2,568 research outputs found

    Review of trends and targets of complex systems for power system optimization

    Get PDF
    Optimization systems (OSs) allow operators of electrical power systems (PS) to optimally operate PSs and to also create optimal PS development plans. The inclusion of OSs in the PS is a big trend nowadays, and the demand for PS optimization tools and PS-OSs experts is growing. The aim of this review is to define the current dynamics and trends in PS optimization research and to present several papers that clearly and comprehensively describe PS OSs with characteristics corresponding to the identified current main trends in this research area. The current dynamics and trends of the research area were defined on the basis of the results of an analysis of the database of 255 PS-OS-presenting papers published from December 2015 to July 2019. Eleven main characteristics of the current PS OSs were identified. The results of the statistical analyses give four characteristics of PS OSs which are currently the most frequently presented in research papers: OSs for minimizing the price of electricity/OSs reducing PS operation costs, OSs for optimizing the operation of renewable energy sources, OSs for regulating the power consumption during the optimization process, and OSs for regulating the energy storage systems operation during the optimization process. Finally, individual identified characteristics of the current PS OSs are briefly described. In the analysis, all PS OSs presented in the observed time period were analyzed regardless of the part of the PS for which the operation was optimized by the PS OS, the voltage level of the optimized PS part, or the optimization goal of the PS OS.Web of Science135art. no. 107

    Optimal integration and management of solar generation and battery storage system in distribution systems under uncertain environment

    Get PDF
    The simultaneous placement of solar photovoltaics (SPVs) and battery energy storage systems (BESSs) in distribution systems is a highly complex combinatorial optimization problem. It not only involves siting and sizing but is also embedded with charging and discharging dispatches of BESSs under dynamically varying system states with intermittency of SPVs and operational constraints. This makes the simultaneous allocation a nested problem, where the operational part acts as a constraint for the planning part and adds complexity to the problem. This paper presents a bi-layer optimization strategy to optimally place SPVs and BESSs in the distribution system. A simple and effective operating BESS strategy model is developed to mitigate reverse power flow, enhance load deviation index and absorb variability of load and power generation which are essential features for the faithful exploitation of available renewable energy sources (RESs). In the proposed optimization strategy, the inner layer optimizes the energy management of BESSs for the sizing and siting as suggested by the outer layer. Since the inner layer optimizes each system state separately, the problem search space of GA is significantly reduced. The application results on a benchmark 33-bus test distribution system highlight the importance of the proposed method

    Renewable energy sources offering flexibility through electricity markets

    Get PDF

    Enhanced Reserve Procurement Policies for Power Systems with Increasing Penetration Levels of Stochastic Resources

    Get PDF
    abstract: The uncertainty and variability associated with stochastic resources, such as wind and solar, coupled with the stringent reliability requirements and constantly changing system operating conditions (e.g., generator and transmission outages) introduce new challenges to power systems. Contemporary approaches to model reserve requirements within the conventional security-constrained unit commitment (SCUC) models may not be satisfactory with increasing penetration levels of stochastic resources; such conventional models pro-cure reserves in accordance with deterministic criteria whose deliverability, in the event of an uncertain realization, is not guaranteed. Smart, well-designed reserve policies are needed to assist system operators in maintaining reliability at least cost. Contemporary market models do not satisfy the minimum stipulated N-1 mandate for generator contingencies adequately. This research enhances the traditional market practices to handle generator contingencies more appropriately. In addition, this research employs stochastic optimization that leverages statistical information of an ensemble of uncertain scenarios and data analytics-based algorithms to design and develop cohesive reserve policies. The proposed approaches modify the classical SCUC problem to include reserve policies that aim to preemptively anticipate post-contingency congestion patterns and account for resource uncertainty, simultaneously. The hypothesis is to integrate data-mining, reserve requirement determination, and stochastic optimization in a holistic manner without compromising on efficiency, performance, and scalability. The enhanced reserve procurement policies use contingency-based response sets and post-contingency transmission constraints to appropriately predict the influence of recourse actions, i.e., nodal reserve deployment, on critical transmission elements. This research improves the conventional deterministic models, including reserve scheduling decisions, and facilitates the transition to stochastic models by addressing the reserve allocation issue. The performance of the enhanced SCUC model is compared against con-temporary deterministic models and a stochastic unit commitment model. Numerical results are based on the IEEE 118-bus and the 2383-bus Polish test systems. Test results illustrate that the proposed reserve models consistently outperform the benchmark reserve policies by improving the market efficiency and enhancing the reliability of the market solution at reduced costs while maintaining scalability and market transparency. The proposed approaches require fewer ISO discretionary adjustments and can be employed by present-day solvers with minimal disruption to existing market procedures.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Secure and cost-effective operation of low carbon power systems under multiple uncertainties

    Get PDF
    Power system decarbonisation is driving the rapid deployment of renewable energy sources (RES) like wind and solar at the transmission and distribution level. Their differences from the synchronous thermal plants they are displacing make secure and efficient grid operation challenging. Frequency stability is of particular concern due to the current lack of provision of frequency ancillary services like inertia or response from RES generators. Furthermore, the weather dependency of RES generation coupled with the proliferation of distributed energy resources (DER) like small-scale solar or electric vehicles permeates future low-carbon systems with uncertainty under which legacy scheduling methods are inadequate. Overly cautious approaches to this uncertainty can lead to inefficient and expensive systems, whilst naive methods jeopardise system security. This thesis significantly advances the frequency-constrained scheduling literature by developing frameworks that explicitly account for multiple new uncertainties. This is in addition to RES forecast uncertainty which is the exclusive focus of most previous works. The frameworks take the form of convex constraints that are useful in many market and scheduling problems. The constraints equip system operators with tools to explicitly guarantee their preferred level of system security whilst unlocking substantial value from emerging and abundant DERs. A major contribution is to address the exclusion of DERs from the provision of ancillary services due to their intrinsic uncertainty from aggregation. This is done by incorporating the uncertainty into the system frequency dynamics, from which deterministic convex constraints are derived. In addition to managing uncertainty to facilitate emerging DERs to provide legacy frequency services, a novel frequency containment service is designed. The framework allows a small amount of load shedding to assist with frequency containment during high RES low inertia periods. The expected cost of this service is probabilistic as it is proportional to the probability of a contingency occurring. The framework optimally balances the potentially higher expected costs of an outage against the operational cost benefits of lower ancillary service requirements day-to-day. The developed frameworks are applied extensively to several case studies. These validate their security and demonstrate their significant economic and emission-saving benefits.Open Acces

    Large-scale unit commitment under uncertainty: an updated literature survey

    Get PDF
    The Unit Commitment problem in energy management aims at finding the optimal production schedule of a set of generation units, while meeting various system-wide constraints. It has always been a large-scale, non-convex, difficult problem, especially in view of the fact that, due to operational requirements, it has to be solved in an unreasonably small time for its size. Recently, growing renewable energy shares have strongly increased the level of uncertainty in the system, making the (ideal) Unit Commitment model a large-scale, non-convex and uncertain (stochastic, robust, chance-constrained) program. We provide a survey of the literature on methods for the Uncertain Unit Commitment problem, in all its variants. We start with a review of the main contributions on solution methods for the deterministic versions of the problem, focussing on those based on mathematical programming techniques that are more relevant for the uncertain versions of the problem. We then present and categorize the approaches to the latter, while providing entry points to the relevant literature on optimization under uncertainty. This is an updated version of the paper "Large-scale Unit Commitment under uncertainty: a literature survey" that appeared in 4OR 13(2), 115--171 (2015); this version has over 170 more citations, most of which appeared in the last three years, proving how fast the literature on uncertain Unit Commitment evolves, and therefore the interest in this subject

    A Review of Energy Management of Renewable Multisources in Industrial Microgrids

    Get PDF
    This review aims to consolidate recent advancements in power control within microgrids and multi-microgrids. It specifically focuses on analyzing the comparative benefits of various architectures concerning energy sharing and demand cost management. The paper provides a comprehensive technical analysis of different architectures found in existing literature, which are designed for energy management and demand cost optimization. In summary, this review paper provides a thorough examination of power control in microgrids and multi-microgrids and compares different architectural approaches for energy management and demand cost optimization

    Enhancing Grid Operation with Electric Vehicle Integration in Automatic Generation Control

    Get PDF
    Wind energy has been recognized as a clean energy source with significant potential for reducing carbon emissions. However, its inherent variability poses substantial challenges for power system operators due to its unpredictable nature. As a result, there is an increased dependence on conventional generation sources to uphold the power system balance, resulting in elevated operational costs and an upsurge in carbon emissions. Hence, an urgent need exists for alternative solutions that can reduce the burden on traditional generating units and optimize the utilization of reserves from non-fossil fuel technologies. Meanwhile, vehicle-to-grid (V2G) technology integration has emerged as a remedial approach to rectify power capacity shortages during grid operations, enhancing stability and reliability. This research focuses on harnessing electric vehicle (EV) storage capacity to compensate for power deficiencies caused by forecasting errors in large-scale wind energy-based power systems. A real-time dynamic power dispatch strategy is developed for the automatic generation control (AGC) system to integrate EVs and utilize their reserves optimally to reduce reliance on conventional power plants and increase system security. The results obtained from this study emphasize the significant prospects associated with the fusion of EVs and traditional power plants, offering a highly effective solution for mitigating real-time power imbalances in large-scale wind energy-based power systems
    corecore