days. Since the VaR is no longer evaluated at the maturity time of

the options, we use the WCQVaR model instead of the WCPVaR model. The coe�cients of

the quadratic approximation function (34) are calculated using the standard Black-Scholes greek

formulas (see, e.g., [16]). We use an analogous Monte-Carlo simulation as in Example 4.1 to

generate the stock and option returns over a 2-day investment period as well as the corresponding

sample means and covariances. Figure 2 (left) displays the sampled portfolio loss distribution,

which is still skewed, although considerably less than in Example 4.1. In Figure 2 (right) we

compare Monte-Carlo VaR, WCVaR, and WCQVaR for di�erent con�dence levels. Even for

the short horizon time under consideration, the WCVaR model still fails to give a realistic VaR

estimate. At ε = 1%, WCVaR is more than 3 times as large as the corresponding WCQVaR

value. This example demonstrates that the WCQVaR can o�er signi�cantly better VaR estimates

than WCVaR when the portfolio contains options.

6 Computational Results

In Section 6.1 we compare the out-of-sample performance of the WCQVaR in the context of

an index tracking application and analyze the bene�ts of including options in the investment

strategy. We refer to [27] for an in-depth analysis of the in- and out-of-sample performance

of the robust optimization problem (30), whose equivalence to our novel WCPVaR model was

established in Theorem 4.2. All computations are performed within Matlab 2008b and by using

the YALMIP interface [15] of the SDPT3 optimization toolkit [25]. We use a 2.0 GHz Core 2

Duo machine running Linux Ubuntu 9.04.
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6.1 Index Tracking using Worst-Case VaR

Index tracking is a common and important problem in portfolio management. The aim is to

replicate the behavior of a given stock market index, sometimes referred to as the benchmark,

with a given set of other assets not containing the index itself.

We let r̃1 denote the random return of the benchmark over the investment interval [0, T ]. In

order to replicate this benchmark, we are given m− 1 assets, whose vector of returns is denoted

by r̃−1. This set of assets includes n− 1 basic assets as well as m− n options derived from the

basic assets. We denote by w−1 ∈ Rm−1 the asset weights in the replicating portfolio.

Typically, the level of discrepancy between the benchmark and the portfolio is quanti�ed by

the tracking-error E(|wT
−1r̃−1 − r̃1|). Note that minimizing the tracking-error penalizes both

under- and over-performance of the portfolio relative to the benchmark.

In this paper we adopt a slightly di�erent approach. Instead of minimizing the tracking-error,

we are only concerned about the portfolio falling short of the benchmark. The excess-return of

a portfolio w−1 relative to the benchmark is computed as wT r̃ where w = [−1 wT
−1]T and

r̃ = [r̃1 r̃T−1]T . In order to measure the risk of the replicating portfolio falling below the

benchmark, we can use the VaR at con�dence ε = 5%.2 The optimal replicating portfolio is

found by minimizing VaRε(w) over all admissible portfolios w ∈ W with

W =
{
w ∈ Rm : w+ −w− = w, eTw− ≤ α+ 1, w+ ≥ 0, w− ≥ 0, eTw = 0

}
. (53)

The inclusion w ∈ W implies that the portfolio weights w−1 sum up to 1 and that the total

amount of shortsales in the replicating portfolio is limited to α = 4%.

Since we include options in the replicating portfolio, we use WCQVaRε(w) to approximate

the VaR objective. The optimal portfolios are found by solving problem (42).

We now compare the out-of-sample performance of the optimal portfolios containing options

with those where investment in options is prohibited. Recall that in the absence of options

WCQVaR reduces to WCVaR, see Remark 5.1.

We assess the out-of-sample behavior of the WCQVaR model using a rolling-horizon backtest

procedure. The aim is to minimize the under-performance of the replicating portfolio relative

2We ran the backtests in this section with di�erent values of ε. Although we only report results for ε = 5%,

the general conclusions are independent of the choice of ε.

33



to the S&P 500 index, which is often taken as a proxy for the market portfolio. The replicating

portfolio is based on the 30 stock constituents of the Dow Jones Industrial Average, as well

as some options written on these. We only include options that expire between 30 and 60

days after the investment dates. This ensures that the option payo�s are di�erentiable and

accurately representable by the delta-gamma approximation. Moreover, longer term options

tend to be more illiquid and are therefore not included.

Daily stock and option data are obtained from the Optionmetrics IvyDB database, which is

one of the most complete sources of historical option data available. We consider a historical

data range from January 2nd, 2004 to October 10th, 2008, containing a total of 1181 trading

days. We use the following rolling-horizon backtest procedure. At every investment date we

estimate the mean vector µ and covariance matrix Σ of the stock returns using the daily returns

of the previous 600 trading days. Thus, our backtest starts on the 600th trading day in the

historical data set. We compute the out-of-sample returns of the optimal replicating portfolios

using the stock and option prices on the next available trading day. This process is repeated for

all but the �rst 600 trading days in our data set.

For simplicity, we use the mid-prices of the assets to calculate the returns. Furthermore,

the WCQVaR model requires information about the options' delta and gamma sensitivities.

These are obtained from the implied volatilities reported in the Optionmetrics database and are

calculated using the Black-Scholes formula.3 We disregard transaction costs and income taxes

on option returns, which are beyond the scope of this paper.

The same rolling-horizon procedure is used to obtain the out-of-sample returns of the optimal

replicating portfolios with and without options. On average the optimal stock-only portfolios are

found in 2.1 seconds, whereas the portfolios with options are found in 7.4 seconds. In total we

obtain two sequences of L = 581 out-of-sample portfolio returns, corresponding to the strategies

with and without options, which are denote by {rol }Ll=1 and {rsl }Ll=1, respectively. The returns

of the benchmark are denoted by {r1,l}Ll=1.

Since the portfolios minimize the under-performance with respect to the benchmark, it is of

interest to analyze how much wealth the robust strategies generate relative to the benchmark.

By assuming an initial capital of 1 dollar, we calculate the relative wealth ωkl at the end of

3In order to avoid the use of erroneous option data, we only selected those options for which the implied

volatility was supplied in the database and which had a bid and ask price greater than 0. We found that this

procedure allowed us to �lter out incorrect entries.
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period l for portfolio strategy k = o, s as

ωkl =
∏l
m=1(1 + rkm)∏l
m=1(1 + r1,m)

.

Figure 3 displays the relative wealth generated over time by the robust strategies. Both strategies

outperform the benchmark over the entire test period. However, the inclusion of options improves

the performance considerably. Over the test period, the strategy with options outperforms the

benchmark by 56%, whereas the stock-only strategy only outperforms the benchmark by 12%.

The annualized average excess-return of the stock-only strategy is 4.9% and that of the option

strategy amounts to 19%.

The Sharpe ratio [24] is frequently used to assess the performance of an investment strategy.

It is calculated as (µ̂ − rf )/σ̂, where µ̂ and σ̂ represent the annualized estimated mean and

standard deviation of the out-of-sample returns, respectively, and rf = 3% is the risk-free rate

per annum. The stock-only strategy has a Sharpe ratio of 0.13, while the option strategy

achieves a value of 0.97. These results clearly demonstrate the bene�ts of including options in

the replicating portfolio.

We observe that all optimal portfolios w satisfy Γ(w) < 0, although this was not imposed
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as a constraint. This implies that the delta-gamma approximation (34) of the optimal portfolio

return is convex in the returns of the underlying assets. Alexander has observed this phenomenon

in a simulation experiment and argues that it is a natural consequence of the risk minimization

process. In fact, a portfolio with a convex payo� loses less from downward price moves and

bene�ts disproportionately from upward price moves of the underlying assets [1].

We further observe that the optimal portfolios hold both long and short positions in options

on the same underlying asset. It is known that short-sales of options can generate high expected

returns (see, e.g., [9]) but they also carry considerable risk. Thus, optimal portfolios always

cover the short-sale of an option by a long position in another option on the same underlying

asset. On average the optimal portfolios allocate 11% of wealth in options and 89% in stocks.

This implies that the high expected returns generated by the option strategy are not due to

risky positions in options, but rather result from a balanced investment in a mixture of both

stocks and options.

Next, we assess the realized VaRs of the stock-only and option strategies. These are obtained

by �rst computing the ε-quantiles of all out-of-sample excess-returns of both strategies and then

multiplying these values by -1 (recall that VaR measures the degree of under-performance). For

ε = 5% the realized VaR of the stock-only strategy amounts to 0.29%, while that of the option

strategy is 0.33%. For ε = 1%, the realized VaR values are 0.49% and 0.54%, respectively.

These results indicate that the option strategy has a slightly higher out-of-sample VaR than

the stock-only strategy. However, since the option strategy achieves much higher excess-returns

on average, the di�erences in VaR are negligible. Interestingly, the worst-case daily under-

performance of the stock-only strategy is 0.78%, whilst that of the option strategy is 0.61%.

Thus, the option strategy performs better in terms of worst-case under-performance relative to

the benchmark.

The WCQVaR model described in Section 5 assumes the underlying asset returns to be

the only sources of uncertainty in the market. It is known, however, that implied volatilities

constitute important risk factors for portfolios containing options. In particular, long dated

options are highly sensitive to �uctuations in the volatilities of the underlying assets. The

sensitivity of the portfolio return with respect to the volatilities is commonly referred to as vega

risk. The WCQVaR model can easily be modi�ed to include implied volatilities as additional risk
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factors. The arising delta-gamma-vega-approximation of the portfolio return is still a quadratic

function of the risk factors. Thus, the theoretical derivations in Section 5 remain valid in

this generalized setting. However, estimating �rst- and second-order moments of the implied

volatilities requires the modeling and calibration of the implied volatility surface over time,

which is beyond the scope of this paper. We conjecture that extending the WCQVaR model to

account for vega risk can further improve the realized VaR of the option strategy.

7 Conclusions

Derivatives depend non-linearly on their underlying assets. In this paper we generalize the

WCVaR model by explicitly incorporating this non-linear relationship into the problem formu-

lation. To this end, we developed two new models.

The WCPVaR model is suited for portfolios containing European options maturing at the

investment horizon. WCPVaR expresses the option returns as convex-piecewise linear functions

of the underlying assets. A bene�t of this model is that it does not require knowledge of the

pricing models of the options in the portfolio. However, in order to be tractably solvable, the

WCPVaR model precludes short-sales of options.

The WCQVaR model can handle portfolios containing general option types and does not

rely on short-sales restrictions. It exploits the popular delta-gamma approximation to model

the portfolio return. In contrast to WCPVaR, WCQVaR does require knowledge of the option

pricing models to determine the quadratic approximation. Through numerical experiments we

demonstrate that the WCPVaR and WCQVaR models can provide much tighter VaR estimates

of a portfolio containing options than the WCVaR model which does not explicitly account for

non-linear dependencies between the asset returns.

We analyze the performance of the WCQVaR model in the context of an index tracking

application and �nd that including options in the investment strategy signi�cantly improves

the out-of-sample performance. Although options are typically seen as a risky investments, our

numerical results indicate that their use in a robust optimization framework can o�er substantial

bene�ts.

Acknowledgements. We are indebted to Prof. A. Ben-Tal for valuable discussions on the topic

of this paper.
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A Appendix

A.1 Proof of Lemma 4.1

De�ne the indicator function of the set S as

IS(ξ) =


1 if ξ ∈ S,

0 otherwise.

The worst-case probability problem (20) can equivalently be expressed as

πwc = sup
µ∈M+

∫
Rn

IS(ξ)µ(dξ)

s. t.
∫

Rn
µ(dξ) = 1∫

Rn
ξµ(dξ) = µ∫

Rn
ξξTµ(dξ) = Σ + µµT ,

(54)

whereM+ represents the cone of nonnegative Borel measures on Rn. The optimization variable

of the semi-in�nite linear program (54) is the nonnegative measure µ. As can be seen, the �rst

constraint forces µ to be a probability measure. The following constraints enforce consistency

with the given �rst- and second-order moments, respectively.

We now assign dual variables y0 ∈ R, y ∈ Rn, and Y ∈ Sn to the equality constraints in

(54), respectively, and introduce the following dual problem (see, e.g., [23]).

inf y0 + yTµ+ 〈Y,Σ + µµT 〉

s. t. y0 ∈ R, y ∈ Rn, Y ∈ Sn

y0 + yT ξ + 〈Y, ξξT 〉 ≥ IS(ξ) ∀ξ ∈ Rn

(55)

Because Σ � 0, it can be shown that strong duality holds [12]. Therefore the worst-case

probability πwc coincides with the optimal value of the dual problem (55).

By de�ning

M =

 Y 1
2y

1
2y

T y0

 ,
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problem (55) can be reformulated as

inf
M∈Sn+1

〈Ω,M〉

s. t.
[
ξT 1

]
M
[
ξT 1

]T ≥ IS(ξ) ∀ξ ∈ Rn.

(56)

By de�nition of IS(ξ), the constraint in (56) can be expanded in terms of two semi-in�nite

constraints.

[
ξT 1

]
M
[
ξT 1

]T ≥ 0 ∀ξ ∈ Rn (57a)[
ξT 1

]
M
[
ξT 1

]T ≥ 1 ∀ξ ∈ S (57b)

Since (57a) is equivalent to M < 0, the claim follows.

A.2 Proof of Theorem 4.1

In order to obtain the postulated SOCP reformulation, we calculate the dual associated with

problem (27), which, after some simpli�cation steps, reduces to

WCPVaRε(w) = max (e− δ)Twη − 2mTwξ

s. t. α ∈ R, δ ∈ Rm−n, m ∈ Rn, Z ∈ Sn

0 ≤ α ≤ 1
2ε
, αΩ < Y =

 Z m

mT 1/2

 < 0,

δ − 2Bm− a ≥ 0, δ ≥ 0.

(58)

Note that problem (58) is strictly feasible, which implies that strong conic duality holds [26].

This con�rms that the optimal value of the dual problem (58) exactly matches the WCPVaR.

By the de�nition of Ω in (22), we may conclude that

αΩ < Y ⇐⇒

α(Σ + µµT )− Z αµ−m

(αµ−m)T α− 1/2

 < 0 =⇒ α ≥ 1/2.

This allows us to divide the matrix inequality in problem (58) by α. Subsequently, we apply the

variable substitution (Z,m, α) → (V,v, y) with V = Z/α, v = m/α, and y = 1
2α ∈ [ε, 1]. We
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thus obtain the following problem reformulation.

WCPVaRε(w) = max (e− δ)Twη − v
Twξ

y

s. t. y ∈ R, δ ∈ Rm−n, v ∈ Rn, V ∈ Sn

ε ≤ y ≤ 1, Ω <

V v

vT y

 < 0

δ ≥ Bv
y

+ a, δ ≥ 0

(59)

Assume �rst that y = 1 at optimality. Then, by the de�nition of Ω and the linear matrix

inequality in problem (59), we �nd v = µ, while (59) reduces to

max
δ∈Rm−n

{
(e− δ)Twη − µTwξ : δ ≥ a+ Bµ, δ ≥ 0

}
=− µTwξ − (max{−e,a+ Bµ− e})Twη

=− f(µ)Tw. (60)

Assume now that y < 1 at optimality. By the de�nition of Ω and by using Schur complements,

we �nd

Ω <

V v

vT y

 ⇐⇒
Σ + µµT −V µ− v

(µ− v)T 1− y

 < 0

⇐⇒ Σ + µµT −V − 1
1− y

(µ− v)(µ− v)T < 0. (61a)

A similar argument yields the equivalence

V v

vT y

 < 0 ⇐⇒ V − 1
y
vvT < 0. (61b)

By combining (61a) and (61b), the linear matrix inequality constraints in problem (59) are

equivalent to

Σ + µµT − 1
1− y

(µ− v)(µ− v)T < V <
1
y
vvT .

The decision variable V can now be eliminated from the problem, while the linear matrix
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inequality constraints in (59) can be replaced by

Σ + µµT <
1

1− y
(µ− v)(µ− v)T +

1
y
vvT

⇐⇒ Σ <
1

y(1− y)
(v − yµ)(v − yµ)T . (62)

The above arguments imply that problem (59) can be reformulated as

WCPVaRε(w) = max{φ(y) : y ∈ [ε, 1]},

where

φ(y) = max (e− δ)Twη − v
Twξ

y

s. t. δ ∈ Rm−n, v ∈ Rn

Σ <
1

y(1− y)
(v − yµ)(v − yµ)T ,

δ ≥ Bv
y

+ a, δ ≥ 0.

(63)

For any �xed y ∈ [ε, 1), we have that y−1(1− y)−1 > 0, and the linear matrix inequality in (63)

can be rewritten as  Σ v − yµ

(v − yµ)T y(1− y)

 < 0.

Since Σ � 0, this linear matrix inequality holds if and only if

(v − yµ)TΣ−1(v − yµ) ≤ y(1− y),

which is equivalent to the second-order cone constraint

∥∥∥Σ−1/2(v − yµ)
∥∥∥

2
≤
√
y(1− y).
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For y ∈ [ε, 1), the value of φ(y) can thus be found by solving the following SOCP.

φ(y) = max (e− δ)Twη − v
Twξ

y

s. t. δ ∈ Rm−n, v ∈ Rn∥∥∥Σ−1/2(v − yµ)
∥∥∥

2
≤
√
y(1− y)

δ ≥ Bv
y

+ a, δ ≥ 0

(64)

Note that the above problem is strictly feasible for y ∈ [ε, 1). By strong conic duality the

associated dual problem has the same optimal value [2]. We thus obtain that φ(y) = φ′(y) for

y ∈ [ε, 1), where

φ′(y) = min
0≤g≤wη

−µT (wξ + BTg) +
√

1− y
y

∥∥∥Σ1/2(wξ + BTg)
∥∥∥

2
− aTg + eTwη.

Note that for y = 1, we also have φ(1) = φ′(1) since

φ′(1) = min
0≤g≤wη

−µT (wξ + BTg)− aTg + eTwη

= −µTwξ − (max{−e,a+ Bµ− e})Twη

= φ(1),

where the second equality follows from (60). Maximizing φ(y) over y yields the desired WCPVaR

value. Since
√

(1− y)/y is monotonically decreasing in y, we have y = ε at optimality. This

results in the following optimization problem

WCPVaRε(w) = min
0≤g≤wη

−µT (wξ + BTg) +

√
1− ε
ε

∥∥∥Σ1/2(wξ + BTg)
∥∥∥

2
− aTg + eTwη,

which is the postulated reformulation of WCPVaR as the optimal value of a SOCP.
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