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ABSTRACT 

 

The uncertainty and variability associated with stochastic resources, such as wind and 

solar, coupled with the stringent reliability requirements and constantly changing system 

operating conditions (e.g., generator and transmission outages) introduce new challenges 

to power systems. Contemporary approaches to model reserve requirements within the 

conventional security-constrained unit commitment (SCUC) models may not be satisfac-

tory with increasing penetration levels of stochastic resources; such conventional models 

procure reserves in accordance with deterministic criteria whose deliverability, in the 

event of an uncertain realization, is not guaranteed. Smart, well-designed reserve policies 

are needed to assist system operators in maintaining reliability at least cost. 

Contemporary market models do not satisfy the minimum stipulated N-1 mandate for 

generator contingencies adequately. This research enhances the traditional market prac-

tices to handle generator contingencies more appropriately. In addition, this research em-

ploys stochastic optimization that leverages statistical information of an ensemble of un-

certain scenarios and data analytics-based algorithms to design and develop cohesive re-

serve policies. The proposed approaches modify the classical SCUC problem to include 

reserve policies that aim to preemptively anticipate post-contingency congestion patterns 

and account for resource uncertainty, simultaneously. The hypothesis is to integrate data-

mining, reserve requirement determination, and stochastic optimization in a holistic man-

ner without compromising on efficiency, performance, and scalability. The enhanced re-

serve procurement policies use contingency-based response sets and post-contingency 

transmission constraints to appropriately predict the influence of recourse actions, i.e., 

nodal reserve deployment, on critical transmission elements. 
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This research improves the conventional deterministic models, including reserve 

scheduling decisions, and facilitates the transition to stochastic models by addressing the 

reserve allocation issue. The performance of the enhanced SCUC model is compared 

against contemporary deterministic models and a stochastic unit commitment model. 

Numerical results are based on the IEEE 118-bus and the 2383-bus Polish test systems. 

Test results illustrate that the proposed reserve models consistently outperform the 

benchmark reserve policies by improving the market efficiency and enhancing the relia-

bility of the market solution at reduced costs while maintaining scalability and market 

transparency. The proposed approaches require fewer ISO discretionary adjustments and 

can be employed by present-day solvers with minimal disruption to existing market pro-

cedures. 
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RT Real-time 

RTCA Real-time contingency analysis 

𝑠 Net load scenario index. 

𝑆 Set of net load scenarios. 

SCED Security-constrained economic dispatch 

SCOPF Security-constrained optimal power flow 

SCUC Security-constrained unit commitment 

𝑆𝐹𝑅 Set of nodes that have generators with frequency response capability. 

SFT Simultaneous feasibility test 

𝑆𝑘𝑡
𝑧(𝑐)

 Reserve sharing limit from zone 𝑘 to contingency zone 𝑧(𝑐) (variable). 

SOL System operating limit 

𝑆𝑂𝑂𝑆 ⊆ 𝑆 Subset of out-of-sample (OOS) testing net load scenarios. 

𝑆𝑇𝑅𝑁 ⊆ 𝑆 Subset of training net load scenarios. 

𝑡 Time period index. 

𝑇 Set of time periods. 

UC Unit commitment 

UCTE Union for the Coordination of the Transmission of Electricity 

𝑢𝑔𝑡 Binary unit commitment variable for generator 𝑔 and period 𝑡 (0 indi-

cates offline, whereas 1 indicates online). 
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𝑢𝑔𝑡̅̅ ̅̅  Scheduled unit commitment status for generator 𝑔 and period 𝑡 (ob-

tained and fixed from a prior scheduling stage). 

𝑢𝑛 Scheduled unit commitment status (0: offline, 1: online) of the genera-

tor at node 𝑛. 

𝑈𝑇𝑔 Minimum up time for generator 𝑔. 

𝑣𝑔𝑡 Startup variable for generator 𝑔 and period 𝑡 (1 for startup, 0 other-

wise). 

VOLL Value of lost load 

𝑤𝑔𝑡 Shutdown variable for generator 𝑔 and period 𝑡 (1 for shutdown, 0 oth-

erwise). 

𝑧, 𝑘 Reserve zone index. 

𝑍 Set of reserve zones. 

𝑧(𝑐) ∈ 𝑍 Reserve zone where generator contingency 𝑐 is located. 

𝛼 Choice of benchmark reserve sharing policy. 

𝛼𝑛 Dual variable on generator’s (at node 𝑛) capacity constraint; upper 

bound constraint. 

𝛽𝑔,𝑙,𝑡
𝑐̅̅ ̅̅ ̅̅  Reserve response factor for responsive generator 𝑔 and critical trans-

mission asset 𝑙 under critical generator contingency 𝑐 in period 𝑡. 

𝛽𝑛
𝑐 Dual variable on generator’s (at node 𝑛) response to contingency 𝑐 con-

straint. 

�̅�𝑛′(𝑐),𝑛 Recognizes the node with generator loss under contingency 𝑐 (1 if con-

tingency node, else 0). 

𝛿 Dual variable on system-wide power balance constraint (marginal ener-

gy component of LMP). 

𝛿𝑔𝑡 Binary variable that allows for a modification of either a unit’s DDP or 

its commitment status through an OMC action (1 if the OMC procedure 

chooses to modify the DDP of a formerly committed unit or the com-

mitment status of a previously offline unit, 0 otherwise). 

𝛿𝑔𝑡
𝐷𝐷𝑃 Continuous variable that allows for a modification of the DDP of a 

formerly committed generating unit through an OMC action. 
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𝛿𝑔𝑡
𝑅𝐸𝑆 Continuous variable that allows for a modification of the scheduled re-

serve from a formerly committed generating unit through an OMC ac-

tion. 

𝜂% Percentage of system-wide demand. 

𝜆𝑛 Locational marginal price (LMP) at node 𝑛. Dual variable that signifies 

the increase (or decrease) to the primal objective if there is slightly 

more (or less) consumption by the demand at node 𝑛. 

𝜌𝐵𝐶 , (𝜌𝐶) Probability of occurrence of the no contingency state or the base case 

(outage/contingency scenario 𝑐). 

𝛤𝑔𝑡
𝑐 , (𝛤𝑔𝑡

𝑐̅̅ ̅̅ ) Reserve activation factor for generator 𝑔 under generator contingency 

state 𝑐 and period 𝑡 (determined from training phase). 
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CHAPTER 1.  

INTRODUCTION 

1.1. Motivation 

Maintaining a continuous supply of electricity is of paramount importance to society. 

The society expects high reliability because the cost to society is high if there is a black-

out. This is evident from the Northeast blackout of 2003, which is estimated to have cost 

around $4-$10 billion [1]. Therefore, to ensure a continuous and reliable supply of elec-

tricity, electricity markets acquire ancillary services (or reserves) to protect against unex-

pected events. The Federal Energy Regulatory Commission (FERC) defines ancillary 

services as: “those services necessary to support the transmission of electric power from 

seller to purchaser, given the obligations of control areas and transmitting utilities within 

those control areas, to maintain reliable operations of the interconnected transmission 

system,” [2]. In other words, reserve is defined as backup capability that provides flexi-

bility to satisfy energy imbalances and mitigate uncertainty. Existing ancillary services 

include several types of reserves. Quick-reserve products, such as regulation and flexible 

ramping, respond to small forecast deviations that occur frequently, 10-minute reserves 

(i.e., spinning and non-spinning) respond to contingencies, and 30-minute reserves are 

used to replace other categories of reserve as they are depleted. It is important to note that 

only spinning reserve is considered in this research; however, the proposed solution 

methodologies can be extended to account for other reserve products. 

Due to the complexities of resource scheduling (e.g., security-constrained unit com-

mitment, SCUC) for the electric power grid while accounting for uncertainties, existing 

market management systems (MMS) are deterministic and incorporate various approxi-
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mations in order to simplify such complex combinatorial optimization problems. Section 

1.2 details a few instances of such approximations (or existing industry practices) that are 

commonly employed to handle large-scale complex models. One such suite of approxi-

mations includes reserve policies/products that have been introduced by system operators 

to ensure system reliability. Most system operators adopt deterministic criteria for contin-

gency reserve requirements. Such deterministic criteria often necessitate the contingency 

reserves to be greater than the capacity of the largest online generator or a certain per-

centage of the peak demand, or equal to some combination of the aforementioned criteria 

[3]. While such deterministic criteria are generally easy to implement, they do not con-

sider the inherent stochastic nature of such problems. Consequently, there is no guarantee 

that reserves, which are procured by the market, will actually be deliverable without vio-

lating transmission or voltage constraints. 

A deterministic model assumes perfect forecast with no uncertainty and does not take 

in account post-contingency states when making the scheduling decisions, i.e., ignores 

the effects of stochastic resources and nodal reserve deployment on physical network lim-

itations (e.g., congestion) post-contingency. In addition, existing approaches fail to allo-

cate reserves at prime locations that face fewer deliverability issues due to the inadequate 

representation of varying system operating conditions. 

The ideal solution is to model the uncertainty inside the optimization model (e.g., unit 

commitment, UC). This can be achieved by using stochastic programming approaches, 

e.g., extensive form, or two-stage stochastic programs, that determine reserve require-

ments implicitly by considering the corrective actions explicitly [4]–[5]. In [6]–[9], un-

certainties are explicitly represented in the model and are solved simultaneously. By ex-
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plicitly formulating the network constraints (and corrective actions), the reserves are en-

sured to be deliverable for the events that are modeled explicitly. Due to the more accu-

rate representation of the pre- and post-contingency operating states (or the endogenous 

representation of uncertainty), no pre-defined reserve requirements are necessary. While 

stochastic programming has the benefit of ensuring reliable solutions relative to the mod-

eling complexity, the limitation is the required computational complexity to ensure highly 

reliable solutions. Therefore, the computational challenges limit the potential modeling 

capabilities and, hence, limit the reliability and quality of the solutions. Robust optimiza-

tion is another approach that has been often proposed as a method to improve solution 

reliability for UC problems. Robust optimization guarantees a feasible solution for any 

possible realization in the modeled uncertainty set. Recently, more attention has been 

given to robust optimization in the power systems sector [10]–[11]. However, the corre-

sponding solutions are often very conservative, and the associated total operating costs 

tend to be correspondingly high. In addition, robust optimization today is still too compu-

tationally challenging for large-scale UC models. 

 While stochastic and robust optimization techniques are preferred since they implicit-

ly determine reserve, these methods, by themselves, are incapable of ensuring efficient 

and reliable UC solutions within reasonable timeframes. Instead, a balanced approach is 

desirable as reserve policies can act as necessary conditions for solution feasibility and 

can be used to improve convergence of these algorithms as well as make up for inaccu-

rate assumptions that are placed within these approaches in order to improve the conver-

gence of these complicated combinatorial problems. Thus, this work aims to provide ad-

vanced yet practically implementable solutions, while striking a good balance between 
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complexity and model accuracy. The central idea is to start with something attainable that 

still makes a sizeable improvement – and then march in the direction of (and enhance) 

advanced stochastic programming techniques. 

It is noteworthy that significant improvements can be achieved by operating the 

system based on stochastic optimization (or Monte Carlo simulations) that leverages 

statistical information of an ensemble of uncertain scenarios; note that stochastic 

optimization is used in this work as a broader term than stochastic programming. Thus, 

the hypothesis is to integrate data-mining, reserve requirement determination, and 

stochastic optimization in a holistic manner without compromising on efficiency, 

performance, and scalability. This dissertation will focus on developing new reserve poli-

cies that extend beyond existing reserve procurement rules, which are static. Existing re-

serve policies are predominantly independent of the operating state. Thus, this disserta-

tion will develop dynamic reserve policies that take into consideration the anticipated op-

erational state of the network. By doing so, the reserve policies will improve the deliver-

ability of reserves. The reserve policies will be designed to identify key locations where 

contingency reserve and ramping reserves for resource uncertainty are needed.  

The research will primarily focus on two methods to develop these reserve policies. 

First, the utilization of data analytics-based algorithms to develop reserve policies, that 

approximately encapsulate the abundance of information that is available regarding other 

potential realizations of uncertain scenarios to improve reserve scheduling decisions, will 

be investigated where offline analysis based on Monte Carlo simulations (or historical 

data) will be used. Second, responsive based reserve policies will also be investigated. 

Such reserve policies establish a set of generators (resource providing reserves) that are 
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designated to respond to an event since their reserves are deemed to be deliverable under 

the operating state of the network. These response sets can be determined at different 

time intervals and they can be fed into real-time security assessment tools to determine 

the security of the system. Finally, this research will also look into testing the contempo-

rary reserve assumptions, used by independent system operators (ISOs); the new reserve 

policies will be compared against the traditional reserve policies to demonstrate that the 

new reserve policies are better at identifying critical locations for reserve procurement. 

Besides, without the advent of new dynamic reserve policies, those responsible and 

obligated by the North American Electric Reliability Corporation (NERC) to maintain 

system reliability will continue to rely on traditional but less effective approaches to 

maintaining reliability. In addition, it is pertinent to note that, this work focuses on typical 

forms of uncertainty like generator contingency, load uncertainty, and renewable uncer-

tainty; line contingency is not addressed because traditional SCUC models already in-

clude transmission contingencies. In addition, since NERC mandates only N-1 reliability, 

this work does not focus on multiple contingencies; however, it could be extended in fu-

ture to accommodate the same. 

The main outcomes of this dissertation, with respect to reserve policies, include: (1) 

responsive-based reserve policies that are embedded inside of the UC framework in order 

to endogenously determine participation factors. (2) Enhanced dynamic reserve policies 

that acknowledge system operating conditions. (3) A methodology that utilizes offline 

knowledge discovery processes on historical data or leverages Monte Carlo simulations 

that generate hypothetical data. (4) Enhanced scheduling models for ancillary services 

(i.e., contingency reserves) to improve its allocation and deliverability in systems with 
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renewable resources, while preserving the computational complexity. (5) Finally, a com-

prehensive evaluation of the proposed reserve models, including their impacts on market 

efficiency and system reliability. 

1.2. Existing Industry Practices 

As per the reliability standards set by NERC, the system is required to be able to 

withstand an N-1 event. In other words, given a system with N elements, operators are 

required to continue serving demand reliably following the failure of any single bulk 

power system element. With such reliability requirements, the ideal approach would be to 

model all N-1 events explicitly within the SCUC model. However, it is a challenge to 

model the full network model for a large-scale power system and have it solved within 

the required time frame for just the pre-contingency state let alone the added computa-

tional complexity of adding post-contingency states. For example, as reported in [12], the 

Midcontinent Independent System Operator (MISO) manages a system with about 45,000 

buses. In order to meet the market clearing time requirements, MISO employs a 1200 

seconds time limit and a 0.1% MIP relative gap to solve its day-ahead (DA) SCUC model. 

MISO further mentions that it constantly encounters performance challenges in solving 

its DA SCUC model, which only includes the pre-contingency state, in spite of the 

aforementioned limits; thus, expanding the model in order to explicitly represent contin-

gency scenarios within the model would be computationally burdensome. Therefore, to 

address the performance challenges that arise from large-scale systems, the ISOs in the 

United States presently rely on heuristics, approximations, and policies rather than solv-

ing stochastic programs. 
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The utilization of such approximations is evident in industry practices. For instance, 

all mixed-integer linear programs (MILPs) for power systems, such as expansion plan-

ning and transmission switching, are approximations. The commonly used UC formula-

tion is a natural evolution of approximations and heuristics that have been present in the 

literature for many years. The dc optimal power flow (OPF) problem uses a linear ap-

proximation of the non-linear ac power flow. Another popular practice used by the indus-

try is the reduction of the power transfer distribution factor (PTDF) matrix used in sched-

uling models by omitting PTDFs, which have an absolute value less than a cutoff value. 

The California ISO (CAISO) uses a 2% cutoff while MISO and the Pennsylvania-New 

Jersey-Maryland (PJM) Interconnection employ a 5% PTDF cutoff threshold [13]–[15]. 

A simple yet neat heuristic policy like this can help reduce the computational burden 

drastically. Further approximations, such as the aggregation of radial nodes, the use of 

engineering judgment to reduce the PTDF matrix to model only critical components (i.e., 

lines and buses), the removal of inconsequential lines (i.e., lines that regularly have flows 

that are less than their nominal rates) from the full network model, and the use of inter-

face limits to approximate the flows on a subset of lines are common industry practices. 

ISOs use dynamic operating transfer capability and nomograms to effectively manage 

and control the scheduling of generation and critical line flows such that the reliability of 

the system is ensured. Nomograms are a set of rules that are used to describe safe operat-

ing regions and are developed to identify or define simultaneous (or multiple) operating 

constraints or scheduling limits without having to include the corresponding constraints 

in the model explicitly [16]. The central idea behind using nomograms is to operate the 

system, defined by the nomogram, such that no thermal, stability or voltage limits are vi-
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olated following the occurrence of an uncertain scenario. Nomograms are usually devel-

oped by analyzing the results from offline studies, performed under normal and emergen-

cy system conditions, using prior operating experience with the system and by predicting 

future operating conditions for the system. 

One widely known nomogram being used by CAISO is the one that controls the pow-

er flow on the California-Oregon intertie (COI). Nomograms are developed to identify 

simultaneous operating limits between COI and other transmission paths. The allowed 

transfer on the COI is restricted based on the flow on other critical paths. For example, 

the rating of the COI may be reduced to 4500 MW from 4800 MW if another path, i.e., 

the NW-Sierra path (Path 76), is utilizing its entire capacity of 300 MW [16]. In addition, 

as stated in [16], CAISO uses another nomogram to model the relationship between the 

hydro generation in the northern California region and the flow on the COI, which in turn 

affects the COI’s rating. The main motivation behind these nomograms is to maintain 

system reliability with easier to handle proxy constraints. Dependent on how these proxy 

methods are implemented, such preventive actions may inappropriately reduce the eco-

nomic efficiency. However, the goal of the energy market is to operate the system at least 

cost while maintaining reliability. Consequently, approximations remain a necessary ap-

proach to help strike a balance between model complexity and model accuracy. 

1.3. Overview of the Dissertation 

This dissertation is structured as follows. Chapter 2 provides a literature review. A 

thorough review of contemporary industry-based policy-driven approaches, which are 

currently embedded within forward dispatch optimization models, to ensure sufficient 

reserve is presented. However, the majority of these approaches have primarily focused 



 

9 

 

on the quantitative aspect of reserve, whereas this research focuses on the locational and 

the deliverability aspects of the reserve. In addition, existing efforts by researchers from 

both academia and industry in the direction of advanced stochastic programs and stochas-

tic reserve determination, in order to address uncertainties and adequately reflect chang-

ing operational conditions, are presented. However, the implementation of stochastic pro-

grams for large-scale power systems is a significant challenge due to its computational 

tractability and the market barriers associated with the pricing of products (i.e., energy 

and reserve) within such models. 

Chapter 3 presents an overview of electric energy optimization problems that are 

germane to this dissertation. In particular, it discusses the formulation for the determinis-

tic unit commitment problem as well as the extensive form N-1 reliable unit commitment 

problem. A discussion of the contingency analysis problem for assessing the effects (on 

security) of removing individual bulk elements (e.g., generator, transformer, transmission 

line, etc.) from an electric power system is presented. 

Operators make uneconomic adjustments, outside of the market (or optimization en-

gine), to ensure reliability when SCUC provides a solution that has undeliverable reserve 

or potential security violations. Two out-of-market correction (OMC) formulations are 

proposed in Chapter 4 to quantify the cost of security violations. The OMC approaches 

are proposed to mimic and optimize the out-of-market correction procures that are often 

employed by operators, wherein a market solution is traditionally modified and corrected 

(ex-post) by a system operator manually to find a solution that is 𝑁-1 reliable. The OMC 

approach provides a more appropriate and objective way to evaluate the cost to correct 

security violations in comparison to the value-of-lost-load (VOLL) approach. A case 
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study is conducted on a modified IEEE 118-bus system, wherein the proposed OMC 

models are used to evaluate the reliability of the system and are compared with the tradi-

tional VOLL approach. Finally, the proposed OMC models are used in the future chapters 

to conduct a fair comparison between the various SCUC solutions that have different 

costs and ensure different levels of security. The proposed OMC models are designed to 

pull the various SCUC solutions to a valid N-1 reliable solution or achieve the same level 

of reliability. 

Chapter 5 presents an enhanced SCUC model, which is modified to include a heuris-

tic reserve policy that aims to preemptively anticipate post-contingency congestion pat-

terns and account for uncertainty, simultaneously. The proposed heuristic policy uses 

post-contingency transmission constraints to predict the influence of recourse actions un-

der critical generator contingencies and to cover a range of uncertain scenarios by defin-

ing reserve response factors, which are determined offline using a data-mining algorithm. 

The main motive is to address both the locational and the deliverability issues that are 

usually associated with reserve. The performance of the proposed data-driven reserve re-

sponse set policy is compared against two sets of deterministic reserve policies and an 

extensive form stochastic UC model. Testing on a modified 2383-bus Polish test system 

illustrates that the proposed reserve model can improve market efficiency and enhance 

the reliability of the market solution at reduced costs while maintaining scalability and 

transparency. 

Chapter 6 presents an enhanced reserve procurement approach, which improves upon 

existing deterministic reserve rules and can potentially facilitate the transition to stochas-

tic models. The proposed approach aims to address the allocation and deliverability issues 
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associated with reserve by using reserve response-set policies and by appropriately mod-

eling the predicted effects of nodal reserve deployment on critical transmission lines post-

contingency. Here, the reserve response-set policies include scenario-specific reserve ac-

tivation factors, which incorporate deliverability information. In other words, the reserve 

activation factors reflect the quotient of scheduled reserve that is potentially deliverable 

in a specific scenario. The results show that the proposed approach improves the deliver-

ability of reserve post-contingency at reduced system operating costs, and with minimal 

added computational burden. In addition, the proposed approach is demonstrated to per-

form between traditional deterministic approaches and futuristic stochastic models. Nu-

merical studies are conducted on the IEEE 118-bus test case and on the 2383-bus Polish 

test case respectively. 

Chapter 7 analyzes the market implications of recent industry movements that modify 

the traditional market auction models to model generator contingencies more appropriate-

ly. A primal auction (and the corresponding dual) formulation that accounts for the pro-

posed changes is provided to enable a theoretical analysis of the anticipated changes in-

cluding, but not restricted to, effect on market prices, settlements and revenues. A com-

parison to existing market structures is also included. 

Finally, chapter 8 concludes this dissertation along with a discussion on potential fu-

ture work. 
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CHAPTER 2.  

LITERATURE SURVEY 

With the increasing integration of non-dispatchable (or semi-dispatchable) resources, 

such as wind and solar, managing system operations while maintaining system reliability 

is a critical challenge. This chapter reviews the state-of-the-art approaches to respond to 

these challenges including an overview of existing deterministic reserve policies that are 

included in present-day SCUC formulations; stochastic programming; robust optimiza-

tion; and stochastic optimization-based approaches. 

2.1. Existing Deterministic Reserve Rules and Practices 

The majority of the large balancing authorities employ deterministic reserve criteria 

that primarily focus on the quantitative and not the locational aspect of reserves and are 

predominantly independent of the system operating state. The underlying reason for this 

assumption is that the procured reserve is assumed to be deliverable irrespective of the 

system congestion/operating state. In order to improve the deliverability of reserves in 

large-scale power systems while maintaining the computational tractability of the model, 

one potential solution is to utilize policy-driven approaches to provide enhancement to 

existing scheduling models, i.e., SCUC and security-constrained economic dispatch 

(SCED) models. Due to the limitations of stochastic programs, today, the industry uses a 

deterministic approach to model scheduling problems, wherein the reserve requirements 

(system-wide or zonal) are modeled as inputs to the model and are determined a priori 

based on heuristics (e.g., N-1 reliability criterion, or based on predicted information re-

garding intermittent resource output and system demand, etc.). 
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2.1.1. Myopic Policies 

A policy is defined as “a rule (or function) that determines a decision given the avail-

able information in a specific state,” [17]. Myopic policies are regarded as elementary 

policies since they do not explicitly use forecasted information or any direct representa-

tion of decisions in the future [17]. An instance of once such myopic policy, in the con-

text of reserve rules, is the existing practice to approximate the N-1 reliability criterion 

for generator contingencies. N-1 reliability is achieved by ensuring the system can with-

stand the loss of any single bulk system element. For generator contingencies, N-1 is of-

ten approximated by something similar to (2.1); (2.1) simply requires a MW level of con-

tingency reserve to be acquired somewhere in the system for any particular generator 

contingency. This MW level of contingency reserve is a system-based quantity require-

ment. Today, most of the existing reserve rules involve some sort of approximations. 

Equation (2.2) describes a variant of the approximate N-1 policy and requires the system-

wide reserve to be no less than a certain percentage (𝜂) of the system-wide demand. Fur-

thermore, in [18], the National Renewable Energy Laboratory (NREL) suggests that the 

creation of such simplified linear rules, such as the 3+5 rule, hold promise to be used by 

market operators to allocate reserves to handle load and wind variability. The 3+5 rule 

suggests that the system-wide reserve should be no less than 3% of load plus 5% of the 

short-term forecasted wind. Such conservative heuristic rules do not ensure that the re-

serve is not stranded behind a congested portion of the network. 

∑ 𝑟𝑔𝑡𝑔 ≥ 𝑃𝑔𝑡 + 𝑟𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (2.1) 

∑ 𝑟𝑔𝑡 ≥ 𝜂%∑ 𝐷𝑛𝑡 , ∀𝑡 ∈ 𝑇𝑛𝑔 .  (2.2) 
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It is evident that myopic policies generally employ such tunable parameters to poten-

tially produce decent performances over time. However, since contemporary mathemati-

cal programs, used within MMS, rely on such simplistic proxies for reserve requirement, 

the market solutions may procure reserves that are not deliverable. Furthermore, with the 

integration of stochastic resources, it is becoming increasingly more challenging to main-

tain system reliability at least cost. 

2.1.2. Reserve Zones 

Myopic policies do not guarantee reliable operations (or ensure reserve deliverability) 

because they are formulaic rules that only capture the quantitative aspect. Therefore, in 

the recent years, the paradigm has shifted to regional (or zonal) reserve policies that dis-

perse the reserves across the system, thereby, improving the deliverability of reserve by 

ensuring that sufficient reserve is held within import-constrained regions. Today, system 

operators use the following approximations to address the locational aspect of reserves: 

1) reserve zones, 2) artificially de-rate critical transmission interfaces that connect neigh-

boring regions, and 3) nomograms that approximate the available transfer capability 

(ATC) on critical transmission paths. Enforcing reserve requirements on a zonal basis ra-

ther than a system-wide basis is a policy choice. Besides, the myopic policies detailed in 

Section 2.1.1 can be viewed as equivalent single-zone reserve models. 

It is pertinent to note that, most of the transmission system operators treat reserve 

zones as static in spite of the varying operational conditions. In fact, a few of the popular 

ways to determine reserve zones are either based on geographical boundaries or on the 

similarity in the impact (i.e., PTDFs) that a cluster of buses have on the flows on a set of 

selected pre-defined critical paths (i.e., inter-zonal interfaces or commercially significant 
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interfaces) instead of basing it on system operating conditions [19]. Furthermore, zonal 

reserve models typically include reserve zone configuration studies that are dependent on 

pre-defined and rarely updated guesstimates of anticipated transmission constraints, de-

spite the constantly changing system operating conditions. Thus, operators are usually 

forced to manually disqualify generators (behind unanticipated bottlenecks) or turn on 

additional units in local areas to account for modeling inaccuracies and to overcome the 

aforementioned shortfalls. Such operator-initiated modifications, which are made after 

the fact (i.e., outside the market), reduce market efficiency and referred to as out-of-

market corrections (OMCs). The terminology used for such actions varies between enti-

ties; for instance, such mediations are categorized as exceptional dispatches in CAISO 

[20], out-of-merit capacity/energy in the Electric Reliability Council of Texas (ERCOT) 

[21], and reserve disqualifications in MISO [22]. 

In order to account for changing congestion patterns, recent literature suggests updat-

ing zones on a more frequent basis. Reference [23] proposes a model for updating zones 

on a daily or an hourly basis by using probabilistic power flows to reflect changing sys-

tem operating conditions. As the level of penetration of renewables increases, traditional 

static zones will no longer be able to adequately reflect the changing operating conditions 

in the system; thus, dynamic reserve zones are proposed to account for the variability and 

uncertainty associated with renewable resources in addition to N-1 contingencies. In addi-

tion, the authors in [23] employ a statistical clustering algorithm (K-means), which uses a 

centrality measure based on weighted power transfer distribution factors (PTDFs), to 

produce the reserve zones. However, [23] does not consider reserve sharing between 

zones. MISO typically performs their reserve zone reconfiguration studies in conjunction 
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with their quarterly network model updates, however, the studies can be performed with-

in a quarter if the system state deviates considerably [22], [24]-[25]. 

It is pertinent to note that, the adoption of dynamic reserve zones has faced significant 

implementation barriers due to opposition from market participants/stakeholders regard-

ing the potential uncertainty over which zone they will be a part of because of how it 

would impact their profit and bidding strategy and due to the costs associated with updat-

ing the market clearing software. However, updating zones more frequently may improve 

the efficiency of the market model and reduce the need for uneconomic adjustments, like 

reserve disqualification, which cause further market distortions. 

Today, many ISOs have developed ways to account for reserve sharing when there is 

ATC on inter-zonal links. A simplistic representation of one such benchmark static zonal 

reserve model [26] used in this work, which is an extension of the model used by ISO 

New England (ISO-NE) [27], is described below. 

∑ �̃�𝑘𝑡
𝑐 ≥ 𝑃𝑐𝑡 + 𝑟𝑐𝑡𝑘∈𝑍 , ∀𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇  (2.3) 

�̃�𝑘𝑡
𝑐 ≤ ∑ 𝑟𝑔𝑡𝑔∈𝐺𝑘 , ∀𝑐 ∈ 𝐶𝑔, 𝑘 ∈ 𝑍, 𝑡 ∈ 𝑇  (2.4) 

�̃�𝑘𝑡
𝑐 ≤ 𝑆𝑘𝑡

𝑧(𝑐), ∀𝑐 ∈ 𝐶𝑔, 𝑘 ∈ 𝑍, 𝑡 ∈ 𝑇  (2.5) 

𝑆𝑘𝑡
𝑧(𝑐) ≤ 𝛼 (𝐹𝑙𝑘−𝑧(𝑐)

𝑅𝑎𝑡𝑒𝐶 ) ± 𝐹𝑙𝑡𝑘−𝑧(𝑐), ∀𝑐 ∈ 𝐶
𝑔, 𝑘 ∈ 𝑍, 𝑡 ∈ 𝑇 .  (2.6) 

The aforementioned model accounts for reserve sharing or artificial derating of criti-

cal transmission interfaces that connect adjacent zones. Here, �̃�𝑘𝑡
𝑐  is described as the re-

serve in zone 𝑘 that is classified as deliverable for contingency 𝑐 in contingency zone 

𝑧(𝑐) and period 𝑡. In addition, 𝑃𝑐𝑡 and 𝑟𝑐𝑡 are the pre-contingency real power-production 

and the scheduled reserve from generator 𝑔, respectively. 𝐹𝑙𝑡𝑘−𝑧(𝑐)  is the power flow on 
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the inter-zonal line connecting zones 𝑘 and the contingency zone 𝑧(𝑐). 𝐹𝑙𝑘−𝑧(𝑐)
𝑅𝑎𝑡𝑒𝐶 is the 

emergency line rating of the corresponding inter-zonal line. The reserve model presented 

in [26] does not account for uncertainties from stochastic resources. Note that the afore-

said reserve-sharing model formulation is for mutually exclusive (adjacent) zones; how-

ever, the model can be reformulated to model nested zones. 

Equation (2.3) requires the sum of the imported reserves and the reserve in contin-

gency zone 𝑧(𝑐) to be sufficient to replace the underlying generator contingency, (2.4) 

requires the quantity of the exported reserves to be no greater than the amount of reserves 

that are held within the corresponding exporting zone (or zone 𝑘), and (2.5) restricts the 

amount of reserves that can be shared (i.e., exported or imported) between adjacent 

zones, i.e., zone 𝑘 and the contingency zone 𝑧(𝑐). Constraint (2.6) limits the maximum 

amount of reserves that can be shared between two adjacent zones to the ATC (i.e., emer-

gency line rating less the line flow) of the corresponding inter-zonal interface connecting 

the two zones. In other words, the transfer capability is equal to the ATC when 𝛼 is equal 

to one in (2.6). In the context of this work, such a policy will be referred to as a liberal 

policy since there is no restriction on the percentage of the ATC (100%) that is allotted 

for reserve sharing. Alternately, the smaller the value of 𝛼 the more conservative the cor-

responding reserve sharing policy. In other words, 𝛼 controls and reflects the level of 

conservatism of the corresponding reserve sharing policy. Note that the algebraic sign of 

the second term in (2.6) is chosen based on the designated interface flow direction. For 

instance, the reserve import capability of 𝑧(𝑐) is increased (+ sign) if the “from” bus of 

the inter-zonal line is in 𝑧(𝑐) due to counter flow. Contrarily, the reserve import capabil-

ity of 𝑧(𝑐) is decreased (− sign) if the “to” bus of the inter-zonal line is in 𝑧(𝑐). 
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Here, the reserve sharing limit is system-dependent and can be pre-determined based 

on offline studies. Nevertheless, such estimates may be imprecise due to unanticipated 

congestion on the inter-zonal lines. Furthermore, effectively determining the optimum 

amount of reserves to be shared between zones still remains a challenge. Finally, such 

zonal reserve models are still rough approximations, since they treat all locations in the 

same zone as equal, ignoring intra-zonal congestion and leading to imprecise estimates of 

inter-zonal flows [28]. Thus, such models fail to address local congestion within zones. In 

other words, such a zonal model only partly addresses the inter-zonal deliverability issue; 

it does not address the intra-zonal reserve deliverability issue. Therefore, due to the limi-

tations of the aforementioned approximations that aim to address the locational aspect of 

reserves, system operators are forced to rely on OMCs to correct for procured reserve that 

may not be deliverable to meet reliability standards [23]. 

2.1.3. Response Sets 

To overcome the limitations of the aforementioned reserve models, recent papers in 

the literature have suggested introducing contingency-based sets/factors to allocate re-

serves at appropriate locations to better address reserve deliverability. Reference [29] 

constrains power flows based on participation factors that estimate how generators will 

respond to uncertain scenarios. In [26], the authors introduce contingency-specific re-

sponse sets to suspend/disqualify reserve held at unfavorable locations. Here, a two-stage 

decomposition algorithm that dynamically updates the response sets (to account for 

changing system conditions) is proposed as an alternative market mechanism to deter-

mine OMCs. 



 

19 

 

The reserve modeling approach presented in this research is motivated by the en-

hanced co-optimization process proposed and adopted by MISO in [22]. MISO suggests 

enhancing the market clearing process by incorporating post zonal reserve deployment 

transmission constraints for a pre-defined set of transmission elements, which can be ob-

tained from processes like simultaneous feasibility test, state estimation, or contingency 

analysis, to improve the transfer of reserves between zones in manageable time. By in-

corporating the post-contingency transmission constraints into the model explicitly, the 

zonal reserve quantity requirement is implicitly determined by the model rather than be-

ing provided as an input or a pre-determined policy. This removes the need to impose 

strict zonal reserve requirements since the reserve deployment constraints ensure ade-

quate dispersion of reserve procurement. However, the pre-defined set of critical trans-

mission assets in MISO’s case can only include inter-zonal transmission elements; there-

fore, the approach presented in [22] does not address intra-zonal congestion related is-

sues. The primary motive is to evaluate the aggregated impact of deployed zonal reserve, 

i.e., regulation, spinning, and supplemental reserve, on the pre-determined set of com-

mercially significant transmission lines (such as the interconnection reliability operating 

limit (IROL) and the significant transmission system operating limit (SOL) constraints), 

in the post-generator contingency state explicitly to enhance reliable operations. In other 

words, these constraints capture the effects of critical generator contingencies and the un-

derlying reserve deliverability issue on a zonal level. Note that to reduce the computa-

tional complexity, MISO restricts the reserve model to include only the largest generator 

contingency event per zone. Furthermore, MISO uses zonal aggregated sensitivities and 

pre-determined zonal reserve deployment factors to meet the reserve zone requirements, 



 

20 

 

including market-wide reserve requirements and deliverability requirements, and to ap-

proximate actual reserve deployment for the modeled event. Such a zonal approach does 

not capture the effect of post-contingency reserve deployment on critical transmission 

paths aptly. Furthermore, MISO uses a simplistic approach to pre-determine the zonal 

reserve deployment factors to do away from the associated complexity in determining the 

corresponding nodal factors, as a result of which all the acquired reserves are then de-

ployed on a zonal basis (potentially causing increased flow violations). An analogous ap-

proach for allocating and pricing operating reserves by modifying the SCED formulation 

is introduced in [30]. In addition, [30] includes an analysis on the effect of reserve alloca-

tion on generation scheduling. 

Two-stage scenario-based stochastic programs are often proposed to enhance opera-

tions under uncertainties [6], [8]. Such two-stage stochastic programs optimize the re-

course decision variable (or reserve activation) on a nodal (or zonal) basis inherently, 

whereas in [22], the primary difference is that MISO is implementing a zonal approxima-

tion with a pre-determined fixed reserve deployment factor. With this change, the indus-

try is moving away from deterministic program formulations to a stochastic program 

structure; consequently, the solution is expected to be closer to the valid solution obtained 

from two-stage stochastic programs proposed in [6], [8]. 

Analogous to the generator contingency modeling approach adopted by MISO in 

[22], CAISO intends to enhance its scheduling models to include generator contingencies 

and pre-determined special protection schemes or remedial action schemes (RAS) explic-

itly without utilizing second-stage recourse decision variables [31]. Here, the post-

contingency transmission constraints include generator loss distribution factors (GDF) 
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analogous to the more familiar participation factors that are used today in real-time con-

tingency analysis (RTCA) when simulating generator contingencies. Thus, there is evi-

dence to the use of pre-determined participation (deployment) factors to model the re-

serve response to generator contingencies explicitly without utilizing second-stage re-

course decisions. The key issue with such approaches lies in the appropriate determina-

tion of participation/deployment factors and the associated market pricing implications. 

Currently, system operators and market designers are exploring new policies to accom-

modate stochastic resources. This research proposes to improve upon existing industry 

practices to determine more appropriate nodal and zonal factors by leveraging stochastic 

optimization. 

2.2. Advanced Stochastic Programming Techniques 

The anticipated growth of intermittent resources, such as wind and solar, in the Unit-

ed States, has raised concerns about how system operators will maintain energy balance 

between generator production and demand because the availability of such resources is 

beyond human control and largely unpredictable. Today, to handle N-1 reliability, the in-

dustry solves deterministic SCUC and security-constrained optimal power flow (SCOPF) 

problems, with reserve requirements modeled within SCUC and SCOPF, which does not 

explicitly capture the uncertain event. Thus, there is a need to modify and enhance the 

existing deterministic formulations, while ensuring both reliability and economic effi-

ciency, in order to capture the operating states pre- and post-contingency more accurately 

and to adapt to the challenges posed by stochastic resources [32]-[33]. 
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2.2.1. Stochastic Programming 

In the recent years, stochastic programming has been widely proposed as a solution to 

the task of optimizing reserve operations, to address system uncertainty, due to the fact 

that reserve dispatch decisions are optimized endogenously in the program formulation. 

One potential solution is to use scenario-based multistage stochastic programs [34]-[35]. 

For instance, two-stage stochastic programs explicitly model multiple scenarios and con-

sider the cost for corrective actions (or recourse decisions); the obtained solution is both 

efficient and robust with respect to the scenarios considered in the stochastic program. 

Current research has also aimed to address the uncertainty in day-ahead unit com-

mitment, e.g., discrete disturbances including generator and transmission line outages and 

continuous disturbances including demand and renewable uncertainty, with the use of 

stochastic programming. For example, one of the modeling approaches to handling N-1 

reliability is to use a two-stage stochastic unit commitment formulation, wherein the two 

stages represent the pre- and post-contingency states respectively. The two stages are 

linked together by constraints that govern how the system will respond to the contingen-

cy. A general, two-stage stochastic programming formulation for the unit commitment 

problem is investigated in [34], where reserve requirements are enforced to overcome the 

limitations of using a reduced scenario set. Reference [36] uses a two-stage stochastic 

programming framework to determine the required levels of reserve in systems with high 

wind penetration. 

Extensive form stochastic unit commitment problems can be solved with decomposi-

tion techniques, where the master problem contains the modeling of the initially chosen 

scenarios as well as feasibility cuts generated by the sub-problem due to infeasibilities of 
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remaining scenarios. The authors in [36] use the progressive hedging algorithm proposed 

in [37] to solve the stochastic unit commitment problem by decomposing it into n single-

scenario sub-problems. Reference [38] employs a decomposition algorithm based on an 

augmented Lagrangian technique to solve a multistage stochastic unit commitment prob-

lem. Reference [39] proposes a heuristic solution methodology to solve multistage sto-

chastic mixed-integer programming models. Furthermore, multiple techniques have been 

proposed, including, but not limited to, scenario selection techniques to reduce the num-

ber of scenarios, probability distributions for uncertain parameters, as well as chance-

based constraints, [40]-[46]. However, these types of approaches (for example, Benders’ 

decomposition, Lagrangian relaxation, etc.) are known for having long tails regarding 

convergence, which is why stochastic programming is still not used today for large-scale 

unit commitment problems. In addition, adding feasibility cuts to the master problem not 

only adds constraints but also variables. 

In spite of its appealing features, the application of stochastic programming presents 

numerous challenges. For instance, a large number of scenarios may be required to obtain 

a solution with reasonable accuracy, which is computationally intensive. Another chal-

lenge is to develop a methodical approach for selecting and aptly weighing the uncertain 

scenarios that are to be included in the stochastic program. Furthermore, the implementa-

tion of stochastic programs for large-scale power systems is a significant challenge due to 

its computational tractability when it comes to solving large-scale stochastic programs 

within required timeframes. Other barriers that prevent such models from practical con-

sideration include, but are not limited to, complications/market barriers associated with 

the pricing of products (e.g., energy and ancillary service) in a stochastic market envi-
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ronment, consistency of solution quality subject to solution timeframe, lack of transpar-

ency for stakeholders, scalability, and stakeholder opposition to drastic changes in exist-

ing market structures. Thus, one solution is to create proxy reserve requirements or policy 

functions for the quantity and location of reserves needed in the grid. 

2.2.2. Robust Optimization 

Recently, robust optimization has also been considered as an appealing formulation, 

in order to address uncertainty, due to the fact that system operators have a predisposition 

to operate the system in order to avoid worst-case consequences, and also because sto-

chastic programming needs an excessive amount of information about the underlying un-

certainty. In addition, robust optimization has the added advantage of providing a solution 

that is immune against all realizations of the uncertain data within the uncertainty set. For 

example, ISO-NE is exploring the use of robust optimization to determine what they de-

fine as do-not-exceed (DNE) limits for intermittent renewable power producers [47]-[49]. 

These DNE limits, however, are zonally structured limits; they do not take into considera-

tion the locational aspect of the resource that causes the uncertainty, nor do they take into 

consideration the ramping reserve product that is meant to respond to such events. Such 

an approximation is made since the computational complexity of robust optimization ex-

ponentially increases for optimal power flow problems when the uncertainty is modeled 

on a locational basis. Reference [50] focuses on determining DNE limits for wind genera-

tors on a nodal basis; however, solving this class of optimization problems on a large-

scale power system is a significant challenge given the modeling complexity.  

A two-stage adaptive robust unit commitment model for the SCUC problem in the 

presence of nodal net injection uncertainty is proposed in [11], which requires a deter-
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ministic uncertainty set (i.e., moderate information about the underlying uncertainty) in 

comparison to a hard-to-obtain probability distribution on the uncertain data in the con-

ventional stochastic programming approaches. Similar robust optimization UC models 

are proposed in [51]-[54]. Here, the authors use Benders’ decomposition to solve the 

problem and illustrate that the addition of transmission capacity and ramp rate limits 

complicates the problem significantly. A unified stochastic and robust unit commitment 

model that combines the advantages of both the approaches, i.e., a low expected total cost 

while ensuring robustness, by introducing weights that control the corresponding part’s 

effectiveness in the objective function is proposed in [55]. However, the aforementioned 

models only consider continuous uncertainty sets, i.e., intermittent renewable and de-

mand uncertainty; in other words, such models do not extend to account for discrete un-

certainties, such as generator and line outages, in an uncomplicated manner. 

Robust optimization-based models have also proposed to address reserve deliverabil-

ity. In [56], a robust optimization model with time-coupled affine policies is designed to 

improve reserve allocation in real-time operation. In addition, a clearing model for the 

policy-based reserves is designed. In [57], an affinely adjustable robust OPF formulation 

is developed. Participation factors are utilized in the model to adjust generation dispatch 

after renewable uncertainty is realized. In [58], a robust optimization framework is de-

signed to address increased renewable uncertainties. Reserve deliverability is enhanced 

by using robust optimization techniques. A new concept named uncertainty marginal 

price is developed to price and allocate the cost of uncertainty. In [59], adjustable robust 

optimization is utilized to address generator and line contingencies in systems with re-

newable resources. Costs associated with reserve deployment are explicitly considered in 
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the optimization model. While the aforementioned papers can effectively enhance reserve 

deliverability, these robust optimization-based models are computationally challenging 

when applied to SCUC problems for large-scale systems. More importantly, the imple-

mentation of such models would necessitate a complete market design overhaul because 

it is not aligned with existing market structures. 

2.3. Stochastic Optimization-Based Techniques 

Today, the uncertainty associated with renewable resources is handled by using oper-

ating reserves capacity. There is a general consensus that significant improvements could 

be achieved by devising a flexible operational plan that can follow different realizations 

of the future in an effective fashion. Effectively and efficiently controlling the quantity, 

location, and deliverability of contingency reserves (i.e., spinning and non-spinning) can 

lead to substantial cost savings and reliability enhancements in large-scale power sys-

tems. The hypothesis of this work is that a significant amount of the surplus lost in fol-

lowing the traditional and inefficient approaches can be regained by operating the system 

based on stochastic optimization that leverages statistical information of an ensemble of 

scenarios. The goal is to complement similar existing efforts in the industry. 

An instance of the use of offline stochastic simulations for reserve determination, 

such as stochastic reserve determination, in the industry is evident in [60]. The Electric 

Power Research Institute (EPRI) proposes to use an offline stochastic programming 

approach for the CAISO to produce potential reserve quantities and locations (i.e., 

dynamic reserve procurement policies) in [60]-[61]. Here, a stochastic program is solved 

before the real-time (RT) model, i.e., during the intra-day scheduling period, and the 

results are used to determine dynamic reserve requirements that are to be included within 
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CAISO’s RT market, which is a deterministic program. The authors in [61] simulate and 

deploy dynamic reserve policies based on stochastic OPF and study its potential benefits. 

Such an approach should make improvements beyond CAISO’s existing reserve rules 

because it determines a quantity of reserve to procure within each of the CAISO’s zones. 

However, this process can be enhanced because it relies on static reserve zones and 

neglects intra-zonal congestion. 

2.4. Summary 

With the current trend towards higher levels of intermittent renewable resources, the 

location, i.e., deliverability, of reserves will become more critical in addition to the quan-

tity. Higher levels of renewables not only increase the reserve level but also increase the 

difficulty in predicting the network flows and the resulting bottlenecks. Furthermore, 

voltage transfer limits may limit the ability to deliver reserves. Today’s static reserve pol-

icies, will, thus, be even more inefficient at achieving system reliability at least cost. Ad-

ditional reserves will need to be acquired, thereby forcing generators to operate at unde-

sirable production levels for the sake of providing reserves. While it is possible to rely on 

existing static reserve policies that inadequately reflect changing operational conditions, 

such procedures drive down the market surplus and it is anticipated that generator com-

pensation will decrease as well in spite of the fact that they will be needed to provide 

even more reserves as the level of non-dispatchable resources increases. As a result, ad-

vanced stochastic programming techniques are being proposed to overcome the short-

comings of deterministic models. However, while more robust solutions can be obtained 

from stochastic programming models, stochastic programs are less computationally trac-

table when compared to deterministic models. This work aims to combine advanced re-
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serve policies with stochastic optimization-based approaches to address the impacts of 

stochastic resources and improve the deliverability of reserve. The main motive is to sup-

port the existing efforts by academia and industry to schedule reserve appropriately with 

minimal added computational burden [60]-[63]. 
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CHAPTER 3.  

REVIEW OF ELECTRIC ENERGY OPTIMIZATION PROBLEMS 

This chapter provides background information on the optimization problems that are 

pertinent to this dissertation; specifically, the deterministic unit commitment problem, the 

extensive form N-1 reliable unit commitment problem, and a preview of the contingency 

analysis problem. 

3.1. Deterministic Unit Commitment Formulation 

Unit commitment is the problem of scheduling generators in response to the antici-

pated system demand while accounting for physical network constraints. Numerous solu-

tion techniques for the unit commitment problem have evolved over time. This includes 

dynamic programming [64], Lagrangian relaxation [65]-[66], and MILP [67]-[68]. In this 

research, the day-ahead security constrained unit commitment model (DA SCUC) is for-

mulated as a MILP. The objective (3.1) is to minimize the total operating costs, which 

includes the fuel costs (i.e., variable operating costs and fixed costs – no-load costs, 

startup costs, and shutdown costs) and the cost of reserves, subject to generator and net-

work constraints. One potential formulation of the DA SCUC problem is described in 

(3.1)-(3.18). It is pertinent to note that, the demand is assumed to be perfectly inelastic in 

the formulation described below; consequently, minimizing total operating costs is equiv-

alent to maximizing social welfare. 

Minimize:∑ 𝐶𝑔(𝑃𝑔𝑡) + 𝐶𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝐶𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝐶𝑔
𝑆𝐷𝑤𝑔𝑡 + 𝐶𝑔

𝑟𝑒𝑠𝑟𝑔𝑡𝑔,𝑡   (3.1) 

Subject to: 

𝑖𝑛𝑡 = ∑ 𝑃𝑔𝑡 − 𝐷𝑛𝑡𝑔∈𝐺𝑛 , ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇  (3.2) 
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∑ 𝑖𝑛𝑡 = 0, ∀𝑛 𝑡 ∈ 𝑇 (3.3) 

𝐹𝑙𝑡 = ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙𝑖𝑛𝑡𝑛 , ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇  (3.4) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐴 ≤ 𝐹𝑙𝑡 ≤ 𝐹𝑙

𝑅𝑎𝑡𝑒𝐴, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (3.5) 

𝑃𝑔𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (3.6) 

𝑃𝑔
𝑚𝑖𝑛 𝑢𝑔𝑡 ≤ 𝑃𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (3.7) 

∑ 𝑣𝑔𝑞 ≤ 𝑢𝑔𝑡
𝑡
𝑞=𝑡−𝑈𝑇𝑔+1

, ∀𝑔 ∈ 𝐺, 𝑡 ∈ {𝑈𝑇𝑔, … , 𝑇}  (3.8) 

∑ 𝑤𝑔𝑞 ≤ 1 − 𝑢𝑔𝑡
𝑡
𝑞=𝑡−𝐷𝑇𝑔+1

, ∀𝑔, 𝑡 ∈ {𝐷𝑇𝑔, … , 𝑇} (3.9) 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (3.10) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔
60𝑢𝑔,𝑡−1 + 𝑅𝑔

𝑆𝑈𝑣𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (3.11) 

𝑃𝑔,𝑡−1 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
60𝑢𝑔,𝑡 + 𝑅𝑔

𝑆𝐷𝑤𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (3.12) 

∑ 𝑟𝑔𝑡 ≥ 𝑃𝑔𝑡 + 𝑟𝑔𝑡𝑔 , ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (3.13) 

∑ 𝑟𝑔𝑡 ≥ 𝜂%∑ 𝐷𝑛𝑡𝑛𝑔 , ∀𝑡 ∈ 𝑇 (3.14) 

𝑣𝑔𝑡 −𝑤𝑔𝑡 = 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (3.15) 

𝑢𝑔𝑡 ∈ {0,1}, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (3.16) 

0 ≤ 𝑣𝑔𝑡 ≤ 1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (3.17) 

0 ≤ 𝑤𝑔𝑡 ≤ 1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 .  (3.18) 

In the above formulation, constraint (3.2) models the power injection at every bus, 

whereas constraint (3.3) guarantees energy balance between the demand and the supply at 

the system level. The load at a bus is modeled as a withdrawal while generator supplies 

are injections. Constraint (3.4) represents the dc approximation of the power flow on each 

line and (3.5) imposes the transmission line capacity limits, i.e., either the thermal or the 

stability limits. Generators have physical/operational limitations with respect to their ca-
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pacity and ramping ability. Constraints (3.6) and (3.7) represent the generator output limit 

constraints. Facet-defining valid inequalities that help improve the computational time of 

the unit commitment problem are used to describe the minimum up and down time con-

straints and are shown in (3.8)-(3.9) [69]. The minimum up (or down) time constraint re-

quires a generator to be on (or off) for a pre-determined number of hours once it has been 

turned on (or off) due to the physical limitations of the corresponding generator. Con-

straint (3.10) represents the ramp rate restriction for spinning reserves, which is a ten-

minute ancillary service product. It is important to note that, in this dissertation, contin-

gency reserves are modeled by spinning reserves, and are subsequently used to mitigate 

the contingencies in the system. The hourly ramp rate constraints, shown in (3.11) and 

(3.12), describe the speed at which a unit can ramp up and ramp down its production lev-

els between two consecutive hours or while starting up and shutting down, respectively. 

System-wide spinning reserve requirements are modeled in (3.13) and (3.14). Constraints 

(3.13) and (3.14) together require that the system-wide reserve be no less than the single 

largest generator contingency or 𝜂% of the total demand in the system, whichever is 

greater, in order to ensure system reliability. In other words, they describe a single-zone 

reserve model, which is also referred to as a myopic policy in the context of this disserta-

tion. Constraint (3.15) models the relationship between the unit commitment variables 

and the startup and shutdown variables. Lastly, constraints (3.16)-(3.18) model the binary 

commitment (𝑢) decision and the continuous startup (𝑣) and shutdown (𝑤) decisions 

respectively. 
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3.2. Extensive Form N-1 Reliable Unit Commitment Formulation 

Prior studies of managing uncertainty in the unit commitment problem can be classi-

fied into two subgroups. The first subgroup, i.e., the deterministic unit commitment prob-

lem described above, uses conservative heuristic reserve rules to handle the uncertainty 

implicitly. However, the real-time condition may deviate significantly from the expected 

value of the operating condition resulting in capacity inadequacy. The second subgroup 

uses stochastic programming techniques that include a probability distribution of the un-

certainty explicitly and depend upon a pre-sampled set of discrete scenarios of the uncer-

tain realizations [11]. Thus, the reserve dispatch decisions are optimized endogenously. 

Uncertainty in power system operations is usually caused either by continuous disturb-

ances (e.g., demand and renewable energy forecast errors) or by discrete disturbances 

(e.g., generator, transmission line, and transformer outages). The extensive form 

stochastic unit commitment formulation to manage discrete disturbances (i.e., for N-1 

reliability) is defined by (3.19)-(3.55). The objective is to minimize the expected cost 

over a wide range of uncertain outage realizations. 

Minimize:∑ 𝜌𝐵𝐶𝐶𝑔(𝑃𝑔𝑡) + 𝐶𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝐶𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝐶𝑔
𝑟𝑒𝑠𝑟𝑔𝑡 + ∑ 𝜌𝑐𝐶𝑔(𝑃𝑔,𝑐,𝑡)𝑔,𝑐,𝑡𝑔,𝑡   (3.19) 

Subject to: 

Base-case modeling of generation: 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡 ≤ 𝑃𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (3.20) 

𝑃𝑔𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (3.21) 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (3.22) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔
60𝑢𝑔,𝑡−1 + 𝑅𝑔

𝑆𝑈𝑣𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≥ 2 (3.23) 
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𝑃𝑔,𝑡−1 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
60𝑢𝑔𝑡 + 𝑅𝑔

𝑆𝐷(𝑣𝑔𝑡 − 𝑢𝑔𝑡 + 𝑢𝑔.𝑡−1), ∀𝑔 ∈ 𝐺, 𝑡 ≥ 2 (3.24) 

𝑃𝑔1 − 𝑃𝑔,𝑇 ≤ 𝑅𝑔
60𝑢𝑔,𝑇 + 𝑅𝑔

𝑆𝑈𝑣𝑔1, ∀𝑔 ∈ 𝐺 (3.25) 

𝑃𝑔,𝑇 − 𝑃𝑔1 ≤ 𝑅𝑔
60𝑢𝑔,1 + 𝑅𝑔

𝑆𝐷(𝑣𝑔1 − 𝑢𝑔1 + 𝑢𝑔,𝑇), ∀𝑔 ∈ 𝐺  (3.26) 

∑ 𝑣𝑔,𝑞
𝑡
𝑞=𝑡−𝑈𝑇𝑔+1

≤ 𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≥ 𝑈𝑇𝑔 (3.27) 

∑ 𝑣𝑔,𝑞
𝑇
𝑞=𝑇+𝑡−𝑈𝑇𝑔+1

+∑ 𝑣𝑔,𝑞
𝑡
𝑞=1 ≤ 𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≤ 𝑈𝑇𝑔 − 1 (3.28) 

∑ 𝑣𝑔,𝑞
𝑡+𝐷𝑇𝑔
𝑞=𝑡+1 ≤ 1 − 𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≤ 𝑇 − 𝐷𝑇𝑔 (3.29) 

∑ 𝑣𝑔,𝑞
𝑡+𝐷𝑇𝑔−𝑇

𝑞=1 + ∑ 𝑣𝑔,𝑞
𝑇
𝑞=𝑡+1 ≤ 1 − 𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≥ 𝑇 − 𝐷𝑇𝑔 + 1  (3.30) 

𝑣𝑔𝑡 ≥ 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1, ∀𝑔 ∈ 𝐺, 𝑡 ≥ 2 (3.31) 

𝑣𝑔1 ≥ 𝑢𝑔1 − 𝑢𝑔,𝑇 , ∀𝑔 ∈ 𝐺  (3.32) 

0 ≤ 𝑣𝑔𝑡 ≤ 1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (3.33) 

𝑢𝑔𝑡 ∈ {0,1}, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (3.34) 

Base-case modeling of power flow: 

𝑖𝑛𝑡 = ∑ 𝑃𝑔𝑡 − 𝐷𝑛𝑡𝑔∈𝐺𝑛 , ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇  (3.35) 

∑ 𝑖𝑛𝑡 = 0, ∀𝑛 𝑡 ∈ 𝑇  (3.36) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐴 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙

𝐵𝐶𝑖𝑛𝑡𝑛 ≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐴, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇  (3.37) 

Modeling of generator outage: 

𝑃𝑔𝑡 − 𝑃𝑔,𝑐,𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶

𝑔, 𝑡 ∈ 𝑇 (3.38) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑐,𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.39) 

𝑃𝑔,𝑐,𝑡 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶

𝑔, 𝑡 ∈ 𝑇  (3.40) 

𝑃𝑔,𝑐,𝑡 − 𝑃𝑔𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇  (3.41) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡 ≤ 𝑃𝑔,𝑐,𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.42) 
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𝑃𝑔,𝑐,𝑡 = 0, ∀𝑔: 𝑔 = 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇  (3.43) 

𝑖𝑛,𝑐,𝑡 = ∑ 𝑃𝑔,𝑐,𝑡 − 𝐷𝑛𝑡𝑔∈𝐺𝑛 , ∀𝑛, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.44) 

∑ 𝑖𝑛,𝑐,𝑡 = 0, ∀𝑐𝑛 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇  (3.45) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙

𝐵𝐶𝑖𝑛,𝑐,𝑡 ≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 , ∀𝑙𝑛 ∈ 𝐿, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.46) 

Modeling of non-radial transmission line or transformer outage: 

𝑃𝑔𝑡 − 𝑃𝑔,𝑐,𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶

𝑙 , 𝑡 ∈ 𝑇  (3.47) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑐,𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶
𝑙 , 𝑡 ∈ 𝑇 (3.48) 

𝑃𝑔,𝑐,𝑡 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶

𝑙 , 𝑡 ∈ 𝑇 (3.49) 

𝑃𝑔,𝑐,𝑡 − 𝑃𝑔𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶
𝑙 , 𝑡 ∈ 𝑇 (3.50) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡 ≤ 𝑃𝑔,𝑐,𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶
𝑙 , 𝑡 ∈ 𝑇  (3.51) 

∑ 𝑃𝑇𝐷𝐹𝑛,𝑙
𝐶 𝑖𝑛,𝑐,𝑡 = 0, ∀𝑙: 𝑙 = 𝑐𝑛 , 𝑐 ∈ 𝐶𝑙 , 𝑡 ∈ 𝑇 (3.52) 

𝑖𝑛,𝑐,𝑡 = ∑ 𝑃𝑔,𝑐,𝑡 − 𝐷𝑛𝑡𝑔∈𝐺𝑛 , ∀𝑛, 𝑐 ∈ 𝐶𝑙 , 𝑡 ∈ 𝑇  (3.53) 

∑ 𝑖𝑛,𝑐,𝑡 = 0, ∀𝑐𝑛 ∈ 𝐶𝑙 , 𝑡 ∈ 𝑇  (3.54) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙

𝐶 𝑖𝑛,𝑐,𝑡 ≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 , ∀𝑙: 𝑙 ≠ 𝑐𝑛 , 𝑐 ∈ 𝐶𝑙 , 𝑡 ∈ 𝑇  (3.55) 

In comparison to the deterministic unit commitment formulation, presented in Section 

3.1, the above formulation includes the added explicit representation of a set of uncertain 

scenarios, wherein each scenario represents a contingency (i.e., the loss of a single bulk 

power system element) that occurs with a probability 𝜌𝑐. Thus, the second-stage deci-

sions are indexed by contingency, 𝑃𝑔,𝑐,𝑡, and the objective is to minimize the expected 

operating costs across all scenarios, including the base-case pre-contingency scenario that 

occurs with a probability 𝜌𝐵𝐶 . In addition, the net injection 𝑖𝑛,𝑐,𝑡 at all nodes can change 

in the second stage and is therefore indexed by contingency. Here, 𝐶𝑔 is the set of genera-
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tor contingencies and 𝐶𝑙 is the set of transmission element contingencies excluding the 

radial transmission lines. 

It is important to note that, in this formulation, the deviation (both upward and 

downward) in a generator’s output level, from the base-case schedule to the post-

contingency schedule, is limited either by its 10-minute ramp rate (𝑅𝑔
10) or by its reserve 

dispatch decision (𝑟𝑔𝑡) from the first-stage, and is denoted by constraints (3.38)-(3.41) 

and (3.47)-(3.50), for generator and transmission element (line or transformer) outages, 

respectively. Constraints (3.42) and (3.51) restrict the post-contingency dispatch sched-

ules to lie within the corresponding generator bounds, for generator and transmission el-

ement contingencies, respectively. Generator contingencies are modeled by constraint 

(3.43), which forces the post-contingency dispatch decision for the corresponding genera-

tor outage to equal zero; similarly, transmission element contingencies are modeled by 

constraint (3.52), which forces the post-contingency power flow on the corresponding 

transmission element outage to equal zero. Finally, constraints (3.44)-(3.46) and (3.53)-

(3.55) model the post-contingency power flows, for the generator and transmission ele-

ment outages, respectively. Since power transfer distribution factors (PTDFs) depend on 

the topology of the network, the PTDFs have to be updated (𝑃𝑇𝐷𝐹𝑛,𝑙
𝐶 ) for each possible 

realization of a transmission element outage, whereas this is not the case when modeling 

generator outages because the topology remains the same. Lastly, in the case of an emer-

gency or an outage, the power flow on a transmission line is allowed to exceed its nomi-

nal thermal rating (rate A) and reach up to its emergency line rating (rate C), which is in-

dicated in (3.46) and (3.55). 
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3.3. Contingency Analysis 

The N-1 reliability standard that is typically enforced for operations specifies that the 

system must be able to withstand the loss or failure of any single bulk system element 

(e.g., generator, transmission line, or transformer), which is also referred to as an un-

planned outage, in order to avoid a blackout. Present-day energy management systems 

(EMS) are equipped with preview tools to analyze the effect of contingencies in an auto-

matic manner, and to check for the feasibility of the SCUC solution to continue serving 

the demand reliably in the event of a statistically likely outage (i.e., to evaluate power 

system security or N-1 reliability).  

The contingency analysis software application can be used both as an offline analysis 

or an online tool to assist the operators or planners in being more prepared to respond to 

disturbances by taking certain prescribed procedures, thereby, avoiding potential security 

violations (i.e., load shedding, over-generation, or line overloads) in the post-contingency 

state. Contemporary unit commitment formulations do not enforce strict N-1 require-

ments due to the corresponding increase in the modeling complexity; instead, reserve 

constraints are used as a proxy to ensure sufficient backup capacity would be available to 

respond to a contingency.  In this dissertation, only 10-minute spinning reserves are used 

to respond to a contingency; however, the model can be extended to include other reserve 

types. The contingency analysis problem formulation is given below. 

Minimize:∑ 𝑐𝐿𝑆(𝐿𝑆𝑛,𝑐,𝑡
+ + 𝐿𝑆𝑛,𝑐,𝑡

− )𝑛,𝑐,𝑡   (3.56) 

Subject to: 

Post-contingency ramping restriction on generation and modeling of generator contin-

gencies: 
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−𝑃𝑔,𝑐,𝑡 ≤ 𝑟𝑔𝑡̅̅̅̅ − 𝑃𝑔𝑡̅̅ ̅̅ , ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶
𝑔, 𝑡 ∈ 𝑇  (3.57) 

𝑃𝑔,𝑐,𝑡 ≤ 𝑟𝑔𝑡̅̅̅̅ + 𝑃𝑔𝑡̅̅ ̅̅ , ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.58) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡̅̅ ̅̅ ≤ 𝑃𝑔,𝑐,𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔𝑡̅̅ ̅̅ , ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.59) 

𝑃𝑔,𝑐,𝑡 = 0, ∀𝑔: 𝑔 = 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.60) 

−𝑃𝑔,𝑐,𝑡 ≤ 𝑟𝑔𝑡̅̅̅̅ − 𝑃𝑔𝑡̅̅ ̅̅ , ∀𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶
𝑙 , 𝑡 ∈ 𝑇  (3.61) 

𝑃𝑔,𝑐,𝑡 ≤ 𝑟𝑔𝑡̅̅̅̅ + 𝑃𝑔𝑡̅̅ ̅̅ , ∀𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶
𝑙 , 𝑡 ∈ 𝑇 (3.62) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡̅̅ ̅̅ ≤ 𝑃𝑔,𝑐,𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔𝑡̅̅ ̅̅ , ∀𝑔 ∈ 𝐺, 𝑐 ∈ 𝐶𝑙 , 𝑡 ∈ 𝑇 (3.63) 

Post-contingency modeling of power flow and transmission element (non-radial trans-

mission line or transformer) contingencies: 

𝑖𝑛,𝑐,𝑡 = ∑ 𝑃𝑔,𝑐,𝑡 − 𝐷𝑛𝑡 + 𝐿𝑆𝑛,𝑐,𝑡
+ − 𝐿𝑆𝑛,𝑐,𝑡

−
𝑔∈𝐺𝑛 , ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.64) 

∑ 𝑖𝑛,𝑐,𝑡 = 0, ∀𝑐𝑛 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.65) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙

𝐵𝐶𝑖𝑛,𝑐,𝑡 ≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 , ∀𝑙𝑛 ∈ 𝐿, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (3.66) 

𝑖𝑛,𝑐,𝑡 = ∑ 𝑃𝑔,𝑐,𝑡 − 𝐷𝑛𝑡 + 𝐿𝑆𝑛,𝑐,𝑡
+ − 𝐿𝑆𝑛,𝑐,𝑡

−
𝑔∈𝐺𝑛 , ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑙 , 𝑡 ∈ 𝑇 (3.67) 

∑ 𝑖𝑛,𝑐,𝑡 = 0, ∀𝑐𝑛 ∈ 𝐶𝑙 , 𝑡 ∈ 𝑇 (3.68) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙

𝐶 𝑖𝑛,𝑐,𝑡 ≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 , ∀𝑙: 𝑙 ≠ 𝑐𝑛 , 𝑐 ∈ 𝐶𝑙 , 𝑡 ∈ 𝑇  (3.69) 

∑ 𝑃𝑇𝐷𝐹𝑛,𝑙
𝐶 𝑖𝑛,𝑐,𝑡 = 0, ∀𝑙: 𝑙 = 𝑐𝑛 , 𝑐 ∈ 𝐶𝑙 , 𝑡 ∈ 𝑇 (3.70) 

Analogous to the extensive-form N-1 reliable unit commitment formulation in Section 

3.2, 𝐶𝑔 is the set of generator contingencies and 𝐶𝑙 is the set of transmission element 

(i.e., transmission line or transformer) contingencies excluding the radial transmission 

lines. In its minimalistic form, contingency analysis basically involves executing a dc 

power flow analysis for each potential outage. The resulting power flows on transmission 

lines are restricted to lie within the emergency line ratings (rate C) indicated by con-
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straints (3.66) and (3.69), for generator and transmission element contingencies, respec-

tively. Furthermore, in the above formulation, slack variables 𝐿𝑆𝑛,𝑐,𝑡
+  and 𝐿𝑆𝑛,𝑐,𝑡

−  represent 

the load shedding and load surplus variables respectively. Consequently, the objective 

(3.56) is to minimize the load shed or the over-generation, in the event of an outage, sub-

ject to the physical network constraints of the system.   

The primary motive is to continue serving demand reliably while maintaining the sys-

tem frequency within a tolerable range of 60 Hz (or 50 Hz, depending on country/region). 

In this case, slack variables are introduced in constraints (3.64) and (3.67), which model 

the net injection at every node for the generator and transmission element contingencies 

respectively, to ensure the feasibility of the contingency analysis problem. The slack vari-

ables provide an indirect insinuation of the potential security violations in the post-

contingency state. In addition, 𝑐𝐿𝑆 in the objective function represents the penalty cost to 

relax the constraints (3.64) and (3.67). In this dissertation, 𝑐𝐿𝑆 is an approximate value, 

which is assumed to range from $1000/MWh to $13000/MWh and can be interpreted as 

the value of lost load (VOLL). The VOLL can be construed as a rough approximation of 

the cost to correct the unreliable solution out of the market after contingency analysis is 

conducted.  

Constraints (3.65) and (3.68) guarantee system-wide energy balance between the de-

mand and the supply, for generator and transmission element contingencies, respectively. 

Constraint (3.60) forces the post-contingency dispatch decision for a generator to equal 

zero if it is the contingency and (3.70) forces the post-contingency flow on a transmission 

element to equal zero if it is the contingency. Constraints (3.57)-(3.59) and (3.61)-(3.63) 
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model the post-contingency ramping and generation restrictions on generators, for gener-

ator and transmission element contingencies, respectively. 
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CHAPTER 4.  

ENHANCING SYSTEM SECURITY VIA OUT-OF-MARKET CORRECTION PRO-

CEDURES 

Electric power grid is one of the most complex engineered systems in the 21st century. 

Several challenges, including unexpected system element failure and resource uncertain-

ty, exist for an efficient and reliable operation of a power system. While algorithmic per-

formance and computation hardware have advanced significantly, model approximations 

and simplifications are still used in commitment and dispatch models. Operators must, 

therefore, seek to adjust and correct unreliable solutions outside of the market engine. 

Such operator-initiated actions are referred to as out-of-market corrections (OMC) in this 

dissertation. Two OMC models are proposed, in this chapter [70], to mimic and optimize 

the process that operators take to adjust unreliable solutions. The OMC models estimate 

the operating costs incurred to move an unreliable solution to a reliable solution. The 

proposed models are used to evaluate the reliability of the system and are compared with 

the traditional value-of-lost-load approach. The case study is conducted using the IEEE 

118-bus system. 

4.1. Introduction 

Electric power grids are among the most complex engineered systems. Market opera-

tors coordinate and manage resources in the system to ensure a reliable and efficient op-

eration. Energy and ancillary service markets are the primary mechanisms that operators 

utilize to determine the least-cost operation of system resources. 
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Scheduling of generation resources is determined and managed through a suite of 

software tools, which includes SCUC and SCED. These tools identify the least-cost 

combination of generation resources to meet electricity demand and ensure system 

reliability. Due to the complexity of power systems, several challenges exist to operate 

the system both efficiently and reliably. First, scheduling models (i.e., commitment and 

dispatch models) incorporate a linear approximation of ac power flow. A full ac 

representation of transmission network cannot be included in scheduling models 

explicitly due to modeling complexity. In addition, present-day reliability assessment 

models only include a subset of critical contingencies. Second, power system operation 

faces uncertainties, such as renewable uncertainty and unexpected system element 

failures. Future uncertainties must be accounted for when making unit commitment and 

dispatch decisions. However, not all types of uncertainties can be adequately represented 

in scheduling models. Additional actions are needed to address the uncertainties that are 

not inherently captured by the scheduling models. Third, approximations are used in 

scheduling models that include, but are not limited to, the use of cutoffs for PTDFs, nom-

ograms, proxy voltage limits, transmission interface flow limits, proxy reserve rules, etc. 

These approximate rules are used to represent complex physical limits of the system 

while keeping the added modeling and computational complexity at minimum. However, 

such approximate rules do not guarantee that the actual limits and requirements will be 

satisfied. Additional operational procedures are needed to mitigate and correct any issues 

that are introduced by model approximations and inaccuracies [71]. 

To address the above challenges and maintain a reliable and continuous supply of 

electricity, a multi-stage scheduling process is adopted by operators. Commitment and 
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dispatch of generation is determined through a sequence of processes and reviewed and 

adjusted (by operators) continuously till the actual operational stage. The objective of 

these operator-initiated adjustments (or corrections) is to resolve reliability issues that 

cannot be internally accounted for by scheduling models. Thus, such adjustments are 

made after the fact (i.e., outside of the market) as and when required to account for mod-

eling inaccuracies. The terms used for such adjustments varies between ISOs, e.g., 

exceptional dispatches in CAISO or out-of-merit energy/capacity in ERCOT [72], [73]. 

Inadequate reserves can force operators to turn on additional generators or hold back 

flexible resources in local areas to compensate for deliverability issues, e.g., MISO 

manually disqualifies reserves when such deliverability issues occur so that reserve 

requirements must be met by resources at more favorable locations, [74]-[76]. MISO 

refers to this process as reserve disqualification. Reserve downflags belong to a suite of 

potential uneconomic adjustments. ISO-NE partially controls the locations of reserves by 

specifying reserve downflags that explicitly disallow locations from contributing towards 

the reserve requirement [75], [76]. Reserve downflags are currently determined largely on 

a manual basis. Such actions, which are made outside of the optimization engine, are 

costly, distort price signals [22], and can cause a market separation between the forward 

market (day-ahead) and the spot market (real-time). 

The additional corrections that are made outside of the market auction model are 

referred to as OMCs in this dissertation. Previously, OMCs have been investigated in [77] 

and [78], where heuristic OMC procedures are formulated to iteratively correct unreliable 

market solutions. Two approximate OMC model formulations, which are further used in 

the subsequent sections, are proposed in this dissertation. The proposed models mimic the 
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OMC actions adopted by operators to correct unreliable generation schedules to obtain N-

1 reliability. To simplify the complex process adopted by industry while capturing the key 

features of OMC, the proposed models are formulated as two-stage stochastic programs. 

The proposed models provide an estimation of the operating cost incurred during the 

adjustment process to move an unreliable solution to a reliable solution. The proposed 

approach is applied to adjust unreliable SCUC solutions and assess (quantify) the security 

violations in the system. Finally, the proposed models are compared with the traditional 

value of lost load (VOLL) approach, wherein system security violations are assessed 

using a pre-determined penalty price, i.e., the VOLL. 

This chapter is organized as follows. Section 4.2 discusses the proposed OMC mod-

els, including the model formulation and model description. The proposed models are 

implemented and validated on a modified IEEE 118-bus test case and the numerical re-

sults are presented in Section 4.3. Finally, Section 4.4 concludes the chapter. 

4.2. Proposed Out-of-Market Correction Model Formulations and Description 

In this subsection, two OMC model formulations are proposed to optimize and mimic 

operator-initiated interventions (rather than depending upon an operator’s engineering 

judgment/experience) that aim to correct unreliable SCUC solutions. The need for OMC 

can be attributed to various issues, which include, but are not limited to, insufficient reac-

tive power support, undeliverable backup capacity (reserve), model approximations, the 

deterministic structure of market auction models, and unexpected system element failure 

that results in an unreliable solution due to the embedded inaccuracies and relaxations 

within an auction model. The focus of the chapter is to design an OMC model that pro-

duces a (G-1 reliable) solution that can withstand any single generator contingency with-
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out causing any security violations (e.g., load shedding, flow limit violation, etc.). While 

the proposed OMC models are designed to ensure N-1 reliability against generator con-

tingencies, the extension of the model to accommodate transmission contingencies is triv-

ial. 

4.2.1. Overview of Day-Ahead Scheduling and Value of Lost Load Approach 

The overall day-ahead (DA) scheduling process begins with preparing the inputs, pre-

processing (i.e., collecting offers and bids, and building topology), and then running the 

DA SCUC model. The market auction solution is subsequently assessed for deliverability, 

by performing contingency analysis, to satisfy NERC’s N-1 mandate. Flagged security 

violations at this stage are then subject to reliability unit commitment or operator’s 

review for manual adjustments via an iterative process until the operator is satisfied with 

the final solution or the time is exhausted [79]. 

Security violations are generally included in optimization programs, e.g., contingency 

analysis, to relax equality/inequality constraints and ensure that a (relaxed) solution can 

be obtained. In academia, one common approach to evaluate the cost of system security 

violations is to use VOLL [80]-[82]. Typically, a VOLL is projected based on the 

potential consumer impacts associated with unserved energy. The system-wide security 

violations are determined and a predefined VOLL is used to associate a cost with the 

security violations. However, such an approach is not consistent with existing industry 

practices; since any potential vulnerability in the market auction solution is corrected 

through the scheduling process. Also, the results are subject to the choice of VOLL. 

While the VOLL approach offers an approximate way to evaluate the cost of system 

security violations, the proposed OMC models provide a more objective assessment of 
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the cost to correct the unreliable solution. Note that OMC costs are eventually passed on 

as uplift payments to customers and the end goal of ISOs is to maximize social welfare. 

4.2.2. Out-of-Market Correction Model 1 

The OMC models are formulated as two-stage stochastic programs, wherein the first 

and the second stage represent the base case and the post-contingency states for generator 

contingencies, respectively. The scheduled unit commitment status, scheduled real power 

production, and scheduled reserve describe the unreliable solution obtained from the de-

terministic DA SCUC model. The complete formulation of the first OMC model, also 

referred to as OMC-1, is detailed below [70]. 

Minimize:∑ 𝜌𝐵𝐶𝑐𝑔(𝑃𝑔𝑡) + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝑐𝑔
𝑆𝐷𝑤𝑔𝑡 + 𝑐𝑔

𝑟𝑒𝑠𝑟𝑔𝑡 +𝑔,𝑡

∑ 𝜌𝑐𝑐𝑔(𝑃𝑔,𝑐,𝑡)𝑔,𝑐,𝑡 + ∑ 𝑀𝛿𝑔𝑡𝑔,𝑡  (4.1) 

Subject to: 

Base-case modeling of generation: 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡 ≤ 𝑃𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (4.1) 

𝑃𝑔𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (4.2) 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡,  ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (4.3) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔
60𝑢𝑔,𝑡−1 + 𝑅𝑔

𝑆𝑈(1 − 𝑢𝑔,𝑡−1), ∀𝑔 ∈ 𝐺, 𝑡 ≥ 2 (4.4) 

𝑃𝑔,𝑡−1 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
60𝑢𝑔𝑡 + 𝑅𝑔

𝑆𝐷(1 − 𝑢𝑔𝑡), ∀𝑔 ∈ 𝐺, 𝑡 ≥ 2 (4.5) 

𝑃𝑔1 − 𝑃𝑔,𝑇 ≤ 𝑅𝑔
60𝑢𝑔,𝑇 + 𝑅𝑔

𝑆𝑈(1 − 𝑢𝑔,𝑇), ∀𝑔 ∈ 𝐺 (4.6) 

𝑃𝑔,𝑇 − 𝑃𝑔1 ≤ 𝑅𝑔
60𝑢𝑔,1 + 𝑅𝑔

𝑆𝐷(1 − 𝑢𝑔1), ∀𝑔 ∈ 𝐺  (4.7) 

∑ 𝑣𝑔,𝑞
𝑡
𝑞=𝑡−𝑈𝑇𝑔+1

≤ 𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≥ 𝑈𝑇𝑔 (4.8) 
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∑ 𝑣𝑔,𝑞
𝑇
𝑞=𝑇+𝑡−𝑈𝑇𝑔+1

+∑ 𝑣𝑔,𝑞
𝑡
𝑞=1 ≤ 𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≤ 𝑈𝑇𝑔 − 1 (4.9) 

∑ 𝑤𝑔,𝑞
𝑡
𝑞=𝑡−𝐷𝑇𝑔+1

≤ 1 − 𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≥ 𝐷𝑇𝑔 (4.10) 

∑ 𝑤𝑔,𝑞
𝑇
𝑞=𝑇+𝑡−𝐷𝑇𝑔+1

+ ∑ 𝑤𝑔,𝑞
𝑡
𝑞=1 ≤ 1 − 𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≤ 𝐷𝑇𝑔 − 1 (4.11) 

𝑣𝑔𝑡 ≥ 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1, ∀𝑔 ∈ 𝐺, 𝑡 ≥ 2 (4.12) 

𝑤𝑔𝑡 ≥ 𝑢𝑔,𝑡−1 − 𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ≥ 2 (4.13) 

𝑣𝑔1 ≥ 𝑢𝑔1 − 𝑢𝑔,𝑇 , ∀𝑔 ∈ 𝐺  (4.14) 

𝑤𝑔1 ≥ 𝑢𝑔,𝑇 − 𝑢𝑔1, ∀𝑔 ∈ 𝐺  (4.15) 

0 ≤ 𝑣𝑔𝑡 ≤ 1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (4.16) 

0 ≤ 𝑤𝑔𝑡 ≤ 1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (4.17) 

𝑢𝑔𝑡 ∈ {0,1}, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (4.18) 

Base-case modeling of power flow: 

∑ 𝑃𝑔𝑡 −𝐷𝑛𝑡 =𝑔∈𝐺𝑛 𝑃𝑛,𝑡
𝑖𝑛𝑗
, ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇  (4.19) 

∑ 𝑃𝑛,𝑡
𝑖𝑛𝑗

= 0, ∀𝑛 𝑡 ∈ 𝑇  (4.20) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐴 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙

𝐵𝐶𝑃𝑛,𝑡
𝑖𝑛𝑗

𝑛 ≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐴, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇  (4.21) 

Limitations on adjustments made during the OMC process: 

𝛿𝑔𝑡 ∈ {0,1}, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇  (4.22) 

𝑢𝑔𝑡 = 𝑢𝑔𝑡̅̅ ̅̅ , ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.23) 

𝑢𝑔𝑡 = 𝑢𝑔𝑡̅̅ ̅̅ , ∀𝑔 ∈ 𝐺𝑠 , 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇  (4.24) 

𝑢𝑔𝑡 = 𝛿𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.25) 

𝑢𝑔𝑡 ≥ 𝑢𝑔𝑡̅̅ ̅̅ , ∀𝑔 ∈ 𝐺𝑓 , 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇  (4.26) 

OMC heuristic that allows deviation of DDP of online units (i.e., when 𝛿𝑔𝑡 = 1): 
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𝑃𝑔
𝑚𝑖𝑛𝛿𝑔𝑡 + 𝑃𝑔𝑡̅̅ ̅̅ (1 − 𝛿𝑔𝑡) ≤ 𝑃𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.27) 

𝑃𝑔𝑡 ≤ 𝑃𝑔𝑡̅̅ ̅̅ (1 − 𝛿𝑔𝑡) + 𝑃𝑔
𝑚𝑎𝑥𝛿𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.28) 

OMC heuristic that allows for the commitment of additional units (i.e., when 𝛿𝑔𝑡 = 1), 

which were originally offline in the market model: 

𝑃𝑔
𝑚𝑖𝑛𝛿𝑔𝑡 ≤ 𝑃𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.29) 

𝑃𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝛿𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.30) 

Post-contingency ramping restriction on generation and modeling of generator contin-

gencies: 

𝑃𝑔,𝑐,𝑡 = 0, ∀𝑔: 𝑔 = 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 (4.31) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑐,𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶

𝑔, 𝑡 ∈ 𝑇  (4.32) 

𝑃𝑔,𝑐,𝑡 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶

𝑔, 𝑡 ∈ 𝑇 (4.33) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑐,𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇  (4.34) 

𝑃𝑔,𝑐,𝑡 − 𝑃𝑔𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.35) 

OMC heuristic that allows deviation of DDP of online units: 

𝑃𝑔
𝑚𝑖𝑛𝛿𝑔𝑡 + (𝑃𝑔𝑡̅̅ ̅̅ − 𝑟𝑔𝑡̅̅̅̅ )(1 − 𝛿𝑔𝑡) ≤ 𝑃𝑔,𝑐,𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.36) 

𝑃𝑔,𝑐,𝑡 ≤ (𝑃𝑔𝑡̅̅ ̅̅ + 𝑟𝑔𝑡̅̅̅̅ )(1 − 𝛿𝑔𝑡) + 𝑃𝑔
𝑚𝑎𝑥𝛿𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.37) 

OMC heuristic that allows commitment of originally offline units: 

𝑃𝑔
𝑚𝑖𝑛𝛿𝑔𝑡 ≤ 𝑃𝑔,𝑐,𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.38) 

𝑃𝑔,𝑐,𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝛿𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.39) 

Post-contingency modeling of power flow: 

∑ 𝑃𝑔,𝑐,𝑡 − 𝐷𝑛𝑡 =𝑔∈𝐺𝑛 𝑃𝑛,𝑐,𝑡
𝑖𝑛𝑗
, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.40) 
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∑ 𝑃𝑛,𝑐,𝑡
𝑖𝑛𝑗

= 0, ∀𝑐𝑛 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.41) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙

𝐵𝐶  𝑃𝑛,𝑐,𝑡
𝑖𝑛𝑗

≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 , ∀𝑙𝑛 ∈ 𝐿, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇. (4.42) 

The objective, (4.1), is to minimize the expected total system costs over a wide range 

of uncertain generator contingencies and the penalty cost to deviate from the DA SCUC 

solution. This includes the first stage costs, i.e., base case operating costs, no-load, 

startup, shutdown and reserve costs, the second stage costs, i.e. post-contingency re-

scheduling costs, and the penalty cost to modify the DA SCUC solution using an OMC 

action. Constraint (4.2) and (4.3) represent the generator output limits and (4.4) describes 

the ramp rate restriction for ten-minute spinning reserve. Note that, in this work, contin-

gency reserve is modeled by spinning reserve, which is subsequently used to mitigate 

contingencies in the system. The hourly ramp rate constraints are described in (4.5)-(4.8). 

The minimum up and down time constraints are shown in (4.9)-(4.12) [69]. Startup and 

shutdown decisions, the unit commitment decision, and the relationship between them are 

described in (4.13)-(4.19). Constraint (4.20) models the power injection at each bus, 

whereas (4.21) guarantees energy balance between demand and supply at the system lev-

el. Constraint (4.22) describes the dc power flow and the flow limit for each line (i.e., 

thermal or stability limit). 

In order to be consistent with contemporary market management practices, that re-

strict the changes made during the OMC process, the proposed OMC procedures disallow 

de-committing units that were originally committed in the DA SCUC market model. This 

is evident from constraint (4.24) that fixes the commitment statuses of the online units 

from the DA SCUC model. In addition, the OMC procedure also fixes the commitment 

statuses of the slow start units, i.e., units that have a startup time that is greater than a par-
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ticular pre-defined threshold (usually one or two hours), described by constraint (4.25). 

Here, set 𝐺𝑠 can be redefined to include units that have a minimum downtime that is 

greater than a specific threshold.  

Although the aforementioned formulation disallows de-committing online units, it 

does allow for the commitment of additional units (i.e., 𝛿𝑔𝑡 = 1) that were originally of-

fline in the DA SCUC model, at an extremely high penalty cost ‘𝑀’, in order to ensure 

the reliability of the SCUC solution against the loss of any single generating element. 

This condition is described by constraint (4.26), whereas constraint (4.27) restricts the 

additional units that can be turned on through an OMC action to a predefined set of fast 

start units (or units with a minimum downtime threshold that is less than a specific val-

ue). Note that if an offline unit were to be turned on in the OMC process, the subsequent 

base-case and post-contingency dispatch decisions are still bounded by its capacity limits, 

which is evident from (4.30)-(4.31) and (4.39)-(4.40), respectively.  

Furthermore, the aforementioned OMC procedure also allows for a deviation (or 

modification) of the desired dispatch points (DDPs) from their formerly scheduled dis-

patch levels, in order to ensure the reliability of the market solution, at cost ‘𝑀’. Analo-

gously, the base-case and post-contingency dispatch decisions for the unit are bounded by 

its capacity limits in (4.28)-(4.29) and (4.37)-(4.38), respectively. For a unit that has its 

DDP or commitment status adjusted by an OMC action, the ramping restrictions are still 

respected through constraints (4.33)-(4.36). Constraint (4.32) forces the post-contingency 

dispatch schedule for a generator to equal zero if it is the contingency and constraints 

(4.41)-(4.43) together model the post-contingency power flows. Lastly, note that an OMC 

action, i.e., the modification of a unit’s DDP or a change in its commitment status, is 
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heavily penalized through the 𝑀𝛿𝑔𝑡 term in the objective function. Here, 𝛿𝑔𝑡 is a binary 

variable, (4.23), analogous to the unit commitment variable 𝑢𝑔𝑡. If the OMC algorithm 

chooses to make an adjustment to a unit’s DDP or its status, then 𝛿𝑔𝑡 takes on a value of 

one. 

4.2.3. Out-of-Market Correction Model 2 

The complete formulation of the second OMC model, i.e., OMC-2, is detailed below. 

Minimize:∑ 𝜌𝐵𝐶𝑐𝑔(𝑃𝑔𝑡) + 𝑐𝑔
𝑁𝐿𝑢𝑔𝑡 + 𝑐𝑔

𝑆𝑈𝑣𝑔𝑡 + 𝑐𝑔
𝑆𝐷𝑤𝑔𝑡 + 𝑐𝑔

𝑟𝑒𝑠𝑟𝑔𝑡 +𝑔,𝑡

∑ 𝜌𝑐𝑐𝑔(𝑃𝑔,𝑐,𝑡)𝑔,𝑐,𝑡 + ∑ 𝑀𝛿𝑔𝑡 +𝑀
𝐷𝐷𝑃𝛿𝑔𝑡

𝐷𝐷𝑃 +𝑀𝑅𝐸𝑆𝛿𝑔𝑡
𝑅𝐸𝑆

𝑔,𝑡   (4.44) 

Subject to: 

The base-case modeling of generation and power flow is similar to the first OMC algo-

rithm presented above in Section 4.2.2. 

Limitations on the changes made during the OMC process: 

𝛿𝑔𝑡 ∈ {0,1}, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (4.43) 

0 ≤ 𝛿𝑔𝑡
𝐷𝐷𝑃 ≤ ∞,∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (4.44) 

0 ≤ 𝛿𝑔𝑡
𝑅𝐸𝑆 ≤ ∞, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (4.45) 

𝑢𝑔𝑡 = 𝑢𝑔𝑡̅̅ ̅̅ , ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.46) 

𝑢𝑔𝑡 = 𝑢𝑔𝑡̅̅ ̅̅ , ∀𝑔 ∈ 𝐺𝑠 , 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.47) 

𝑢𝑔𝑡 = 𝛿𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.48) 

𝑢𝑔𝑡 ≥ 𝑢𝑔𝑡̅̅ ̅̅ , ∀𝑔 ∈ 𝐺𝑓 , 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.49) 

OMC heuristic that allows deviation of DDP of the online units: 

𝛿𝑔𝑡 = 0, ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.50) 

𝛿𝑔𝑡
𝐷𝐷𝑃 ≥ 𝑃𝑔𝑡 − 𝑃𝑔𝑡̅̅ ̅̅ , ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.51) 
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𝛿𝑔𝑡
𝐷𝐷𝑃 ≥ 𝑃𝑔𝑡̅̅ ̅̅ − 𝑃𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.52) 

𝛿𝑔𝑡
𝑅𝐸𝑆 ≥ 𝑟𝑔𝑡 − 𝑟𝑔𝑡̅̅̅̅ , ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.53) 

𝛿𝑔𝑡
𝑅𝐸𝑆 ≥ 𝑟𝑔𝑡̅̅̅̅ − 𝑟𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.54) 

OMC heuristic that allows for the commitment of additional units (i.e., when 𝛿𝑔𝑡 = 1), 

which were originally offline in the market model: 

𝑃𝑔
𝑚𝑖𝑛𝛿𝑔𝑡 ≤ 𝑃𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.55) 

𝑃𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝛿𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑡 ∈ 𝑇 (4.56) 

Post-contingency ramping restriction on generation and modeling of generator contin-

gencies: 

𝑃𝑔,𝑐,𝑡 = 0, ∀𝑔: 𝑔 = 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.57) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑐,𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶

𝑔, 𝑡 ∈ 𝑇 (4.58) 

𝑃𝑔,𝑐,𝑡 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶

𝑔, 𝑡 ∈ 𝑇 (4.59) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑐,𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.60) 

𝑃𝑔,𝑐,𝑡 − 𝑃𝑔𝑡 ≤ 𝑟𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.61) 

OMC heuristic that allows deviation of DDP of the online units: 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡 ≤ 𝑃𝑔,𝑐,𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.62) 

𝑃𝑔,𝑐,𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 1, 𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.63) 

OMC heuristic that allows (i.e., 𝛿𝑔𝑡 = 1) commitment of originally offline units: 

𝑃𝑔
𝑚𝑖𝑛𝛿𝑔𝑡 ≤ 𝑃𝑔,𝑐,𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.64) 

𝑃𝑔,𝑐,𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝛿𝑔𝑡, ∀𝑢𝑔𝑡̅̅ ̅̅ = 0, 𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.65) 

Post-contingency modeling of power flow: 

∑ 𝑃𝑔,𝑐,𝑡 − 𝐷𝑛𝑡 =𝑔∈𝐺𝑛 𝑃𝑛,𝑐,𝑡
𝑖𝑛𝑗
, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.66) 
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∑ 𝑃𝑛,𝑐,𝑡
𝑖𝑛𝑗

= 0, ∀𝑐𝑛 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (4.67) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙

𝐵𝐶  𝑃𝑛,𝑐,𝑡
𝑖𝑛𝑗

≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 , ∀𝑙𝑛 ∈ 𝐿, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇. (4.68) 

The two algorithms differ with respect to their computational performance. In order to 

reduce the computational burden of the first OMC procedure, two continuous variables, 

i.e., 𝛿𝑔𝑡
𝐷𝐷𝑃 and 𝛿𝑔𝑡

𝑅𝐸𝑆 defined by (4.46)-(4.47), are introduced to model the OMC action of 

adjusting the DDP of a formerly committed unit while forcing the originally defined bina-

ry variable 𝛿𝑔𝑡 for the corresponding online unit to equal zero in (4.52). In the case of 

units that were formerly committed in the day-ahead market auction model, the OMC 

process is to minimize the deviation from the DA SCUC solution. Therefore, the 

𝑀𝐷𝐷𝑃𝛿𝑔𝑡
𝐷𝐷𝑃 term in the objective function along with (4.53)-(4.54) penalizes the adjust-

ments in DDPs and the 𝑀𝑅𝐸𝑆𝛿𝑔𝑡
𝑅𝐸𝑆 term in the objective function along with (4.55)-(4.56) 

penalizes the deviations in procured reserves, for the formerly committed units. Inclusion 

of binary variables typically complicates an optimization problem, i.e., increases its solu-

tion time; consequently, this algorithm restricts the use of the binary variables 𝛿𝑔𝑡 to 

model the OMC action of turning on additional units that were previously offline to ena-

ble secure operations. The post-contingency dispatch decision for a formerly committed 

unit is bounded by its capacity limits in (4.64)-(4.65). The remainder of the constraints 

bear the same explanation as the previously presented OMC algorithm. 

4.3. Analysis and Numerical Results 

The performance of the proposed OMC models is tested on a modified IEEE 118-bus 

test system, which has 54 generators, 186 transmission assets, and 99 loads [83]. The 

system is modified by decreasing: the normal rates of transmission assets to induce 
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congestion; and the system load to 85% of the original load. The IEEE reliability test sys-

tem (1996) is employed to define the hourly load profile for the demand data [83]. A win-

ter weekday and a summer weekday are used to represent the first and the second sample 

test day, respectively. All simulations are run on a computer with an Intel® Xeon® CPU 

X5687 @ 3.60 GHz, 48 GB RAM, and solved using CPLEX v12.6. The relative MIP gap 

is set to 0.2% and the time limit is set to 1200 seconds. 

The testing process includes: 1) solving the DA SCUC model, and 2) performing 

contingency analysis to identify the potential security violations. For the OMC approach, 

the proposed OMC models are solved to pull the unreliable SCUC solution to a G-1 

reliable solution and estimate the corresponding incurred costs. Note that, the reliability 

of the OMC solution is validated by performing another contingency analysis after the 

fact. For the VOLL approach, a predefined VOLL is used to estimate the violation costs 

for the identified security violations. The contingency analysis in step 2 and the OMC 

models are run for 100 different realizations of net load scenarios to account for changing 

system operating conditions. Net load scenarios are used to represent the uncertainty 

introduced by stochastic resources, e.g., wind, solar, and demand. The error in the net 

load at each bus is assumed to follow a Gaussian distribution with zero mean and the 

variance is such that the resultant uncertainty is ~7%. To test for the robustness of the 

proposed OMC models, the overall process is evaluated on an additional test day. An 

extensive form stochastic unit commitment model is also run to provide an additional 

benchmark. The solution obtained from the extensive form is guaranteed to be G-1 

reliable since generator contingencies are represented explicitly.  
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Table 4.1 summarizes the numerical results, averaged across net load scenarios, for 

the two proposed OMC models and the extensive form (Extsv.), for two sample test days. 

The discussions that follow are with respect to the first test day, however, the results are 

consistent for the second test day. The extensive form provides the best solution (i.e., 

closest to the optimal solution) as expected. The two OMC models differ with respect to 

their computational performance. Although the relative MIP gap was set to 0.2%, OMC-1 

converges to a sub-optimal solution, i.e., 4.11% average MIP gap, in comparison to 

OMC-2 owing to the time limit of 1200 seconds. Consequently, the OMC cost is higher 

for OMC-1 since the algorithm has converged to a less economical solution in the set 

solution timeframe. This result can vary depending upon the time availability. The 

exclusion of binary variables to model the OMC action of deviating from the scheduled 

DDP and the scheduled reserve improves the computational tractability of OMC-2, thus, 

the average solution time for OMC-2 is reduced to ~71 seconds. Note that five (three) 

originally offline units are committed in OMC-2 (OMC-1) to ensure G-1 reliability. The 

OMC cost does not include the penalty cost to deviate from the DA SCUC solution. 

Table 4.1 also includes the average results from contingency analysis: expected sum 

of security violations (E[viol.]), the number of contingencies and periods with non-zero 

violations (#viol.), the maximum reported violation (Max. viol.), and the actual sum of 

security violations (∑viol.), over the course of the day. The results for the worst-case net 

load scenario realization from the first test day are as follows: For contingency analysis, 

the E[viol.] is 10.98 MWh, the #viol. is 128, the Max. viol. is 267 MW and the ∑viol. is 

12,455 MWh. For OMC-1 (OMC-2), the cost is $0.39 M ($0.34 M), the solve time is 

1235 s (619 s), the # of online units is 40 (43) and the MIP gap is 5.23% (0.20%). Analo-
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gously, the worst-case results for the second test day are as follows: For contingency 

analysis, the E[viol.] is 9.23 MWh, the #viol. is 121, the Max. viol. is 229 MW and the ∑

viol. is 10,546 MWh. For OMC-1 (OMC-2), the cost is $0.34 M ($0.31 M), the solve 

time is 1204 s (80 s), the # of online units is 38 (41) and the MIP gap is 4.52% (0.20%). 

TABLE 4.1. AVERAGE RESULTS ACROSS NET LOAD SCENARIOS FOR THE OMC AND THE 

EXTENSIVE FORM MODELS 

 Test Day 1 Test Day 2 

Model OMC-1 OMC-2 Extsv. OMC-1 OMC-2 Extsv. 

Final Cost ($M) 1.50 1.46 1.30 1.51 1.45 1.31 

DA SCUC Solution 

Cost ($M) 1.26 1.30 1.28 1.31 

Time (s) 3.62 29 4.97 31.20 

#Online Units 37 38 36 38 

Contingency Analysis 

E[viol] (MWh) 6.01 0 4.85 0 

#viol. 79 0 74 0 

Max. viol. (MW) 207 0 172 0 

∑  viol. (MWh) 6,879 0 5,555 0 

Out-of-Market Correction (G-1 Reliable Solution) 

Cost ($M) 0.24 0.20 - 0.23 0.17 - 

Time (s) 1209 71.05 - 1185 59.09 - 

#Online Units 40 42 - 38 40 - 

MIP Gap (%) 4.11 0.19 0.16 5.34 0.20 0.17 

 

Table 4.2 summarizes the average results for the VOLL approach. The expected sum 

of security violations (E[viol.]), shown in Table 4.1, is multiplied by a predefined penalty 

price (or VOLL) to obtain the expected security violation costs. It is evident from Table 

4.2 that, for five different values of VOLL ranging from $1,000/MWh to $13,000/MWh 

[84], the expected average final cost (i.e., the sum of the average DA SCUC cost and the 

expected average cost of security violations) to obtain a G-1 reliable solution for the 

VOLL approach can vary from $1.26 million to $1.33 million subject to the choice of 

VOLL. The expected average cost of security violations is directly related to the prede-

fined VOLL. Different choices of VOLL can lead to different security violation costs and 
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potentially even different conclusions. Therefore, the OMC models provide a more ap-

propriate and objective means to quantify the cost of security violations. 

TABLE 4.2. AVERAGE RESULTS ACROSS NET LOAD SCENARIOS FOR THE VOLL APPROACH 

VOLL ($/MWh) 1,000 4,000 7,000 10,000 13,000 

Day 1: Final Cost ($M) 1.26 1.28 1.30 1.32 1.33 

Day 2: Final Cost ($M) 1.28 1.29 1.31 1.32 1.34 

 

4.4. Conclusions 

This chapter proposes two OMC formulations to optimize the OMC actions that are 

usually adopted by operators rather than depending upon their engineering judg-

ment/experience. Besides, with increasing penetration levels of stochastic resources and 

corresponding SCUC solutions that are harder to correct, operators will be forced to make 

many more expensive discretionary changes to obtain a reliable solution. An indirect 

benefit of the OMC models can result from reducing the amount of time spent by opera-

tors in making the numerous manual adjustments to obtain N-1 reliability. The OMC 

costs can potentially increase in the absence of such OMC models that seek to obtain 

economically efficient solutions, consequently, potentially increasing uplift payments. 
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CHAPTER 5.  

A DATA-DRIVEN RESERVE RESPONSE SET POLICY FOR POWER SYSTEMS 

WITH STOCHASTIC RESOURCES 

5.1. Overview of the Data-Driven Reserve Policy 

5.1.1. Introduction 

 This chapter focuses on creating new dynamic reserve policies for contingency-based 

reserves (specifically, spinning reserves) and ramping products that are needed to com-

pensate for resource uncertainty. The objective is to create reserve response set policies 

that specify a set of generators that will respond given a specific event while considering 

resource uncertainty and network limitations. The main incentive is to allocate reserves at 

appropriate locations that face fewer deliverability issues. The proposed approach aims to 

model the predicted effects of nodal reserve deployment on critical transmission lines 

post-contingency, thereby, appropriately allocating reserves at potentially deliverable lo-

cations. 

In addition, the proposed approach uses a data-mining algorithm to identify potential-

ly responsive locations and define reserve response factors that aim to cover a specified 

uncertainty range. The key idea is to use data analytics-based algorithms to design and 

develop cohesive reserve policies that approximately encapsulate the wealth of 

knowledge that is available regarding other possible realizations of uncertain scenarios in 

order to improve reserve-scheduling decisions. Besides, the application of data-mining 

techniques to analyze engineering problems, such as those encountered in power systems, 

is not new [85]-[87]. 
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5.2. Data-Driven Reserve Response Set Model Formulation 

This subsection discusses the form and implementation of the proposed data-driven 

reserve response set model, including the reserve response factors and the post-

contingency transmission constraint. The proposed reserve model utilizes a data-driven 

approach that combines advanced reserve policies with Monte Carlo simulations to ad-

dress the impacts of stochastic resources and improve the deliverability of reserves in the 

post-contingency state [88]. The main motivation is to complement the existing efforts by 

industry to effectively control and appropriately schedule reserve with minimal added 

computational burden while maintaining its robustness and scalability for large-scale 

power systems. 

Stage 1: Offline Model 
Construction & Training 

Phase

Monte Carlo Simulation:
Generator contingency 

+
Net load uncertainties 

Operator-initiated 
interventions or 
manual actions

Optimize the out-
of-market actionsDesign Reserve Policy: 

Using data-mining 
techniques

Solve DA SCUC Solve DA SCUC with 
proposed data-driven 

reserve model

Reliability Check: 
Perform contingency 
analysis for out-of-

sample net load 
scenarios

Adjustment Period: 
Out-of-Market 

Correction Phase

Stage 2: Out-of-Sample 
Testing or 

Implementation Phase

 

Fig. 5.1. Process flowchart for the proposed data-driven reserve response-set model. 

Fig. 5.1 details the process employed by the proposed approach. The overall process 

includes two stages: 1) the offline model construction and training/analysis phase, and 2) 

the out-of-sample testing/implementation phase. 
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5.2.1. Offline Training Phase 

In the training phase, first, a SCUC model that incorporates a zonal reserve model, 

which accounts for reserve sharing, is solved. The problem formulation is detailed below. 

Minimize:∑ ([∑ 𝐶𝑗 𝑔𝑗
(𝑃𝑔𝑡𝑗)] + 𝐶𝑔

𝑁𝐿𝑢𝑔𝑡 + 𝐶𝑔
𝑆𝑈𝑣𝑔𝑡 + 𝐶𝑔

𝑆𝐷𝑤𝑔𝑡 + 𝐶𝑔
𝑟𝑒𝑠𝑟𝑔𝑡)𝑔,𝑡  (5.1) 

Subject to: 

𝑖𝑛𝑡 = ∑ (𝑃𝑔𝑡)𝑔∈𝐺𝑛 − 𝐷𝑛𝑡, ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇 (5.2) 

∑ 𝑖𝑛𝑡 = 0, ∀𝑡 ∈ 𝑇𝑛  (5.3) 

𝐹𝑙𝑡 = ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙𝑛 𝑖𝑛𝑡, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (5.4) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐴 ≤ 𝐹𝑙𝑡 ≤ 𝐹𝑙

𝑅𝑎𝑡𝑒𝐴, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (5.5) 

0 ≤ 𝑃𝑔𝑡𝑗 ≤ 𝑃𝑔𝑗
𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 (5.6) 

𝑃𝑔𝑡 = ∑ 𝑃𝑔𝑡𝑗𝑗 , ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.7) 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.8) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡 ≤ 𝑃𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.9) 

𝑃𝑔𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.10) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔
60𝑢𝑔,𝑡−1 + 𝑅𝑔

𝑆𝑈𝑣𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.11) 

𝑃𝑔,𝑡−1 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
60𝑢𝑔𝑡 + 𝑅𝑔

𝑆𝐷𝑤𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.12) 

∑ 𝑣𝑔𝑞 ≤ 𝑢𝑔𝑡
𝑡
𝑞=𝑡−𝑈𝑇𝑔+1

, ∀𝑔 ∈ 𝐺, 𝑡 ∈ {𝑈𝑇𝑔, … , 𝑇} (5.13) 

∑ 𝑤𝑔𝑞 ≤ 1 − 𝑢𝑔𝑡
𝑡
𝑞=𝑡−𝐷𝑇𝑔+1

, ∀𝑔 ∈ 𝐺, 𝑡 ∈ {𝐷𝑇𝑔, … , 𝑇} (5.14) 

𝑣𝑔𝑡 −𝑤𝑔𝑡 = 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.15) 

𝑢𝑔𝑡 ∈ {0,1}, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.16) 

0 ≤ 𝑣𝑔𝑡 ≤ 1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.17) 
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0 ≤ 𝑤𝑔𝑡 ≤ 1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (5.18) 

Zonal reserve model with reserve sharing: 

∑ �̃�𝑘𝑡
𝑐 ≥ 𝑃𝑐𝑡 + 𝑟𝑐𝑡𝑘∈𝑍 , ∀𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (5.19) 

�̃�𝑘𝑡
𝑐 ≤ ∑ 𝑟𝑔𝑡𝑔∈𝐺𝑘 , ∀𝑐 ∈ 𝐶𝑔, 𝑘 ∈ 𝑍, 𝑡 ∈ 𝑇  (5.20) 

�̃�𝑘𝑡
𝑐 ≤ 𝐹𝑙𝑘−𝑧(𝑐)

𝑅𝑎𝑡𝑒𝐶 ± 𝐹𝑙𝑡𝑘−𝑧(𝑐), ∀𝑐 ∈ 𝐶
𝑔, 𝑘 ∈ 𝑍, 𝑡 ∈ 𝑇.  (5.21) 

The objective (5.1) is to minimize the total system costs, including operational, no-

load, startup, shutdown and reserve costs. It is pertinent to note that minimizing total 

system costs is equivalent to maximizing social welfare (or market surplus) since the 

demand is assumed to be perfectly inelastic. The power injected at each node is modeled 

using (5.2), whereas (5.3) ensures system-wide power balance between generation and 

demand. The dc power flow on a transmission asset, represented by (5.4), is restricted by 

its normal rating (rate A) in (5.5). The size of the piecewise segments (of generators) is 

bounded by constraint (5.6). The real power output of a generator is described by (5.7) 

and is equal to the sum total of its piecewise segments. Reserve scheduled from a specific 

generator is bounded by its 10-minute ramp rate in (5.8), and the minimum and maximum 

limitations on the real power scheduled from a generating resource are enforced in (5.9) 

and (5.10), respectively. Additional ramp rate limitations, including hourly, startup, and 

shutdown ramp rates, are imposed in (5.11) and (5.12), and the minimum up and down 

time requirements are modeled in (5.13) and (5.14), respectively. The relationship 

between the unit commitment, startup and shutdown variables is defined in (5.15). 

Constraint (5.16) restricts the unit commitment variable to be a binary, whereas (5.17) 

and (5.18) model the startup and shutdown variables as continuous. Constraints (5.19) – 
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 (5.21) describe the zonal reserve model that accounts for reserve sharing. It is pertinent 

to note that, in order to avoid overestimating the reserve requirement and costs for the 

system, a liberal reserve sharing policy is used, i.e., the reserve sharing limit is set to 

equal the ATC (𝛼 = 1) of the inter-zonal link in (5.21). 

Second, in order to assess the security of the day-ahead (DA) SCUC solution, i.e., 

scheduled unit commitment status, scheduled reserve, and scheduled real power 

production from generating resources, and to investigate the deliverability of reserves in 

the event of an uncertain realization in the post-contingency state, contingency analysis is 

performed for multiple net load scenarios (or Monte Carlo simulations are leveraged to 

generate hypothetical data). It is pertinent to note that, the results from Monte Carlo 

simulations can be replaced with historical data, if available. Here, 100 different 

realizations of net load scenarios are used for each of the modeled outages in contingency 

analysis. The contingency analysis problem formulation for a specific net load scenario is 

described below. Here, 𝐷𝑛𝑠𝑡 in (5.23) represents the load at node 𝑛 for the corresponding 

realized training net load scenario 𝑠 in period 𝑡. 

Minimize:∑ 𝐿𝑆𝑛𝑐𝑡
+ + 𝐿𝑆𝑛𝑐𝑡

−
𝑛,𝑐,𝑡  (5.22) 

Subject to: 

𝑖𝑛𝑐𝑡 = ∑ (𝑃𝑔𝑐𝑡)𝑔∈𝐺𝑛 − 𝐷𝑛𝑠𝑡 + 𝐿𝑆𝑛𝑐𝑡
+ − 𝐿𝑆𝑛𝑐𝑡

− , ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (5.23) 

∑ 𝑖𝑛𝑐𝑡 = 0𝑛 , ∀𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (5.24) 

𝐹𝑙𝑐𝑡 = ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙𝑛 𝑖𝑛𝑐𝑡, ∀𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶
𝑔, 𝑡 ∈ 𝑇 (5.25) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤ 𝐹𝑙𝑐𝑡 ≤ 𝐹𝑙

𝑅𝑎𝑡𝑒𝐶 , ∀𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (5.26) 

𝑃𝑔𝑐𝑡 = 0, ∀𝑔: 𝑔 = 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (5.27) 

𝑃𝑔𝑡̅̅ ̅̅ − 𝑟𝑔𝑡̅̅̅̅ ≤ 𝑃𝑔𝑐𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶
𝑔, 𝑡 ∈ 𝑇 (5.28) 
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𝑃𝑔𝑐𝑡 ≤ 𝑃𝑔𝑡̅̅ ̅̅ + 𝑟𝑔𝑡̅̅̅̅ , ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶
𝑔, 𝑡 ∈ 𝑇 (5.29) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡̅̅ ̅̅ ≤ 𝑃𝑔𝑐𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥𝑢𝑔𝑡̅̅ ̅̅ , ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (5.30) 

𝐿𝑆𝑛𝑐𝑡
+ , 𝐿𝑆𝑛𝑐𝑡

− ≥ 0, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇. (5.31) 

The objective (5.22) is to minimize the post-contingency security violations, which 

are denoted by slack variables 𝐿𝑆𝑛𝑐𝑡
+  and 𝐿𝑆𝑛𝑐𝑡

− . Here, 𝐿𝑆𝑛𝑐𝑡
+  and 𝐿𝑆𝑛𝑐𝑡

−  represent the load 

shedding and load surplus variables respectively, and are included in the post-

contingency power balance constraints, represented by (5.23), to ensure the feasibility of 

the problem. Constraint (5.24) ensures system-wide power balance in the post-

contingency state, whereas (5.25) models the post-contingency dc power flows on 

transmission assets. The post-contingency power flows are restricted by the 

corresponding thermal (emergency) limits in (5.26). Generator contingencies are modeled 

using (5.27), whereas the deviation between the pre- and post-contingency real power 

production is restricted by the scheduled reserve obtained from DA SCUC solution in 

constraints (5.28) and (5.29). The post-contingency real power production is bounded by 

the resource’s minimum and maximum output limits in (5.30). The slack variables are 

constrained to be non-negative in (5.31). 

Third, the results from the offline stochastic simulations, which includes performing 

contingency analysis for the training set of net load scenarios, are then used in a data-

mining algorithm for knowledge discovery. The contingency analysis results from each 

training net load scenario contribute to a training record (or an instance/event) in the 

data-mining algorithm. Each training record includes indicators (or attributes) 𝑋 and a 

target value 𝑌. Since the system state deviates considerably in the post-contingency state, 
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it is crucial to identify the prime locations and amounts of activated reserves in addition 

to recording the deviations in line flows due to the deployed reserves from the pre-

contingency state. Therefore, the central goal of the data-mining model is to estimate a 

regression function 𝑓(𝑋, 𝛽) (which is linear to avoid introducing nonlinearities) that 

approximates the post-contingency critical line flows due to nodal reserve deployment 

(𝑌) in the various combined critical generator contingency and net load scenarios. Here, 

𝑋 represents the independent variables, 𝑌 represents the dependent variable, and 𝛽 

represents the unknown parameters, i.e., 𝑌 ≈ 𝑓(𝑋, 𝛽). Consequently, for a specific 

training record, the default choice for the indicators (or attributes) is the amounts of 

activated/deployed reserves from each of the responsive generators, and for the target 

variable is the corresponding post-contingency line flow due to the deployed reserves. 

The data-mining algorithm is run for each period 𝑡, each critical generator contingency 𝑐, 

and each critical transmission path 𝑙.  For each run, the data records are obtained from the 

different net load scenarios. The target variable is expected to have a floating point or a 

continuous value instead of an integer or a categorical value. 

The data-mining technique employed in this work is support vector machines for 

regression and function estimation (or support vector regression) and it considers only 

linear kernels [89]. Also, the algorithm is implemented using WEKA, an open source 

software which consists of a collection of machine learning algorithms for data-mining 

tasks [90]. The end goal is to model the predicted effects of nodal reserve deployment on 

critical transmission lines and improve the deliverability of deployed reserves post-

contingency. 
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It is pertinent to note that, the data-mining model is built only for a subset of critical 

generator contingencies (𝐺𝑐) and critical transmission paths (𝐿𝑐). Here, set 𝐺𝑐 includes 

the larger generating units because the loss of a larger unit has a higher chance of 

resulting in more severe security/reliability issues in contrast to the loss of a smaller unit 

due to the increased quantity of deployed reserves (to compensate for the corresponding 

loss) and the larger deviations in the flows on critical paths. However, this is system-

dependent; hence, 𝐺𝑐 can be extended to include the smaller units as well. Also, set 𝐿𝑐 

includes paths that are regularly congested in the pre- and post-contingency states, which 

can potentially cause reserve deliverability issues. Note that, critical paths can be pre-

determined based on historical data and offline studies [22]. In addition, discerning a 

suitable size for these sets involves a trade-off between model accuracy and model 

complexity. 

The data-mining model results in reserve response factors (𝛽𝑔,𝑙,𝑡
𝑐 ), analogous to the 

unknown parameters or regression coefficients resulting from a linear regression model, 

which are subsequently used in the implementation phase. 𝛽𝑔,𝑙,𝑡
𝑐  can be interpreted as a 

factor that contains three pieces of information. One piece is the PTDF, which measures 

the impact of power injection from generator 𝑔’s location on critical path 𝑙. Second, since 

support vector regression is performed using data from different net load scenarios for 𝑡, 

𝑐, and 𝑙, the resultant coefficients represent the expected value across the different net 

load scenarios. The last piece includes information on the set of responsive generators 

that were activated to provide reserve under critical generator contingency 𝑐 for the dif-

ferent net load scenarios. In addition, this information also includes the portion of reserve 

that is activated/deployed from the corresponding set of generators. To summarize, 𝛽𝑔,𝑙,𝑡
𝑐  
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can be interpreted as a factor that defines the average influence (or impact) of a respon-

sive generator 𝑔 (due to its activated reserve) on a selected pre-defined critical path 𝑙 for 

a given set of net load scenarios in period 𝑡 and under contingency 𝑐; thus, indirectly cap-

turing the embedded uncertainty in the training set of net load scenarios in an approxi-

mate sense. In other words, this factor can be viewed as a weighted PTDF, wherein the 

weights are the coefficients resulting from the previously mentioned support vector re-

gression algorithm. 

5.2.2. Out-of-Sample Testing Phase 

In the testing phase, a SCUC model that incorporates the data-driven reserve response 

model, detailed below, is solved. 

Minimize:∑ ([∑ 𝐶𝑗 𝑔𝑗
(𝑃𝑔𝑡𝑗)] + 𝐶𝑔

𝑁𝐿𝑢𝑔𝑡 + 𝐶𝑔
𝑆𝑈𝑣𝑔𝑡 + 𝐶𝑔

𝑆𝐷𝑤𝑔𝑡 + 𝐶𝑔
𝑟𝑒𝑠𝑟𝑔𝑡)𝑔,𝑡  (5.32) 

Subject to: 

Constraints (5.2)–(5.18) (5.33) 

Data-driven reserve response set model: 

∑ 𝑟𝑔𝑡 ≥ 𝜂%∑ 𝐷𝑛𝑡𝑛𝑔 , ∀𝑡 ∈ 𝑇 (5.34) 

∑ �̃�𝑘𝑡
𝑐 ≥ 𝑃𝑐𝑡 + 𝑟𝑐𝑡𝑘∈𝑍 , ∀𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (5.35) 

�̃�𝑘𝑡
𝑐 ≤ ∑ 𝑟𝑔𝑡𝑔∈𝐺𝑘 , ∀𝑐 ∈ 𝐶𝑔, 𝑘 ∈ 𝑍, 𝑡 ∈ 𝑇 (5.36) 

�̃�𝑘𝑡
𝑐 ≤ 𝐹𝑙𝑘−𝑧(𝑐)

𝑅𝑎𝑡𝑒𝐶 ± 𝐹𝑙𝑡𝑘−𝑧(𝑐), ∀𝑐 ∈ 𝐶
𝑔𝑛𝑐𝑟𝑡, 𝑘 ∈ 𝑍, 𝑡 ∈ 𝑇 (5.37) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤ 𝐹𝑙𝑡 − 𝑃𝑐𝑡𝑃𝑇𝐷𝐹𝑛(𝑐),𝑙 + ∑ 𝑟𝑔𝑡𝛽𝑔,𝑙,𝑡

𝑐 ≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐶

𝑔:𝑔≠𝑐 , ∀𝑐 ∈ 𝐶𝑔𝑐𝑟𝑡, 𝑙 ∈ 𝐿𝑐𝑟𝑡,  

  𝑡 ∈ 𝑇.  (5.38) 

The objective (5.32) is to minimize the total system costs analogous to (5.1). Here, 

�̃�𝑘𝑡
𝑐  describes reserve in zone 𝑘 that is categorized as deliverable for critical contingency 𝑐 
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in time 𝑡 and 𝛽𝑔,𝑙,𝑡
𝑐̅̅ ̅̅ ̅̅  denote the reserve response factors that are obtained from the offline 

training phase. Equation (5.34) represents a myopic reserve policy. Constraint (5.35) is 

the contingency-based reserve policy, which requires there to be sufficient reserve to 

compensate for the loss of generation and reserve that was initially provided by the un-

derlying critical generator outage. Constraint (5.36) ensures that �̃�𝑘𝑡
𝑐  is no greater than the 

total amount of reserve that is held within zone 𝑘. Note that (5.35) and (5.36) together are 

equivalent to the myopic reserve policy described in (2.1). Constraint (5.37) limits the 

amount of reserve that can be shared between zone 𝑘 and the contingency zone 𝑧(𝑐), for 

the set of non-critical generator contingencies 𝐶𝑔
𝑛𝑐𝑟𝑡

, to the ATC of the corresponding 

inter-zonal link. Constraint (5.38) restricts the post-contingency transmission flows for 

the critical line set 𝐿𝑐𝑟𝑡. Here, the first, second and the third component model the pre-

contingency critical line flow, the effect of the critical generator outage and the effects 

(using the reserve response factors obtained from the first stage) of the reserves that are 

activated in response to the underlying critical generator contingency on the correspond-

ing critical line flow, respectively. In other words, (5.38) models the post-contingency 

flow deviations for critical transmission paths explicitly. 

Finally, the modified DA SCUC model, described by (5.32)–(5.38), is followed by a 

reliability check (akin to existing industry practices) or contingency analysis to assess the 

security of the DA market SCUC solution against generator contingencies combined with 

net load scenarios and to investigate the deliverability of scheduled reserves. The prob-

lem formulation is presented in (5.22)–(5.31). It is pertinent to note that, a distinct set of 

out-of-sample net load scenarios are used in the reliability check stage of the testing 
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phase. Therefore, in this case, 𝐷𝑛𝑠𝑡 in (5.23) represents the load at node 𝑛 for the corre-

sponding realized out-of-sample net load scenario 𝑠 in period 𝑡. 

5.2.3. Analogous Approaches 

Today, system operators use an analogous approach (i.e., line outage distribution fac-

tors, LODFs) to formulate transmission line contingencies in the DA SCUC model [91]. 

In this case, the post-contingency flow on a specific line 𝑙 is represented as the sum of the 

pre-contingency flow on line 𝑙 and the portion of the flow that is redistributed from the 

corresponding line outage 𝑐. Thus, line contingencies are represented explicitly without 

any second-stage recourse decisions. MISO uses post-zonal reserve-deployment trans-

mission constraints analogous to (4.6) to determine their zonal reserve requirements [22]. 

Furthermore, existing RTCA tools use analogous participation factors for generator con-

tingencies to estimate the post-contingency operating states [92]. Future work should in-

vestigate the potential of using inertia-based participation factors to improve the alloca-

tion of reserves. 

5.2.4. Out-of-Market Corrections Phase 

The solutions obtained from contemporary market SCUC models are not N-1 reliable 

due to the approximations, inaccuracies, and relaxations embedded in the model, thereby, 

resulting in more severe security violations. In order to overcome this issue, system oper-

ators adjust the market solution ex-post (i.e., after the market has cleared) to make it more 

reliable for the forecasted system conditions. Usually, a VOLL is estimated to approxi-

mate the value that consumers attribute to the security of electricity supply. Additionally, 

the VOLL is typically used to penalize the security violations; however, such results are 
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subjective. Furthermore, the VOLL approach is not consistent with existing industry 

practices. 

To obtain a more accurate estimation of the cost to repair an infeasible or unreliable 

solution, the overall process is extended to include an out-of-market correction (OMC) 

phase. The motive is to replicate the OMC procedures that are generally adopted by mar-

ket operators to obtain results that are more objective. Furthermore, to be consistent with 

existing market rules that limit the changes made during the OMC process, the OMC 

formulation adopted in this work does not allow for de-commitment of units that were 

originally committed in the DA market model. It is pertinent to note that, the final solu-

tion from the overall process is N-1 reliable. Thus, a fair comparison can be made with 

other benchmark approaches by comparing valid solutions, obtained from the original DA 

SCUC solution plus the OMC adjustment phase, that guarantees the same level of relia-

bility (i.e., N-1 reliability). 

5.3. Polish 2383-Bus Test Case: Results and Analysis 

The proposed approach is implemented and tested on a modified 2383-bus Polish test 

system and the simulation results are presented in this subsection.  

5.3.1. Network Overview 

The proposed approach is implemented on an actual large-scale test system to evalu-

ate its effectiveness in allocating reserves at appropriate locations and to measure its ca-

pability to scale up on a practical sized system. Furthermore, the evaluation process in-

cluded taking the reserve response factors obtained from the offline training stage and 

testing them against multiple test days across different seasons to test for the robustness 
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of the proposed approach against varying operating conditions. The test case under con-

sideration is a modified 2383-bus Polish test system, which has 327 generators, 2896 

lines, and 1826 loads [93]. It represents the Polish 400, 200 and 110 kV networks and is 

part of the 7500+ bus European Union for the Coordination of the Transmission of Elec-

tricity (UCTE) system. 

The modifications made to the original test system include repartitioning the original 

six zones into three zones to design a test case with potential reserve allocation (delivera-

bility) issues and highlight the drawbacks of traditional approaches, reducing the nominal 

line ratings to induce congestion, and increasing the emergency line capacities to equal 

1.05–1.25 times the corresponding nominal line capacities. Note that zones are partially 

effective at imposing locational reserve requirements. However, deciding the appropriate 

number of zones and the corresponding reserve requirements remains a challenge. Addi-

tionally, the reliability transmission organization unit commitment test system developed 

by the FERC, for industry use to examine potential improvements to DA and real-time 

market efficiency through improved software and models, is used to define generator in-

formation including offer curves (including fixed costs), minimum up and down times, 

and ramp rates [94]. A piecewise linear cost function is used to represent the variable fuel 

costs. Also, the IEEE reliability test system (1996) is used to describe the hourly load 

profile for the demand data [83]. 

5.3.2. Dataset and Software Description 

The generator capacity threshold for set 𝐶𝑔
𝑐𝑟𝑡

 is 500 MW and it includes 13 critical 

generators. The number of credible generator candidates for zones one, two, and three are 
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two, seven, and four, respectively. Set 𝐿𝑐𝑟𝑡 is pre-determined to include four, frequently 

congested links. Three out of the four links are inter-zonal links, whereas one link is an 

intra-zonal link. Set 𝐿𝑐𝑟𝑡 can be extended to include additional inter- or intra-zonal links 

after weighing the trade-off between model accuracy and model complexity. Net load 

scenarios are used to represent the uncertainty introduced by stochastic resources. Here, 

in order to approximate the uncertainty without overcomplicating the scenario generation 

process, the net load at each bus is assumed to follow a Gaussian distribution with zero 

mean. Also, the variance of the distribution was pre-defined such that the resultant uncer-

tainty is ~7%. Distributions that are more accurate can be adopted in future work.  

It is pertinent to note that, the percentage split for the dataset is 66.67% training data 

and 33.33% testing data. In other words, the number of randomly generated net load sce-

narios used in the training and test phases is 100 and 50, respectively. The relative MIP 

gap tolerance for the DA SCUC model is set to 0.05%. The OMC process and the exten-

sive form stochastic program are terminated upon reaching an optimality gap of 0.25% 

(or after 1200 seconds) and 0.025% (or after 1800 seconds), respectively. Testing is per-

formed using CPLEX v12.6 on an 8-core, 3.6 GHz machine with 48 GB installed 

memory, and a 64-bit operating system. 

5.3.3. Results and Analysis 

In this subsection, the performance of the proposed data-driven reserve response set 

model is compared against two sets of benchmark reserve policies, i.e., the myopic 

reserve policies described by (2.1)–(2.2) and the reserve-sharing model described by 

(2.3)–(2.6), and an extensive form stochastic UC model. The percentage (𝜂) of the sys-

tem-wide demand in (2.2), for the myopic reserve policy, is fixed to 7%. In addition, the 
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reserve sharing policy (𝛼) is varied to rate its performance over different levels of 

conservatism. It is pertinent to note that, the DA SCUC model with the reserve sharing 

policy is infeasible for values of 𝛼 less than 0.85. The extensive form stochastic UC mod-

el is formulated as a two-stage stochastic program with an explicit representation of all 

critical generator contingencies in all periods. Note that, for this test system, only the 

subset of critical generator contingencies is included in the extensive form as the exten-

sive form is insolvable when all generator contingencies are included explicitly; thus, the 

extensive form results in a solution that is guaranteed to be N-1 reliable with respect to 

the modeled critical generator contingencies. 

Fig. 5.2 compares the policies with respect to the final cost for N-1 reliable solutions, 

the expected sum of security violations (E[viol]) obtained from contingency analysis, and 

the number of contingencies and time periods with non-zero violations (# viol) over the 

course of the day for the corresponding out-of-sample test scenarios. Here, the size of the 

bubbles is indicative of the # viol. Also, final cost refers to the sum total of the operating 

cost obtained from the DA SCUC model and the cost to repair the unreliable market solu-

tion obtained from the OMC phase. In this chapter, E[viol] and # viol are statistical 

measures that are used to approximately compare and evaluate the extent of reliability 

that can be attained with the different approaches. Note that, the smaller the E[viol] and 

the # viol, the more reliable the approach. It is evident that, the proposed approach has a 

general tendency to give more reliable solutions at reduced overall costs because it 

preemptively anticipates the post-contingency states in the different net load scenarios 

through the reserve response factors, thereby, allocating the reserves at potentially deliv-
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erable locations. Also, as expected, the myopic policy results in the least reliable solu-

tions because it fails to distribute the reserves at appropriate locations. 

 

Fig. 5.2. Final costs for N-1 reliable solutions compared against the expected sum of se-

curity violations and the number of contingencies and times with non-zero violations (in-

dicated by the bubble size) for DA SCUC solutions for the test scenarios. 

Fig. 5.3 compares the policies with respect to two additional reliability metrics: the 

maximum reported security violation (Max viol) and the actual sum of security violations 

over the course of the day (∑viol) obtained from contingency analysis. Note that these 

security violations are eliminated during the OMC phase. It can be seen that the proposed 

approach has a general tendency to perform better than the other benchmark approaches 

with respect to both the metrics because the proposed policy effectively bounds the 

anticipated flows (for a range of net load scenarios) on the frequently congested lines to 

lie within the emergency limits. Effectively reducing the maximum reported security 

violation is particularly useful when the operator is interested in reducing the worst-case 

security violation. 

Fig. 5.4 shows the hourly reserve schedules obtained from the DA SCUC solutions 

with differing reserve policies for generators over the course of a day. The distinction in 
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the results can be attributed to the subtle differences in the distribution of the scheduled 

reserves across the system (and periods). For example, notice the subtle differences in the 

distribution of the scheduled reserves for the generating units (across the different time 

periods) that are highlighted within the dashed red rectangle in Fig. 5.4. The proposed 

approach tends to schedule lesser amounts of reserves from critical generator locations 

that are behind bottlenecks in the highly-congested hours, thereby, resulting in lesser 

post-contingency violations. Analogously, more reserves are scheduled from generator 

locations that are behind uncongested lines, thereby, resulting in more appropriate alloca-

tion of reserve and better reserve deliverability. Thus, the proposed approach is successful 

in finding solutions that capture post-contingency congestion reasonably. 

 

Fig. 5.3. Maximum-security violations compared against the actual sum of security viola-

tions for the DA SCUC solutions for the test scenarios. 
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Fig. 5.4. Hourly ancillary service (i.e., spinning reserve) schedules from the DA SCUC 

solutions. The color bar scale is in MW. 

Conversely, to satisfy network constraints, the proposed approach accounts for the 

impact of scheduled reserves from critical generator locations on bottlenecks by reducing 

the pre-contingency flows; consequently, minimizing the post-contingency violations due 

to the activation of reserves in the event of a critical generator contingency. This is 

evident from Fig. 5.5, which illustrates the pre-contingency flows (as a percentage of 

normal line capacity) on two critical bottlenecks (from set 𝐿𝑐𝑟𝑡) for the different 

approaches. 
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(a) Critical inter-zonal bottleneck. 

 

(b) Critical intra-zonal bottleneck. 

Fig. 5.5. Critical line loading (pre-contingency) as a percentage of normal capacity for the 

DA SCUC solution. 

Fig. 5.6(a) compares the average final costs (i.e., the cost after the OMC phase) for 

the different approaches. The extensive form provides the best solution (i.e., the solution 

that is closest to the lower bound or the optimal solution). Although the proposed model 

reports the highest SCUC cost, it is apparent that it requires the least number of uneco-

nomic adjustments or OMCs (which translates into the lowest OMC cost), thereby, result-

ing in the lowest final cost. This is indicative of the fact that the proposed model tends to 

result in a solution that is more probable to be closer to an N-1 reliable solution obtained 

from the extensive form stochastic program, consequently, requiring fewer OMCs. This 

can be attributed to the explicit modeling of the post-contingency transmission con-

straints for a given set of critical generator contingencies and critical transmission paths, 
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thereby, allocating the reserves appropriately while respecting the emergency network 

constraints. In addition, a more conservative reserve sharing policy (smaller 𝛼) tends to 

result in a more reliable solution, which is evident from Fig. 5.2, in comparison to a less 

conservative policy. However, the more conservative reserve sharing policy has an in-

creased SCUC cost since it requires more reserve to be held within import-constrained 

regions. Fig. 5.6(b) demonstrates that the average percent cost savings obtained with the 

proposed approach relative to the benchmark approaches are in the range of 1%–3%. Fig. 

5.6(c) compares the average computational time to solve the DA SCUC model for the dif-

ferent policies. The extensive form stochastic program results in an average solution time 

of 875 seconds. It is evident that, the proposed approach enhances the reliability of the 

system with minimal added computational burden. However, it is important to note that, 

the solution time is expected to increase with the size of the critical sets 𝐶𝑔
𝑐𝑟𝑡

 and 𝐿𝑐𝑟𝑡. 

Thus, determining the appropriate size for these sets is crucial. 

The solution time for the offline training stage includes the computational time to 

solve the DA SCUC model (~157 s), Monte Carlo simulation (~3.85 hours for 𝑐×𝑡×𝑠 cas-

es) and data-mining models (~320 s for a subset of critical cases). The average solution 

time to solve a Monte Carlo simulation is ~0.49 s and a data-mining model is ~0.58 s. 

Note that both the Monte Carlo simulation and the data-mining models can be parallel-

ized since the analyses are independent of each other, thus, reducing the corresponding 

solve times drastically. Also, the DA SCUC model and the Monte Carlo simulation can be 

replaced with historical data, if available. 
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(a) 

 

                      (b)                                                           (c) 

 

Fig. 5.6. Comparative performance (averaged across the test scenarios) of the proposed 

approach. (a) Final costs. (b) Percent cost savings. (c) Computational time to solve the 

DA SCUC. 

Security violations aid in gauging reliability but do not necessarily result in genera-

tion/load curtailment. Normally, system operators mitigate such violations either by re-

running the SCUC model with additional restrictive constraints or by correcting the unre-

liable solution after the fact using prior operating experience or engineering judgment. 

Fig. 5.7 compares the average number of units that are turned on, in addition to the units 

that are previously committed from the DA SCUC run, to obtain an N-1 reliable solution. 

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Extsv.

Proposed

𝛼=0.85

𝛼=0.9

𝛼=0.95

𝛼=1.0

Myopic

Average Cost (M$)

A
p

p
ro

ac
h

SCUC

Cost

OMC

Cost

0%

1%

1%

2%

2%

3%

3%

4%

Myopic 𝛼=1.0 𝛼=0.95 𝛼=0.9 𝛼=0.85

A
v
g
 %

 C
o

st
 S

av
in

g
s

Benchmark Approach

110

112

105

108

95

94

80 90 100 110 120

Proposed

𝛼=0.85

𝛼=0.9

𝛼=0.95

𝛼=1.0

Myopic

Avg Solution Time (s)

A
p

p
ro

ac
h



 

78 

 

It is evident that the proposed approach requires the least number of OMCs or out-of-

merit adjustments on average. However, it is important to note that fewer adjustments do 

not necessarily translate into lower OMC costs. For instance, the reserve sharing policy 

with 𝛼 equal to 1.0 requires 41 additional commitments to repair the corresponding unre-

liable solution in comparison to the 43 additional commitments required by the policy 

with 𝛼 equal to 0.9. Although the policy with 𝛼 equal to 1.0 requires fewer OMCs, the 

corresponding cost to repair the unreliable solution (i.e., the OMC cost) is $61,094 high-

er, which is evident from Fig. 5.6(a). Here, the OMC cost is higher for 𝛼 equal to 1.0 ow-

ing to the inability (or infeasibility) to move from the corresponding unreliable solution 

to an N-1 reliable solution using the same set of cost-effective OMC actions that are used 

for the DA SCUC solution obtained with the reserve sharing policy equal 0.9. 

 

Fig. 5.7. The number of online units compared against the expected sum of security vio-

lations (averaged across the test scenarios) for the DA SCUC and N-1 reliable solutions. 

The OMC results are further elaborated in Fig. 5.8, which compares the number of 

units that are committed in the final N-1 reliable solutions (for the corresponding realiza-

tions of net load scenarios) for the different approaches. The number of units that are 

committed in the final reliable solutions for the proposed approach are generally lower 
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than the benchmark approaches implying their proximity to the corresponding N-1 relia-

ble solutions. Thus, it is safe to conclude that, since the proposed approach tends to give 

an N-1 reliable solution with fewer commitments, it is more likely to result in lower final 

costs. Besides, it is important to note that, in this work, we use an OMC formulation to 

mimic (and optimize) the OMC procedures that are usually adopted by market operators 

[70]. However, in actual practice, such procedures are left to the discretion of operators. 

Thus, it can be assumed that in the absence of such OMC formulations, which seek to 

obtain economically efficient solutions, the OMC costs can possibly increase, consequent-

ly, potentially increasing cost savings. The performance of the proposed approach was 

also compared against a separate set of myopic reserve policies, obtained by increasing 

the percentage (𝜂) of the system-wide demand in (2.2); the numerical results were con-

sistent. 

 

Fig. 5.8. The number of units committed in the final N-1 reliable solutions for the corre-

sponding out-of-sample test scenarios. 

The performance of the proposed approach was also evaluated against MISO’s ap-
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the average results across out-of-sample net load scenarios from the first test day. The 

best results are highlighted for each metric. The proposed approach outperforms MISO’s 

approach on an average basis in comparable solution times. Although MISO suggests en-

hancing their scheduling models by including post-generator contingency (zonal) security 

constraints, their approach does not address (local) congestion within a zone. It only ac-

counts for the impact of deployed zonal reserve in the event of the largest generator out-

age per zone. Furthermore, MISO employs a zonal reserve model that imposes zonal re-

serve requirements and does not account for reserve sharing between zones when there is 

available transfer capability on critical inter-zonal paths, while the proposed approach 

overcomes the limitations of MISO’s reserve model. 

TABLE 5.1. AVERAGE RESULTS ACROSS NET LOAD SCENARIOS FROM THE FIRST TEST DAY 

FOR THE POLISH TEST SYSTEM 

Approach 
MISO 

[17] 
Proposed 

Final Cost (M$) 13.40 13.08 

DA SCUC Solution 

Cost (M$) 10.45 11.28 

Time (s) 84 110 

# Online Units 241 243 

Contingency Analysis 

E[viol] (MWh) 17.45 2.22 

# viol 84 41 

Max viol (MW) 193 108 

∑viol (MWh) 6,373 795 

OMC (N-1 Reliable Solution) 

Cost (M$) 2.95 1.80 

# Online Units 283 276 

 

5.3.4. Results and Analysis: Test for Robustness 

The numerical results presented thus far were for out-of-sample net load scenarios 

from the first test day. To examine the robustness of the proposed approach against vary-
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ing system operating conditions, the proposed approach was further evaluated on out-of-

sample net load scenarios from multiple test days across different seasons. The numerical 

results for two additional test days are presented below; however, the results are con-

sistent for other test days. The hourly system-wide net load profile for the base DA 

SCUC case for the three test days is shown in Fig. 5.9. 

Tables 5.2 and 5.3 summarize the average results (across out-of-sample net load sce-

narios) for the two additional test days. The best results, excluding the results obtained 

from the extensive form stochastic UC model, are highlighted for each metric. The final 

cost represents the cost after the OMC phase, i.e., the sum of the DA SCUC cost and the 

OMC cost. The proposed approach consistently outperforms the two sets of benchmark 

reserve policies on an average basis by enhancing the reliability of the market solution at 

reduced final costs and out-of-merit adjustments in comparable solution times. 

 

Fig. 5.9. Net load for each test day for the base DA SCUC case. 
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TABLE 5.2. AVERAGE RESULTS ACROSS NET LOAD SCENARIOS FROM THE SECOND TEST 

DAY FOR THE POLISH TEST SYSTEM 

Approach Myopic 𝛼=1 𝛼=0.95 𝛼=0.9 𝛼=0.85 Proposed Extsv. 

 Final Cost (M$) 13.67 13.91 13.92 13.90 14.08 13.56 11.83 

 DA SCUC Solution 

Cost (M$) 10.63 10.85 11.04 11.29 12.15 11.96 11.83 

Time (s) 96 113 109 108 112 121 815 

# Online Units 244 244 245 249 268 249 263 

 Contingency Analysis 

E[viol] (MWh) 18 10.31 9.32 9.34 7.05 2.27 0 

# viol 96 60 49 48 41 36 0 

Max viol (MW) 163 138 135 153 127 105 0 

∑ viol (MWh) 6,575 4,022 3,554 3,377 2824 903 0 

 Out-of-Market Correction (N-1 Reliable Solution) 

Cost (M$) 3.04 3.06 2.88 2.61 1.93 1.60 - 

# Online Units 292 292 290 288 290 285 - 

 

 

TABLE 5.3. AVERAGE RESULTS ACROSS NET LOAD SCENARIOS FROM THE THIRD TEST 

DAY FOR THE POLISH TEST SYSTEM 

Approach Myopic 𝛼=1 𝛼=0.95 𝛼=0.9 𝛼=0.85 Proposed Extsv. 

 Final Cost (M$) 13.76 13.87 13.85 13.83 14.13 13.62 11.43 

 DA SCUC Solution 

Cost (M$) 10.69 10.83 10.93 11.07 11.66 11.91 11.43 

Time (s) 97 111 103 106 115 112 911 

# Online Units 244 243 244 244 250 247 253 

 Contingency Analysis 

E[viol] (MWh) 20.51 11.86 9.91 8.63 7.37 1.84 0 

# viol 100 68 60 51 45 43 0 

Max viol (MW) 175 132 131 133 129 66 0 

∑ viol (MWh) 7,450 4,578 3,901 3,386 2,967 644 0 

 Out-of-Market Correction (N-1 Reliable Solution) 

Cost (M$) 3.07 3.04 2.92 2.76 2.47 1.71 - 

# Online Units 289 288 288 288 286 282 - 

 

5.4. Conclusions 

The majority of the scheduling models use static reserve policies that pre-define the 

reserve quantity under the assumption that all reserves are deliverable. Such simple re-

serve policies that approximate N-1 result in either expensive market solutions or costly 
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out-of-market adjustments when applied to constantly changing system operating condi-

tions because they do not account for pre- and post-contingency congestion aptly. Be-

sides, with increasing penetration levels of stochastic resources, the reserve deliverability 

issue will be further aggravated, and contemporary deterministic policies will become 

even less effective. This work presents a new approach to design cohesive reserve poli-

cies using data analytics-based algorithms to improve reserve scheduling decisions and 

allocation (or deliverability) in contemporary SCUC models. The proposed data-driven 

reserve response set policy includes post-contingency transmission constraints to account 

for post-generator contingency congestion and uncertainty more appropriately. 

The proposed approach is successful in identifying solutions that reasonably capture 

congestion and reliability impacts while requiring fewer OMCs. The proposed approach 

lies in the space between existing techniques and other techniques (e.g., two-stage sto-

chastic programs that have scalability issues and market pricing barriers) that face signif-

icant barriers to adoption. This research has shown that significant savings can still be 

obtained based on dynamic reserve policies that still scale well and can avoid market de-

sign barriers. Furthermore, well-designed scheduling policies can reduce the number of 

uneconomic adjustments necessary to correct unreliable market solutions while enhanc-

ing the reliability of the market solution. By doing so, market transparency and market 

pricing is improved since fewer discretionary adjustments outside of the market are need-

ed, more of the required services are cleared through the market, which then results in 

more accurate price signals. The results from the Polish system demonstrate a consistent 

ability to improve market efficiency, maintain scalability, and enhance market transpar-

ency. 
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ISOs are required to be independent and pursue an objective that maximizes social 

welfare (or market surplus). The proposed approach enhances social welfare, which is the 

main deciding factor for adopting new technologies. 
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CHAPTER 6.  

A RESERVE RESPONSE SET MODEL FOR SYSTEMS WITH STOCHASTIC RE-

SOURCES 

6.1. Background and Motivation 

Security-constrained unit commitment (SCUC) is a classical problem used for day-

ahead commitment, dispatch, and reserve scheduling. Even though SCUC models acquire 

reserves, N-1 reliability is not guaranteed. Furthermore, the uncertainty and variability 

associated with stochastic resources coupled with the constantly changing system operat-

ing conditions introduce new challenges to power systems. System operators must ensure 

there is sufficient generation capability and deliverability to respond to discrete disturb-

ances (i.e., loss of any single non-radial transmission or generation element) or typical 

forms of uncertainty (for example, load, area-interchange, or renewables) by using certain 

proxy methods (or approximations) either through preventive or corrective actions. 

This chapter presents an enhanced SCUC formulation that facilitates the integration 

of stochastic resources and accounts for reserve allocation and deliverability issues, in the 

event of generator contingency, through preventive (or pre-determined) biasing actions 

within the enhanced SCUC model. Reserves can then be allocated within the market auc-

tion model while accounting for post-generator contingency congestion. In the proposed 

formulation, the SCUC model is modified to incorporate a reserve response set model, 

which improves upon existing deterministic models (and industry practices to model 

credible generator contingencies, load uncertainty, and renewable uncertainty) and can 

potentially facilitate the transition to stochastic models. The proposed reserve model aims 

to predict the effects of nodal reserve deployment on critical transmission assets in the 
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post-generator contingency state so as to improve the deliverability of reserves post-

contingency. The proposed reserve policies are used as a means to predict reserve activa-

tion. The approach, thus, aims to acquire reserve at prime locations that face fewer re-

serve deliverability issues. Furthermore, an offline methodology is used to design the 

proxy reserve policies from historical data or the results of stochastic (or Monte Carlo) 

simulations that generate hypothetical data, thereby, shifting the computational burden to 

an offline stage. The proposed model has minimal added computational complexity com-

pared to existing deterministic SCUC models. By having an offline study stage and ex-

plicitly representing post-contingency flows for critical system elements and contingen-

cies, the proposed approach has tractable computational complexity for actual-size sys-

tems. The performance of the proposed approach is demonstrated on a 2383-bus system. 

The primary goal is to enhance power system flexibility to satisfy physical network con-

straints when the system state deviates from the forecast. 

The remainder of this chapter is organized as follows. Section 6.2 describes the for-

mulation and implementation of the proposed reserve response set model, including the 

post-contingency nodal reserve deployment constraint. The proposed approach is imple-

mented and tested on the IEEE 118-bus and the 2383-bus Polish test systems and the nu-

merical results are presented in Section 6.3 and Section 6.4, respectively. Finally, Section 

6.5 concludes the chapter. 

6.2. Reserve Response Set Model Formulation and Methodology 

This subsection describes the formulation and implementation of the proposed reserve 

response set model, including the post-contingency nodal reserve deployment constraint 

[95]. The proposed reserve model utilizes a policy-driven approach. The goal is to allevi-
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ate the deliverability issues associated with reserve in the post-contingency state while 

maintaining scalability and computational tractability for large-scale power systems. A 

policy is a rule that governs a decision given the information available in a particular 

state [17]. Fig. 6.1 illustrates the overall methodology of the proposed approach, which 

consists of two primary phases: 1) the offline training phase and 2) the out-of-sample 

testing phase. 

Solve the 
modified SCUC; 

includes 
reserve model 
(6.19)–(6.24)

Stage 1: Offline Model Construction 
and Training or Analysis Phase

No notable 
decrease in mean 
security violations 
or max. iteration 

count?

Monte Carlo 
Simulations or

Deliverability Check: 
Generator contingency 

+ net load 
uncertainties 

Out-of-Market 
Correction Phase

Stage 2: Out-of-Sample Testing or 
Implementation Phase

Solve DA SCUC; includes reserve 
response-set policies (6.36)–(6.38)

Contingency 
analysis

Net load scenario 1

...

Net load scenario n

Contingency 
analysis

gamma=1

Operator-initiated 
interventions
(sub-optimal)

Optimize OMC 
actions (optimal)

Update gamma using exceedance methodology

Yes

No

 

Fig. 6.1. The overall methodology of the proposed reserve response set model. 

6.2.1. Offline Model Construction and Training or Analysis Phase 

The first stage is the offline model construction and analysis phase, which utilizes a 

knowledge discovery process from historical data (or Monte Carlo simulations) analo-

gous to contemporary data-mining techniques to allocate reserve. The objective is to 

identify the prime locations where reserves are deliverable post-contingency and deter-

mine the appropriate quantity of reserves that each generator should provide. First, a 

modified deterministic SCUC model, formulated as a MILP, that includes a response-set 

(for each of the modeled generator contingencies) reserve model is solved using 

CPLEX’s MIP optimizer (dynamic search algorithm). 
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Minimize:∑ ([∑ 𝐶𝑗 𝑔𝑗
(𝑃𝑔𝑡𝑗)] + 𝐶𝑔

𝑁𝐿𝑢𝑔𝑡 + 𝐶𝑔
𝑆𝑈𝑣𝑔𝑡 + 𝐶𝑔

𝑆𝐷𝑤𝑔𝑡 + 𝐶𝑔
𝑟𝑒𝑠𝑟𝑔𝑡)𝑔,𝑡  (6.1) 

Subject to: 

𝑖𝑛𝑡 = ∑ (𝑃𝑔𝑡)𝑔∈𝐺𝑛 − 𝐷𝑛𝑡, ∀𝑛 ∈ 𝑁, 𝑡 ∈ 𝑇 (6.2) 

∑ 𝑖𝑛𝑡 = 0, ∀𝑡 ∈ 𝑇𝑛  (6.3) 

𝐹𝑙𝑡 = ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙𝑛 𝑖𝑛𝑡, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (6.4) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐴 ≤ 𝐹𝑙𝑡 ≤ 𝐹𝑙

𝑅𝑎𝑡𝑒𝐴, ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (6.5) 

0 ≤ 𝑃𝑔𝑡𝑗 ≤ 𝑃𝑔𝑗
𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇, 𝑗 ∈ 𝐽 (6.6) 

𝑃𝑔𝑡 = ∑ 𝑃𝑔𝑡𝑗𝑗 , ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.7) 

0 ≤ 𝑟𝑔𝑡 ≤ 𝑅𝑔
10𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.8) 

𝑃𝑔
𝑚𝑖𝑛𝑢𝑔𝑡 ≤ 𝑃𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.9) 

𝑃𝑔𝑡 + 𝑟𝑔𝑡 ≤ 𝑃𝑔
𝑚𝑎𝑥𝑢𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.10) 

𝑃𝑔𝑡 − 𝑃𝑔,𝑡−1 ≤ 𝑅𝑔
60𝑢𝑔,𝑡−1 + 𝑅𝑔

𝑆𝑈𝑣𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.11) 

𝑃𝑔,𝑡−1 − 𝑃𝑔𝑡 ≤ 𝑅𝑔
60𝑢𝑔𝑡 + 𝑅𝑔

𝑆𝐷𝑤𝑔𝑡, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.12) 

∑ 𝑣𝑔𝑞 ≤ 𝑢𝑔𝑡
𝑡
𝑞=𝑡−𝑈𝑇𝑔+1

, ∀𝑔 ∈ 𝐺, 𝑡 ∈ {𝑈𝑇𝑔, … , 𝑇} (6.13) 

∑ 𝑤𝑔𝑞 ≤ 1 − 𝑢𝑔𝑡
𝑡
𝑞=𝑡−𝐷𝑇𝑔+1

, ∀𝑔 ∈ 𝐺, 𝑡 ∈ {𝐷𝑇𝑔, … , 𝑇} (6.14) 

𝑣𝑔𝑡 −𝑤𝑔𝑡 = 𝑢𝑔𝑡 − 𝑢𝑔,𝑡−1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.15) 

𝑢𝑔𝑡 ∈ {0,1}, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.16) 

0 ≤ 𝑣𝑔𝑡 ≤ 1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.17) 

0 ≤ 𝑤𝑔𝑡 ≤ 1, ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.18) 

Response-set (contingency-based) reserve model: 

∑ 𝑟𝑔𝑡 ≥ 𝑃𝑔𝑡 + 𝑟𝑔𝑡𝑔 , ∀𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.19) 
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∑ 𝑟𝑔𝑡 ≥ 𝜂%∑ 𝐷𝑛𝑡𝑛𝑔 , ∀𝑡 ∈ 𝑇  (6.20) 

∑ 𝑟𝑔𝑡
𝑐 ≥ 𝑃𝑐𝑡 + 𝑟𝑐𝑡𝑔 , ∀𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (6.21) 

𝑟𝑔𝑡
𝑐 ≤ 𝛤𝑔𝑡

𝑐 𝑟𝑔𝑡, ∀𝑐 ∈ 𝐶
𝑔, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇 (6.22) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤  𝐹𝑙𝑡 − 𝑃𝑐𝑡𝑃𝑇𝐷𝐹𝑛(𝑐),𝑙 + ∑ 𝑃𝑇𝐷𝐹𝑛(𝑔),𝑙𝑟𝑔𝑡

𝑐  ≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐶

𝑔:𝑔≠𝑐 , ∀𝑐 ∈ 𝐶𝑔
𝑐𝑟𝑡
,  

𝑙 ∈ 𝐿𝑐𝑟𝑡, 𝑡 ∈ 𝑇 (6.23) 

𝛤𝑔𝑡
𝑐 ∈ [0,1], ∀𝑐 ∈ 𝐶𝑔, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇. (6.24) 

In the formulation, the objective (6.1) is to minimize the total system costs, which in-

cludes the operational, no-load, startup, shutdown and reserve costs. The demand is as-

sumed to be perfectly inelastic; therefore, minimizing the total system costs is equivalent 

to maximizing the social welfare. Constraint (6.2) models the power injected at each node 

whereas (6.3) ensures system-wide power balance between generation and load. The dc 

power flow on each transmission asset, described by (6.4), is bounded by the correspond-

ing normal rate (rate A) in (6.5). Constraint (6.6) imposes limits on the size of the piece-

wise segments. The real power produced by each generator, represented by (6.7), is re-

stricted to be equal to the summation of its corresponding piecewise segments. The 

scheduled reserve is restricted by the 10-minute ramp rate in (6.8). Constraints (6.9) and 

(6.10) impose minimum and maximum restrictions on the real power scheduled from 

generator resources. Constraints (6.11) and (6.12) model the ramp rate restrictions, which 

includes the hourly, startup and shutdown ramp rates, and (6.13) and (6.14) model the 

minimum up and down time requirements. The relationship between the unit commit-

ment, startup and shutdown variables is described in (6.15). The unit commitment varia-

ble is restricted to be a binary variable in (6.16), whereas the startup and shutdown varia-

bles are modeled as continuous variables in (6.17) and (6.18) respectively. 
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Since the system state changes post-contingency, it is critical to identify the 

appropriate quantity and prime locations of reserve and capture the deviation in line 

flows from the pre-contingency state. This is achieved by including the post-contingency 

line flow constraints for critical transmission paths that are frequently congested in the 

pre- and post-contingency states, which can then cause reserve deliverability issues. 

Critical paths can be pre-identified based on historical data, operational procedures, and 

offline studies [22]. The corresponding offline training phase contingency-based reserve 

model is described by (6.19)–(6.24). Constraints (6.19) and (6.20) represent the system-

wide reserve policies similar to (2.1) and (2.2). In this case, 𝜂 is fixed to equal the 

approximate level of uncertainty in the system-wide net load. Constraint (6.21) is the 

contingency-based reserve policy, which requires the total deployed reserves to be no less 

than the generation lost in the corresponding contingency event. Constraint (6.22) ensures 

that the activated reserve is no greater than a fraction (𝛤𝑔𝑡
𝑐 ) of the scheduled reserve, 

(6.23) is post-contingency line flow constraint, and (6.24) bounds the reserve activation 

factor 𝛤𝑔𝑡
𝑐  such that it can only take on values between zero and one. In (6.23), the first 

component captures the pre-contingency line flow, the second component models the 

deviation in line flow due to the corresponding critical generator contingency, and the 

third component reflects the impact of nodal reserve deployment on critical paths in the 

post-contingency state explicitly. 

Second, a deliverability check (or contingency analysis) is conducted to inspect each 

generator’s reserve deliverability for each combined generator contingency and net load 

scenario. A generator is said to be able to deliver its scheduled reserve 𝑟𝑔𝑡̅̅̅̅  if the reserve 

can be activated without violating any thermal (emergency) limits. Such an offline sto-
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chastic simulation methodology (Monte Carlo simulations) is created to generate hypo-

thetical data, i.e., replace (missing) historical data. The scheduled unit commitment sta-

tus, reserve, and real power production from each of the generating resources, obtained 

from the aforementioned modified SCUC, are provided as inputs to the Monte Carlo sim-

ulations. Furthermore, 100 different realizations of net load scenarios (in a particular gen-

eration contingency state) are utilized in this stage. 

From literature [96], the usual practice in data-mining is to split the sampled dataset 

(in this case, net load scenarios) into training (60–80%) and testing (40–20%). The split 

proportion is also dependent on the size of the sampled dataset. The main rationale is to 

have a sufficient number of representative samples when building the model to better 

model the underlying distribution in the training stage. The size of the sampled dataset 

used in this dissertation was restricted to ~130-200 scenarios because obtaining a very 

large number of samples is either too expensive or time-consuming. However, this size 

can be modified based on time availability. It is expected that a larger sampled dataset 

can potentially result in better performance (or accuracy). Note that, the adopted design 

approach is still a considerable improvement over existing practices, which do not neces-

sarily consider sufficient samples in designing their reserve policies. A split proportion of 

~77% training data (100 net load scenarios) and ~23% testing data (30 net load scenarios) 

was maintained when validating the approach on the Polish test case; however, due to the 

relative ease to test a larger sample size (in the testing stage) for a smaller system, the da-

taset splitting proportion was fixed to 50–50% (100 net load scenarios each) for the IEEE 

118-bus test case. Finding an optimal sample size and dataset splitting proportion is out 

of the scope of this research work. 
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The contingency analysis linear programming problem, detailed below, for each 

training net load scenario (where 𝑠 ∈ 𝑆𝑇𝑅𝑁) is solved using CPLEX’s optimizers based 

on simplex algorithms. Here, 𝐷𝑛𝑠𝑡 denotes the demand at bus 𝑛, for the corresponding 

realized training net load scenario 𝑠, in time 𝑡. 

Minimize:∑ 𝐿𝑆𝑛𝑐𝑡
+ + 𝐿𝑆𝑛𝑐𝑡

−
𝑛,𝑐,𝑡  (6.25) 

Subject to: 

Post-contingency restrictions on generation (6.26)–(6.28) and modeling of generator 

contingencies (6.29): 

−𝑃𝑔𝑐𝑡 ≤ �̅�𝑔𝑡 − �̅�𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (6.26) 

𝑃𝑔𝑐𝑡 ≤ �̅�𝑔𝑡 + �̅�𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶
𝑔, 𝑡 ∈ 𝑇 (6.27) 

𝑃𝑔
𝑚𝑖𝑛�̅�𝑔𝑡 ≤ 𝑃𝑔𝑐𝑡 ≤ 𝑃𝑔

𝑚𝑎𝑥�̅�𝑔𝑡, ∀𝑔: 𝑔 ≠ 𝑐, 𝑐 ∈ 𝐶
𝑔, 𝑡 ∈ 𝑇 (6.28) 

𝑃𝑔𝑐𝑡 = 0, ∀𝑔: 𝑔 = 𝑐, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (6.29) 

Post-contingency modeling of real power flow: 

𝑖𝑛𝑐𝑡 = ∑ (𝑃𝑔𝑐𝑡)𝑔∈𝐺𝑛 − 𝐷𝑛𝑠𝑡 + 𝐿𝑆𝑛𝑐𝑡
+ − 𝐿𝑆𝑛𝑐𝑡

− , ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (6.30) 

∑ 𝑖𝑛𝑐𝑡 = 0𝑛 , ∀𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (6.31) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤ ∑ 𝑃𝑇𝐷𝐹𝑛,𝑙𝑛 𝑖𝑛𝑐𝑡 ≤ 𝐹𝑙

𝑅𝑎𝑡𝑒𝐶 , ∀𝑙 ∈ 𝐿, 𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇. (6.32) 

Slack variables 𝐿𝑆𝑛𝑐𝑡
+  and 𝐿𝑆𝑛𝑐𝑡

−  (i.e., load shedding and load surplus variables, 

respectively) give an indication of the post-contingency security violations and are 

included in the post-contingency power balance constraint (6.30) to ensure the feasibility 

of the contingency analysis problem. Note that the slack variables are restricted to be 

non-negative in the mathematical model. The objective (6.25) is to minimize the post-

contingency security violations. The deviation between the pre- and post-contingency real 
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power production is restricted by the scheduled reserve (from the modified SCUC model) 

in (6.26)–(6.27). Constraint (6.28) imposes bounds on the post-contingency real power 

production from generating resources, whereas (6.29) models the generator 

contingencies. Constraint (6.31) ensures system-wide power balance in the post-

contingency state and (6.32) limits the post-contingency flows to lie within the 

emergency limits. 

For each realized training net load scenario, i.e., 𝑠 ∈ 𝑆𝑇𝑅𝑁, the reserve deliverability 

check stage (Monte Carlo simulations) results in the amount of reserve that is activated 

(or deployed) during each of the generator contingency states 𝑐, 𝑟𝑔,𝑠,𝑡
𝑐 . Also, the activated 

reserve in response to generator contingency 𝑐 and during training net load scenario 𝑠 is 

equal to the difference between the post-contingency real power production for the 

corresponding net load scenario and the scheduled real power production. Furthermore, 

for a specific generator contingency state 𝑐, the reserve deployed in the different training 

set of net load scenarios are then sorted in the descending order (analogous to the more 

familiar load duration curve analysis) following which a certain value of 𝑟𝑔,𝑠,𝑡
𝑐  is chosen 

based on a pre-determined choice of exceedance level. This value of 𝑟𝑔,𝑠,𝑡
𝑐  is then used in 

updating the parameter 𝛤𝑔𝑡
𝑐  using (6.33). Exceedance level represents a measure of the 

fraction of times an event exceeds a pre-defined reference level [81]. Such an approach is 

adopted in present-day industry practices. For instance, CAISO uses the exceedance 

counting methodology (with values varying from 30% to 70%), in their generator 

deliverability studies, to assess the minimum amount of generation that a renewable 

resource can realistically produce and deliver in at least a certain percentage (exceedance 

level) of the studied hours [97]. Analogously, EPRI uses a similar approach to determine 
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the flexibility requirements for a system with renewable generation integration [98]. An 

illustration of the exceedance level is presented in Fig. 6.2. 

 

Fig. 6.2. Illustration of the exceedance level. 

In Fig. 6.2, if a 50% exceedance level is chosen as a reference then 𝑟𝑔,𝑠,𝑡
𝑐  will take on 

the value of 10 MW. This exceedance level implies that, for the 100 training net load sce-

narios included in the Monte Carlo simulations, 50% of the time the activated reserve in 

response to generator contingency 𝑐 is larger than the chosen value of 𝑟𝑔,𝑠,𝑡
𝑐 , which is 10 

MW in this case, in (6.33). Since the activated reserve for the training set of net load sce-

narios is sorted in the descending order, a lower choice of exceedance level results in a 

larger value of 𝑟𝑔,𝑠,𝑡
𝑐  in (6.33) and a correspondingly larger 𝛤𝑔𝑡

𝑐 . A larger value of 𝛤𝑔𝑡
𝑐  im-

plies that a larger fraction of reserve is deliverable from generator 𝑔 in response to con-

tingency 𝑐 for a certain percentage (exceedance level) of the net load scenarios. Thus, a 

lower exceedance level represents a less conservative reserve policy, whereas, a higher 

exceedance level represents a more conservative reserve policy. In other words, the 

higher the exceedance level, the more conservative the reserve policy. 



 

95 

 

Updating 𝛤𝑔𝑡
𝑐  based on a pre-defined exceedance level: 

𝛤𝑔𝑡
𝑐 =

𝑟𝑔,𝑠,𝑡
𝑐

𝑟𝑔𝑡̅̅̅̅̅
, ∀𝑐 ∈ 𝐶𝑔, 𝑔 ∈ 𝐺, 𝑡 ∈ 𝑇. (6.33) 

The deliverability of reserve provided by each generator is enhanced by iteratively 

updating the parameter 𝛤𝑔𝑡
𝑐 , which defines the response set and is initially set to one, us-

ing (6.33) until a termination criterion is met. In other words, the offline training phase 

modified SCUC, which includes the response-set reserve model, is solved repeatedly un-

til the updated 𝛤𝑔𝑡
𝑐  does not further reduce the expected sum of post-contingency security 

violations significantly for the training set of net load scenarios on an average basis or 

until a maximum iteration count is reached; therefore, it is system-dependent. The maxi-

mum iteration count can be set based on time availability. The output of the first stage is 

the reserve activation factor, 𝛤𝑔𝑡
𝑐̅̅ ̅̅ . 

To summarize, during the offline training phase, data generated from Monte Carlo 

simulations is analyzed to determine the quantity of reserves that are activated from each 

generator in addition to identifying the prime locations of the reserve. In other words, the 

offline process is used to determine a response set for each contingency. The response set 

is identified by using the parameter 𝛤𝑔𝑡
𝑐 , which again aims to capture the deliverability of 

reserve at each location in each contingency. 

6.2.2. Out-of-Sample Testing or Implementation Phase 

The second stage is the out-of-sample testing or implementation phase, where the 

day-ahead (DA) SCUC model is modified to incorporate the reserve response-set policies 

described by (6.36)–(6.38) in comparison to (6.19)–(6.24) that were included in the train-

ing stage. The complete formulation of the modified deterministic DA SCUC model, 
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formulated as a MILP and solved using CPLEX’s dynamic search algorithm, is described 

by (6.34)–(6.38) detailed below. 

Minimize:∑ ([∑ 𝐶𝑗 𝑔𝑗
(𝑃𝑔𝑡𝑗)] + 𝐶𝑔

𝑁𝐿𝑢𝑔𝑡 + 𝐶𝑔
𝑆𝑈𝑣𝑔𝑡 + 𝐶𝑔

𝑆𝐷𝑤𝑔𝑡 + 𝐶𝑔
𝑟𝑒𝑠𝑟𝑔𝑡)𝑔,𝑡  (6.34) 

Subject to: 

Constraints (6.2)–(6.18) (6.35) 

∑ 𝑟𝑔𝑡 ≥ 𝜂%∑ 𝐷𝑛𝑡𝑛𝑔 , ∀𝑡 ∈ 𝑇 (6.36) 

∑  𝛤𝑔𝑡
𝑐̅̅ ̅̅ 𝑟𝑔𝑡 ≥ 𝑃𝑐𝑡 + 𝑟𝑐𝑡𝑔 , ∀𝑐 ∈ 𝐶𝑔, 𝑡 ∈ 𝑇 (6.37) 

−𝐹𝑙
𝑅𝑎𝑡𝑒𝐶 ≤  𝐹𝑙𝑡 − 𝑃𝑐𝑡𝑃𝑇𝐷𝐹𝑛(𝑐),𝑙 + ∑ 𝑃𝑇𝐷𝐹𝑛(𝑔),𝑙 𝛤𝑔𝑡

𝑐̅̅ ̅̅ 𝑟𝑔𝑡 ≤ 𝐹𝑙
𝑅𝑎𝑡𝑒𝐶

𝑔:𝑔≠𝑐 , ∀𝑐 ∈ 𝐶𝑔
𝑐𝑟𝑡
,  

𝑙 ∈ 𝐿𝑐𝑟𝑡, 𝑡 ∈ 𝑇. (6.38) 

The objective is to minimize the total system costs, which includes the operational, 

no-load, startup, shutdown and reserve costs similar to (6.1). Constraint (6.36) is similar 

to (6.20) and (6.37) is equivalent to (6.21), which identifies a potential response set by 

incorporating the deliverability information (i.e., the quantity and prime locations) for 

each contingency event. The input parameter 𝛤𝑔𝑡
𝑐̅̅ ̅̅ , obtained from the first stage, reflects 

the quotient of scheduled reserve that is potentially deliverable in contingency state 𝑐. 

Constraint (6.38) is similar to (6.23), which ensures the deliverability of deployed re-

serves through set 𝐿𝑐𝑟𝑡. Here, subsets 𝐶𝑔
𝑐𝑟𝑡

 and 𝐿𝑐𝑟𝑡 (consistent for both training and test-

ing stages) are pre-defined to include only the larger units and the routinely congested 

transmission assets (respectively) after weighing the trade-off between model accuracy 

and model complexity. However, they can be extended to include the less critical units 

and transmission assets as well. Again, the DA SCUC model is followed by contingency 
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analysis (or deliverability check) to test its market solution against generator contingen-

cies combined with out-of-sample net load scenarios, i.e., 𝑠 ∈ 𝑆𝑂𝑂𝑆. 

6.2.3. Out-of-Market Correction Stage 

Existing market SCUC solutions do not guarantee N-1 reliability due to the changing 

system operating conditions, its deterministic structure, and model approximations, 

thereby, resulting in potential system security violations. Often, a value of lost load 

(VOLL) is assumed to estimate the cost of security violations; however, the results ob-

tained using such an approach are sensitive to the choice of VOLL. Today, market opera-

tors adjust market solutions outside the market engine to create realistic, feasible solu-

tions. Thus, contingency analysis is followed by an OMC phase to obtain the cost to 

move from an unreliable to a reliable solution. Such operator mediations are classified as 

exceptional dispatches in CAISO and reserve disqualifications in MISO [72], [22]. The 

analysis, in this work, aims to simulate (or optimize) the OMC procedures that are usual-

ly taken by system operators to more accurately (objectively) estimate the actual incurred 

costs for correcting security violations rather than taking an approach that is dependent 

on a subjective VOLL. The final solutions included in the results are N-1 reliable. In or-

der to be consistent with existing market practices, the adopted OMC formulation does 

not allow de-committing units that were originally committed in the DA SCUC market 

model; however, it does allow for a modification of the dispatch schedules and the com-

mitment of additional units at increased penalty costs in order to ensure reliable opera-

tions. It is pertinent to note that the OMC costs that are reported in this chapter do not 

include the aforementioned penalty costs to deviate from the DA SCUC solution. 
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6.3. IEEE 118-Bus Test Case 

6.3.1. Network Overview 

The proposed approach is implemented on a modified IEEE 118-bus test system to 

evaluate its effectiveness. The modified IEEE 118-bus test case has 54 generators, 186 

lines, and 91 loads [83]. The modifications made to the original test system include: de-

creasing the line ratings to create congestion; and decreasing the system load to 90% of 

the original load. The system is partitioned into three zones using the zone partitioning 

method presented in [23]. 

6.3.2. Dataset and Software Description 

Critical transmission asset set 𝐿𝑐𝑟𝑡 is pre-defined by conducting contingency analysis 

on a proposed SCUC solution with varying system operating conditions and by pre-

identifying the frequently congested inter-zonal links in the post-contingency state; how-

ever, the critical transmission set can be extended to include intra-zonal links. In this case 

study, set 𝐿𝑐𝑟𝑡 includes one routinely congested (critical/credible) transmission asset and 

set 𝐶𝑔𝑐𝑟𝑡 includes all generating elements that have a maximum real power generating 

capacity of greater than or equal to 350 MW, i.e. five generating units. Thus, a total of 

1 × 5 × 24 = 120 post-contingency transmission constraints are included, where 24 rep-

resents the number of time periods in the DA model. This work considers net load uncer-

tainty. In other words, the uncertainty introduced by stochastic resources, such as wind, 

solar or load, is represented by net load scenarios. The net load at each bus is assumed to 

follow a Gaussian distribution with zero mean to approximate the uncertainty without 

overcomplicating the scenario generation process. The variance chosen was such that the 
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resultant uncertainty is ~7%. More accurate distributions can be adopted in future work. 

Variable fuel costs are denoted by a piecewise linear cost function. The exceedance level 

is pre-set to 50% (neither too conservative nor overstated, after conducting a sensitivity 

analysis) in sync with existing industry practices. In addition, it is noticed that, for this 

case study, there is no significant reduction in the average security violations beyond 

three iterations, therefore, the number of iterations for updating 𝛤𝑔𝑡
𝑐  is set to three. Addi-

tionally, 100 different net load scenarios are used in the out-of-sample testing phase. The 

relative MIP gap for the various optimization problems is set to 0.2%. The proposed algo-

rithm is solved with CPLEX v12.6. All simulations are run on a computer with the fol-

lowing specifications: Intel® Xeon® CPU X5687 @ 3.60 GHz, 48 GB RAM, and 64-bit 

operating system. 

6.3.3. Results and Analysis 

The performance of the proposed approach is compared against the reserve sharing 

model defined by (2.3)-(2.6) and an extensive form stochastic UC model (abbreviated as 

“Exten. Form” or “Extsv.” in the figures and tables) at a one-hour resolution. Varying re-

serve sharing policies are used for the reserve sharing model, with 𝛼 ranging from 0.4 to 

0.8. It is important to note that, the reserve sharing model is infeasible for 𝛼 less than 0.4. 

The extensive form stochastic UC model is formulated as a two-stage stochastic program, 

where all generator contingencies are represented explicitly (in a probabilistic fashion) in 

all time periods. Thus, the solution obtained from the extensive form is guaranteed to be 

N-1 reliable with respect to generator contingencies. 
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The subsequent results are averaged across the out-of-sample net load test scenarios. 

Fig. 6.3 compares the final costs for the different approaches. Here, final cost refers to the 

cost after the OMC phase, therefore, it includes both the SCUC cost and the OMC cost. It 

is apparent that the extensive form stochastic UC reduces the need for OMCs, which can 

be attributed to the explicit modeling of the forecasted states and recourse decisions for 

the given set of generator contingencies. In addition, the stochastic program benchmark 

provides the best solution (i.e., the solution that is closest to the optimal solution or the 

lower bound) because it allocates reserves at deliverable locations by considering post-

contingency states. Although the proposed model results in the highest SCUC cost in 

comparison to the reserve sharing models, it has the fewest uneconomic adjustments and 

therefore the lowest OMC cost, thereby, resulting in the lowest overall cost. The result 

also indicates that the proposed approach can obtain a solution that is closer to the N-1 

reliable solution obtained from the extensive form, thereby decreasing the need for 

OMCs. By the market SCUC capturing reliability issues more adequately, prices are also 

a better reflection of the true marginal cost of providing reliable electricity. 

Fig. 6.4(a) illustrates that the percent cost savings of the proposed approach relative 

to the different reserve sharing models is in the range of ~1%-5%. Fig. 6.4(b) compares 

the computational time to solve the DA SCUC for the different approaches. Although the 

proposed approach reported a relatively short solution time, this result can vary (within a 

reasonable range) depending upon the size of the critical sets 𝐶𝑔
𝑐𝑟𝑡

 and 𝐿𝑐𝑟𝑡. Owing to the 

relatively small size of the test system, the proposed model is not always expected to 

outperform the benchmark models with respect to the solution time. However, it can be 

concluded that, the proposed approach enhances the DA SCUC model with minimal 



 

101 

 

added computational burden. In addition, it is important to note that, although the exten-

sive-form was solvable within a short timeframe, this would not be the case for a practi-

cal sized power system such as MISO, whose network model includes over 45,000 buses 

and 1,400 generating resources [12]. Note that the solution time for the offline training 

stage is not time sensitive; thus, its solution time is not reported. 

 

Fig. 6.3. Average final costs, including SCUC cost and OMC cost, comparison. Here, 𝛼 

signifies varying reserve sharing policies for the reserve sharing model and Exten. Form 

denotes the extensive-form stochastic UC model. 

(a)                                                                            (b) 

 

Fig. 6.4. Performance of the proposed approach in comparison to the reserve sharing 

model (with varying 𝛼 sharing policies) and the extensive-form stochastic UC model 

(Extsv.). (a) Average percent cost savings with standard error for sample size 𝑛 = 100. 

(b) Average computational time to solve the Extsv. and the DA SCUC model (for the re-

serve sharing 𝛼 approach and the proposed approach) with standard error for sample size 

𝑛 = 100. 
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Fig. 6.5 presents a statistic that measures the relative performance (𝑅𝑃%), which is 

defined as the percentage of the highest cost savings that the proposed approach can po-

tentially achieve. The 𝑅𝑃% metric is computed as follows: 

𝑅𝑃% =
𝐶𝐵𝐴−𝐶𝑃𝑟𝑝𝑠𝑑

𝐶𝐵𝐴−𝐶𝐸𝑥𝑡𝑠𝑣
. 100%. (6.39) 

In (6.39), the denominator represents the maximum potential cost savings that the 

proposed approach can achieve, i.e. final cost of the corresponding benchmark approach 

(𝐶𝐵𝐴) less the final cost of the extensive form stochastic program (𝐶𝐸𝑥𝑡𝑠𝑣). Also, 𝐶𝑃𝑟𝑝𝑠𝑑 

represents the final cost of the proposed approach. Finally, the expected variability in the 

estimated means of the percent cost savings, computational time to solve the DA SCUC 

problem, and the relative performance of the proposed approach is shown by error bars 

such as the standard error (SE, which describes the standard deviation of the mean). SE 

describes the uncertainty in the mean and is calculated by dividing the standard deviation 

by the square root of the number of samples (represented by 𝑛) that make up the mean. 

The lesser the original data values range above and below the mean, i.e., the narrower the 

SE bar, the more confidence one has in a specific value, i.e., the estimated mean. 

 

Fig. 6.5. Average relative performance (𝑅𝑃%) of the proposed approach in comparison to 

the reserve sharing model (with varying 𝛼 sharing policies) with standard error for sam-

ple size 𝑛 = 100. 
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Fig. 6.6 compares the final costs for N-1 reliable solutions against the expected sum 

of security violations (or E[viol]) for the corresponding DA SCUC solutions for the out-

of-sample net load test scenarios. Here, the bubble size is indicative of the number of 

cases, i.e. over all contingencies and time periods, with violations for the corresponding 

net load scenario, denoted by #violated cases. The proposed approach has the least 

#violated cases in addition to the lowest amount of E[viol] because it preemptively 

locates reserve in prime locations with better potential deliverability. Less conservative 

policies (large 𝛼) tend to result in higher E[viol], #violated cases, and final costs but 

lower SCUC costs because they require lesser reserve to be held within local regions. 

 

Fig. 6.6. Final costs for N-1 reliable solutions compared against the E[viol] for DA SCUC 

solutions for the test scenarios. The bubble size represents the number of cases (∀𝑐, 𝑡) 
with violations for the corresponding net load scenario. 

6.3.4. Results and Analysis: Test for Robustness 

Lastly, the testing process included taking the gamma obtained from the offline train-
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for one such test day. It can be seen that the performance of the proposed approach is 

consistent with the aforementioned results (i.e., in Section 6.3.3) for the first test day.  

TABLE 6.1. AVERAGE RESULTS ACROSS NET LOAD SCENARIOS FROM THE SECOND TEST 

DAY FOR THE IEEE 118-BUS TEST SYSTEM 

Approach SCUC Cost OMC Cost 
Time 

(s) 
𝑅𝑃% 

E[viol] 

MW 

#violated 

cases 

𝛼=0.8 $1,275,342 $129,397 15.5 46.5% 5.21 76 

𝛼=0.7 $1,275,305 $132,918 17.2 48.5% 5.34 76 

𝛼=0.6 $1,275,295 $108,771 12.5 30.6% 5.12 75 

𝛼=0.5 $1,276,481 $122,175 15.6 42.6% 5.09 75 

𝛼=0.4 $1,291,387 $91,612 25.8 29.5% 4.31 74 

Proposed $1,360,623 $2,172 3.6 - 0.66 35 

Extsv. $1,314,560 $0 31.2 - 0 0 

 

6.4. 2383-Bus Polish Test Case 

6.4.1. Network Overview 

The proposed approach is also tested on an actual large-scale power system (i.e., a 

modified 2383-bus Polish test system) in order to evaluate its computational scalability. 

The modified test case has 327 generators, 2896 lines, and 1826 loads [93]. The modifi-

cations include: repartitioning the original six zones in the system into three zones; de-

creasing the line ratings to create congestion; and increasing the emergency line ratings to 

1.05-1.25 times the corresponding nominal line ratings. In addition, demand information 

from the RTS96 dataset is used to define the hourly peak load profiles [83]. The test sys-

tem developed by FERC, as a benchmark for industry evaluation of differing optimiza-

tion problems, is used to define the detailed generator information including the piece-

wise linear cost coefficients, fixed costs, minimum up and down times, and ramp rates 

[94]. 
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6.4.2. Dataset and Software Description 

In this case study, set 𝐿𝑐𝑟𝑡 includes four routinely congested (critical/credible) trans-

mission assets and set 𝐶𝑔
𝑐𝑟𝑡

 includes 13 critical generator contingencies for units that 

have a 𝑃𝑔
𝑚𝑎𝑥 ≥ 500 MW. Thus, a total of 4 × 13 × 24 = 1248 post-contingency trans-

mission constraints are included. Again, the uncertainty introduced by stochastic re-

sources is represented by net load scenarios. It is assumed that the net load at each bus in 

the system follows a Gaussian distribution with zero mean. The variance of the Gaussian 

distribution was selected such that the resultant uncertainty is about 7%. Note that the 

distribution of the net load at each bus may not necessarily be Gaussian. The assumption 

of a Gaussian distribution in this case study is to approximate the net load without over-

complicating the scenario generation process. More accurate distributions can be adopted 

in future work. A piecewise linear cost function is used to represent the variable fuel 

costs. For this case study, since no notable reduction in average security violations is no-

ticed beyond a single iteration, the number of iterations for updating 𝛤𝑔𝑡
𝑐  is set to one. 

Owing to the large size of the system, only 30 different net load scenarios are used in the 

out-of-sample testing phase. The relative MIP gap for SCUC is set to 0.05%. The OMC 

and the extensive form stochastic UC problems are terminated after 1800 seconds or up-

on reaching an optimality gap of 0.025%; note that MISO uses a time limit of 1200 sec-

onds for their DA SCUC model [12]. The proposed algorithm is written in Java and 

solved with CPLEX version 12.6. All simulations are run on a computer with the follow-

ing specifications: Intel® Xeon® CPU X5687 @ 3.60 GHz, 48 GB RAM, and 64-bit op-

erating system. 
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6.4.3. Results and Analysis 

The performance of the proposed model is compared against the myopic policy and 

the reserve sharing model described in Chapter 2 and an extensive form stochastic UC 

model. In this case, the reserve sharing model is infeasible for 𝛼 less than 0.85. It is 

noteworthy to emphasize that only a subset of credible generator contingencies, i.e., 

𝐶𝑔
𝑐𝑟𝑡
⊆ 𝐶𝑔, consistent with the remainder of the benchmarks is modeled in the extensive 

form for this case study due to the insolvability of the extensive form with an explicit rep-

resentation of all generator contingencies, 𝐶𝑔. Fig. 6.7(a) shows that the final cost is con-

sistently lower with the proposed approach, which can be attributed to the more appropri-

ate allocation of reserve at prime locations with better potential deliverability while re-

specting the critical network constraints post-contingency. In addition, the proposed ap-

proach requires fewer discretionary changes or uneconomic adjustments by market opera-

tors; it provides a solution that is more reliable as it is closer to the extensive form sto-

chastic UC solution. Small values of 𝛼 tend to have higher SCUC costs because they ne-

cessitate more reserve to be held within local regions. The reduced final cost for the pro-

posed approach translates into increased percent savings relative to the benchmark ap-

proaches, which is apparent in Fig. 6.7(b). Fig. 6.7(c) illustrates that the computational 

complexity of the proposed approach is comparable to the benchmark reserve models. 

However, it is pertinent to note that, the solution time is dependent upon the size of the 

critical sets 𝐶𝑔
𝑐𝑟𝑡

 and 𝐿𝑐𝑟𝑡. Determining a suitable size for these sets involves a trade-off 

between model complexity and model accuracy. Finally, it is worth noting that, the aver-

age computational time to solve the extensive-form (Extsv., not shown in Fig. 6.7-c to 

enhance clarity) increased drastically to 757 seconds in this case (as expected) owing to 
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the larger size of the Polish test system. The expected variability in the estimated means 

of the percent cost savings and the solution time to solve the DA SCUC problem for the 

different approaches is shown by the SE bars. The average 𝑅𝑃% of the proposed ap-

proach in comparison to the benchmark approaches is in the range of ~26%-46%. 

(a) 

 
                                                            (b)                                                                               (c)                

 
Fig. 6.7. Performance of the proposed approach in comparison to the myopic reserve 

model, the reserve sharing model (with varying 𝛼 sharing policies), and the extensive-

form stochastic UC model (Exten. Form). (a) Average final costs, including SCUC cost 

and OMC cost. (b) Average percent cost savings with standard error for sample size 𝑛 =
30. (c) Average computational time to solve the DA SCUC with standard error for 

sample size 𝑛 = 30. 

Fig. 6.8 compares the final costs for N-1 reliable solutions against the E[viol] for the 

corresponding DA market SCUC solutions. Here, the bubble size represents #violated 

cases. Conservative policies (small 𝛼) tend to result in lower E[viol] (i.e. be more relia-
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ble) but at increased operating (i.e., SCUC) costs because they require more local reserve. 

As expected, the myopic policy is the most unreliable because it does not disperse the 

reserves across the system. It is evident that the proposed approach has the least #violated 

cases in addition to the lowest amount of E[viol] because it anticipates the influence of 

congestion on corrective actions by explicitly modeling the post-contingency transmis-

sion constraints. Consequently, for this case study, the proposed approach is the most re-

liable in comparison to the benchmark approaches. 

 

Fig. 6.8. Final costs for N-1 reliable solutions compared against the E[viol] for DA SCUC 

solutions for the test scenarios. The bubble size represents the number of cases (∀𝑐, 𝑡) 
with violations for the corresponding net load scenario. 
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comparable solution times while also reducing the overall operational costs (or the final 

costs). 

TABLE 6.2. AVERAGE RESULTS ACROSS NET LOAD SCENARIOS FROM THE SECOND TEST 

DAY FOR THE POLISH TEST SYSTEM 

Approach 
SCUC 

Cost 

OMC 

Cost 

Time 

(s) 

E[viol] 

MW 

#violated 

cases 

Myopic $10,477,236 $3,363,591 93 17.16 77 

𝛼=1.0 $10,629,829 $3,257,164 95 10.38 60 

𝛼=0.95 $10,748,834 $3,253,228 106 9.64 54 

𝛼=0.9 $10,944,167 $3,119,700 106 9.57 52 

𝛼=0.85 $11,705,694 $2,522,554 99 7.13 46 

Proposed $11,433,091 $2,079,107 119 1.62 20 

Extsv. $11,730,828 $0 860 0 0 

 

TABLE 6.3. AVERAGE RESULTS ACROSS NET LOAD SCENARIOS FROM THE THIRD TEST 

DAY FOR THE POLISH TEST SYSTEM 

Approach 
SCUC  

Cost 

OMC  

Cost 

Time  

(s) 

E[viol]  

MW 

#violated  

cases 

Myopic $10,357,614 $3,077,257 88 19.93 86 

𝛼=1.0 $10,469,458 $2,880,663 96 11.78 67 

𝛼=0.95 $10,518,182 $2,828,948 116 10.27 61 

𝛼=0.9 $10,575,037 $2,862,207 95 8.83 57 

𝛼=0.85 $10,701,285 $3,026,199 111 7.32 52 

Proposed $11,013,072 $2,016,311 112 1.52 22 

Extsv. $10,718,310 $0 822 0 0 

 

6.5. Conclusions 

Model complexity involves a trade-off between simplicity and accuracy of the model. 

While complexity generally increases the accuracy of a model, it reduces its computa-

tional tractability and applicability. Smart, well-designed policies that address the alloca-

tion and deliverability issues associated with reserve can improve existing deterministic 

models and facilitate the transition to future stochastic programs. The proposed reserve 

response-set model enhances the reliability of the market solution with minimal added 
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computational burden while also reducing the overall operational costs. Additionally, it 

requires fewer OMCs (or discretionary changes) by market operators. The proposed ap-

proach is more effective than existing deterministic models and more scalable than sto-

chastic programs. The central philosophy of the proposed approach is to enhance reserve 

modeling to capture more requirements in market models in order to improve efficiency, 

enhance price signals, and maintain scalability and transparency. 
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CHAPTER 7.  

GENERATOR CONTINGENCY MODELING IN ELECTRIC ENERGY MARKETS: 

DERIVATION OF PRICES VIA DUALITY THEORY 

Traditional electric energy markets do not explicitly model generator contingencies. 

In an effort to improve the representation of resources and to enhance the modeling of 

uncertainty, existing markets are moving in the direction of including generator contin-

gencies and remedial action schemes within market action models. This chapter contrib-

utes to the theoretical domain of electric energy market design; the market implications 

due to the explicit representation of generator contingencies are demonstrated by deriving 

the dual formulation associated to the market auction model. The derivation of the prices 

and the dual formulation are based on leveraging duality theory from linear optimization 

theory. This work paves the way forward for market reform as it demonstrates how to de-

rive and analyze auction reformulations in order to streamline market reform associated 

to uncertainty modeling and modeling of corrective actions. 

Recent literature suggests modifying the contemporary market auction models to in-

clude post-contingency transmission flow constraints for generator contingencies explic-

itly. These constraints aim to preemptively anticipate post-contingency congestion pat-

terns in the event of a generator contingency. The enhanced formulations utilize pre-

determined factors, such as generation loss distribution factors (GDF), to predict the in-

fluence of recourse actions during critical generator contingencies. The primary goal is to 

acknowledge and enhance reserve deliverability in the post-generator contingency state. 

A primal (and the corresponding dual) formulation, which accounts for the proposed 

changes to the auction model, is provided to enable a theoretical analysis of the anticipat-
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ed changes including, but not restricted to, the effect on market prices, settlements, and 

revenues. Furthermore, variations of the primal auction (and the corresponding dual) 

formulation are also provided to investigate the market implications of different reformu-

lations to introduce corrective actions. A comparison to existing market structures is also 

included. By doing so, this research contributes to the market design realm by providing 

detailed analysis of impending changes, it provides insightful guidance in understanding 

the market implications, and it provides recommendations on necessary changes to ensure 

a fair and transparent market structure. In particular, the primary impact of the proposed 

changes includes the addition of a new congestion component within the traditional loca-

tional marginal price, which reflects the influence of congestion during the post-

contingency states for the modeled critical generator contingencies. 

7.1. Introduction 

ISOs maintain a continuous, reliable, and economically efficient supply of electric 

energy with the assistance of energy management systems and market management sys-

tems. One key feature within the management systems is the determination of the genera-

tion dispatch and ancillary services schedule while respecting complex operational re-

quirements and strict physical restrictions. The transmission planning standard (TPL-001-

4), set by the NERC is an instance of one such requirement, which stipulates system per-

formance requirements under both normal and emergency conditions [99]. Particularly, 

the system is required to recover from the loss of any single bulk element, e.g., a genera-

tor or a non-radial transmission element, without inconveniencing customers (involuntary 

load shedding). This rule is more commonly referred to as the N-1 reliability requirement 

and makes the underlying problem stochastic in nature. However, modeling such uncer-
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tain events within resource scheduling tools presents two practical barriers: (1) computa-

tional complexity of the resulting stochastic optimization problem and (2) market barriers 

primarily due to the complications associated with pricing in a stochastic market envi-

ronment. Consequently, most of the contemporary power system operational frameworks 

rely on deterministic approaches and utilize numerous approximations to handle uncer-

tainties to meet the N-1 mandate. 

Today, ISOs model critical transmission contingencies in the market explicitly with-

out utilizing second-stage recourse decision variables; post-contingency line flows are 

represented using shift factors, such as LODFs, for a subset of critical transmission con-

tingencies. Decomposition techniques are leveraged to manage the complexity of the 

overall mathematical program by acknowledging only the constraints deemed to be criti-

cal. Such approaches enable an efficient handling of critical transmission contingencies 

within market management systems today. 

Of course, the loss of a generating unit can also constrain the transmission system 

considerably. Generator contingencies are not modeled explicitly within state-of-the-art 

market auction models; instead, system or zonal operating reserve requirements are 

formed to ensure the system is reliable against generator contingencies. For instance, 

common industry practices, to approximate the N-1 mandate for generator contingencies, 

include simplistic policies that require a MW level of contingency reserve to be acquired 

somewhere in the system. However, such policies do not assure reliable operations (or 

ensure reserve deliverability) since they only capture a quantitative aspect. Moreover, 

such approximate, deterministic approaches require OMCs to adjust resource schedules 

to account for model inaccuracies. Consequently, there is a push in the industry to include 



 

114 

 

an explicit representation of generator contingencies in the auction models within the 

market management systems. 

Two-stage scenario-based stochastic programs are often proposed to improve opera-

tions by optimizing the system response, e.g., reserve activation, in the post-contingency 

states. However, recent industry movement to model generator contingencies suggests 

using pre-determined factors, such as generator loss distribution factors (GDFs) and zonal 

reserve deployment factors [31], [22], to approximate the system response to a generator 

contingency; such factors are analogous to the more familiar participation factors that are 

used today in real-time contingency analysis (RTCA) when simulating generator contin-

gencies. CAISO recently proposed to update its market auction models to recognize the 

impact of generator contingencies and remedial action schemes (RAS) in the market, ex-

plicitly, without using second-stage recourse decision variables [31]. Furthermore, MISO 

augmented their market auction models by modeling the loss of the largest generator for 

each zone and the corresponding system response in the post-contingency state, explicit-

ly, without using second-stage recourse decision variables [22]. MISO’s approach ap-

proximates post-contingency congestion on critical transmission interfaces due to the de-

ployed zonal reserves. Moreover, the system response is modeled via zonal aggregated 

sensitivity factors and pre-determined zonal reserve deployment factors. With the explicit 

modeling of generator contingencies within the market auction models, the industry is 

moving away from deterministic program formulations to a stochastic program structure. 

The anticipated impacts include market prices that better reflect the quality of service 

provided by generators in response to a generator contingency. The primary purpose of 

this chapter is to provide a theoretical analysis of the recent changes in market auction 
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models while focusing on its influences on market clearing prices, i.e., locational margin-

al prices (LMPs). It investigates the impact that the explicit inclusion of generator contin-

gencies will have on the market pricing structure using duality theory. Primal and dual 

formulations of market auction models, with and without explicit generator contingency 

modeling, derivation of the corresponding LMPs to demonstrate how the proposed 

changes affect market prices, settlements and revenues, are presented. 

The remainder of the chapter is organized as follows. Section 7.2 introduces a theoret-

ical analysis of a contemporary market auction model. Section 7.3 investigates the antici-

pated changes by providing an enhanced primal formulation for the market auction model 

and an economic interpretation of the corresponding dual problem, its variables, and its 

constraints. In addition, this section proposes a variation of the primal auction (and the 

corresponding dual) formulation to examine the market implications of a different refor-

mulation to introduce corrective actions. Note that, in the following discussions, GDFs 

are used to model the corrective actions approximately without using a recourse decision 

variable. Finally, Section 7.4 concludes the chapter and summarizes potential future 

work. 

7.2. Dual Problems of Electric Energy Market Formulations 

7.2.1. Background on Duality Theory for Linear Optimization 

In linear optimization, there is the primal problem, the problem at hand. In this case, 

the problem of interest is the direct current optimal power flow (DCOPF) problem or a 

security-constrained economic dispatch problem. Each primal problem then has a corre-

sponding dual problem and together they form what is known in linear optimization theo-
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ry as a primal-dual pair. The dual problem can be interpreted as an optimization problem 

that is searching for the tightest lower bound (when the primal is a minimization prob-

lem); it also provides the shadow prices (dual variables) corresponding to the constraints 

in the primal. Dual variables, based on linear optimization theory, can also be interpreted 

as the corresponding Lagrange multipliers for the constraints within the primal. From the 

perspective of an economist, they are interpreted as shadow prices. The constraints within 

the dual describe the relationships between the dual variables. Likewise, the primal varia-

bles are the corresponding shadow prices for the dual constraints.  

The following example demonstrates the relationship between the primal-dual pair, 

where ai is a row and Aj is a column from a given A matrix that captures the constraint 

set (which consists of M constraints: M1 >= constraints, M2 <= constraints, and M3 = con-

straints) for the primal; each constraint has a scalar bi. In addition, c is the cost vector and 

X is the vector of primal variables, where N1, N2, and N3 denote the subset of non-

negative, non-positive and unrestricted primal variables respectively. Also, p denotes the 

penalty (or shadow) price for violating the corresponding primal constraint. This primal-

dual pair presentation can be found in a variety of textbooks, including [100]. 

Primal: Dual: 

Minimize: 𝐜𝐓𝐗 Maximize: 𝐩𝐓𝐛 

Subject to: Subject to: 

𝐚𝐢
𝐓𝐗 ≥ 𝑏𝑖,     𝑖 ∈ 𝑀1 𝑝𝑖 ≥ 0,        𝑖 ∈ 𝑀1 

𝐚𝐢
𝐓𝐗 ≤ 𝑏𝑖,     𝑖 ∈ 𝑀2 𝑝𝑖 ≤ 0,        𝑖 ∈ 𝑀2 

𝐚𝐢
𝐓𝐗 = 𝑏𝑖,     𝑖 ∈ 𝑀3 𝑝𝑖: free,      𝑖 ∈ 𝑀3 

𝑥𝑗 ≥ 0,          𝑗 ∈ 𝑁1 𝐩𝐓𝐀𝐣 ≤ 𝑐𝑗 ,   𝑗 ∈ 𝑁1 
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𝑥𝑗 ≤ 0,          𝑗 ∈ 𝑁2 𝐩𝐓𝐀𝐣 ≥ 𝑐𝑗 ,   𝑗 ∈ 𝑁2 

𝑥𝑗: free,       𝑗 ∈ 𝑁3 𝐩𝐓𝐀𝐣 = 𝑐𝑗 ,   𝑗 ∈ 𝑁3. 

Prior work related to optimization problems for power systems derive the properties 

of the prices, which come from the dual formulation, based on applying Karush-Kuhn-

Tucker (KKT) conditions and simplifying the equations [101], [102]. Note that the dual 

formulation is derived by creating a Lagrangian dual and then simplifying it into the form 

presented above. Leveraging the known properties for a primal-dual pair for linear opti-

mization models is used in this chapter since it is more concise and straightforward than 

superfluous procedures that re-derive the dual from scratch. 

7.2.2. The Dual Formulation for a Standard DCOPF Problem 

This subsection provides an explicit formulation of the primal-dual pair for the 

DCOPF problem, which is a simplified representation of existing market formulations 

that generally come in the form of a SCUC or a SCED model. Most of the contemporary 

market models use a linearized DCOPF formulation that is based on PTDFs. A less com-

monly used DCOPF formulation is the B-θ formulation that relies on the susceptance of 

transmission assets (B) and the bus voltage angles (θ). The B-θ formulation requires de-

claring variables for all bus voltage angles in addition to incorporating dc power flows for 

all transmission assets although it is a known fact that few transmission assets may reach 

their transfer limits; by having to determine all line flows and bus voltage angle values, 

the B-θ formulation is doing much more work than necessary. 

On the other hand, the PTDF-based formulation is easier to solve since it provides the 

option of ignoring the transmission assets that are inconsequential (rarely congested), 
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thereby reducing modeling complexity. For instance, a large market environment may 

have over 10,000 transmission assets to monitor; to ensure N-1 for transmission contin-

gencies, there would be 100M potential transmission asset variables to track. If the opera-

tor is concerned about only one line being congested or overloaded for the pre-

contingency state and for each post-contingency state, then the B-θ formulation would 

require the calculation of all 100M flow variables. Conversely, with a PTDF formulation, 

only the flows for lines that may be congested would need to be determined, roughly 

10,000 instead. A primal problem formulation for a standard PTDF-based DCOPF is de-

tailed below. 

Minimize
𝑃𝑛,𝐷𝑛

: ∑ 𝑐𝑛𝑃𝑛𝑛  (7.1) 

Subject to: 

−𝑃𝑛 ≥ −𝑃𝑛
𝑚𝑎𝑥 , ∀𝑛 ∈ 𝑁           (𝛼𝑛) (7.2) 

∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛𝑛 − 𝐷𝑛) ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑎, ∀𝑘 ∈ 𝐾           (𝐹𝑘
−) (7.3) 

−∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛𝑛 − 𝐷𝑛) ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑎, ∀𝑘 ∈ 𝐾           (𝐹𝑘
+) (7.4) 

∑ 𝑃𝑛𝑛 − 𝐷𝑛 = 0,           (𝛿) (7.5) 

𝐷𝑛 = 𝐷𝑛̅̅̅̅ , ∀𝑛 ∈ 𝑁           (𝜆𝑛) (7.6) 

𝑃𝑛 ≥ 0. 

The objective, (7.1), is to minimize the linear operating costs, which is equivalent to 

maximizing the market surplus since the demand is assumed to be perfectly inelastic. 

Constraint (7.2) imposes an upper bound on the real power scheduled from a generating 

resource. Note that, for simplicity, the minimum real power generating capacity is as-

sumed to be zero for all generating resources. The dc power flow on a transmission asset 

is constrained by its normal (thermal or stability) rating, i.e., rate A, in (7.3) and (7.4) re-
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spectively. Note that the dual variables of (7.3) and (7.4) are the flowgate marginal prices 

for those transmission assets or flowgates; these dual variables are used to calculate the 

congestion component of the LMP. Constraint (7.5) assures system-wide power balance 

between generation and demand; the dual variable of (7.5) captures the energy compo-

nent of the LMP. Note that, in this formulation, the demand is treated as a variable fol-

lowing which it is fixed to equal a parameter in (7.6). The dual variable of (7.6) signifies 

the increase (or decrease) to the primal objective (7.1) if there is slightly more (or less) 

consumption by the demand at node n, which directly translates into the definition of the 

LMP. The corresponding dual problem formulation for the aforesaid primal problem is 

given below. 

Maximize
𝛼𝑛,𝐹𝑘

−,𝐹𝑘
+,𝛿,𝜆𝑛

: −∑ 𝑃𝑛
𝑚𝑎𝑥𝛼𝑛 − ∑ 𝑃𝑘

𝑚𝑎𝑥,𝑎(𝐹𝑘
− + 𝐹𝑘

+) + ∑ 𝐷𝑛̅̅̅̅𝑛𝑘𝑛 𝜆𝑛 (7.7) 

Subject to: 

−𝛼𝑛 + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

−
𝑘 − 𝐹𝑘

+) + 𝛿 ≤ 𝑐𝑛, ∀𝑛 ∈ 𝑁           (𝑃𝑛) (7.8) 

∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

+
𝑘 − 𝐹𝑘

−) − 𝛿 + 𝜆𝑛 = 0, ∀𝑛 ∈ 𝑁           (𝐷𝑛) (7.9) 

𝛼𝑛 ≥ 0, 𝐹𝑘
− ≥ 0, 𝐹𝑘

+ ≥ 0, 𝛿 free, 𝜆𝑛 free . 

At optimality, the dual objective (7.7) is equal to the primal objective (7.1) by strong 

duality. The first, second, and the third components of (7.7) denote the generation rent 

(short-term generation profit), the congestion rent, and the load payment, respectively. 

Since generation revenue is equal to generation cost plus generation rent, it can be proven 

that, at optimality, load payment is equal to generation revenue plus congestion rent. 

Constraints (7.8) and (7.9) represent the dual constraints corresponding to the generator 

production and the demand variables in the primal problem, respectively. Constraint (7.9) 
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within the dual problem identifies λn as the LMP at node n. Thus, the LMP, defined by 

(7.9a), is equal to the sum of the marginal energy (δ) and the marginal congestion com-

ponents. Note that, since the PTDF-based DCOPF formulation defined by (7.1)–(7.6) is 

assumed to be a lossless model, there is no loss component of the LMP for the work pre-

sented in this chapter. After identifying the equation that defines the LMP via (7.9), (7.8) 

reduces to (7.8a). 

𝜆𝑛 = 𝛿 + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

−
𝑘 − 𝐹𝑘

+), ∀𝑛 ∈ 𝑁           (𝐷𝑛) (7.9a) 

−𝛼𝑛 + 𝜆𝑛 ≤ 𝑐𝑛, ∀𝑛 ∈ 𝑁.           (𝑃𝑛) (7.8a) 

The dual variable of (7.2), i.e., non-negative, signifies the marginal value of increas-

ing a specific generator’s maximum capacity. Three cases can potentially exist in this 

context, while remembering that the lower bounds of all generators are assumed to be 

zero for this simplified DCOPF problem: 1) if a generator is producing, but not at its 

maximum capacity (i.e., αn = 0 by complementary slackness), then the LMP at the node 

of the generator is equal to its marginal cost (by complementary slackness); 2) if a gener-

ator is not producing anything (i.e., αn = 0 by complementary slackness), then the LMP at 

its node is less than or equal to its marginal cost; and 3) if the generator is producing at its 

maximum capacity (i.e., αn ≥ 0), then the LMP at its node is greater than (when αn > 0) or 

equal (when αn = 0) to its marginal cost (by complementary slackness). These results 

match with a simple economic interpretation of the shadow price for (2). Whenever you 

are not producing at your maximum capacity the short-term marginal benefit to increase 

your capacity beyond its existing capability is zero. When you are operating at your max-

imum capacity, the short-term marginal benefit to increase your capacity by 1 MW is 

equal to the difference between your LMP and your marginal cost; keep in mind that this 
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explanation applies to the presented primal DCOPF formulation. If the presented formu-

lation included other constraints that could restrict the generator’s output, e.g., ramp rate 

limits, then the description would be more complex. 

In general, note that if the DCOPF is formulated differently, the dual will not be the 

same and may result in different interpretations of that different dual. For example, if a 

variant DCOPF formulation were used by leveraging the B-θ structure, there would be an 

added dual variable known as the susceptance marginal price. The B-θ formulation ex-

plicitly models the separation of current through the grid based on an approximation of 

Kirchhoff’s laws derived from the ac power flow (ACPF) formulation; this known equa-

tion, pk = bk(θn-θm), would have a dual variable that reflects the marginal impact on the 

objective based on a marginal change in the susceptance of the line, i.e., a susceptance 

marginal price [103]. This susceptance marginal price does not show up in the PTDF 

formulation as the influence of a line’s susceptance within the PTDF formulation is em-

bedded within the pre-calculated PTDFs. 

7.3. Recent Industry Movements to Model Generator Contingencies in Market 

7.3.1. Primal Formulation for the Enhanced DCOPF Problem 

To meet NERC’s N-1 mandate more appropriately, recent literature suggests enhanc-

ing generator contingency modeling by ensuring post-contingency transmission security 

through an explicit representation of post-contingency congestion patterns for critical 

generator contingencies within the market auction models. The mathematical (primal) 

formulation for the enhanced DCOPF problem, motivated by the optimization problem 

proposed by CAISO in [31], is detailed below. Note that while the presented formulation 
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below is related to CAISO’s proposed formulation in [31], earlier portions of this thesis, 

which were proposed before [31], are very similar to CAISO’s proposed change. For this 

chapter, the focus is on CAISO’s proposed changes and extensions to this work can be 

made to analyze other attempts to introduce more advanced generator contingency mod-

eling, renewable uncertainty, and corrective control actions.  

Minimize
𝑃𝑛,𝑃𝑛

𝑐,𝐷𝑛
: ∑ 𝑐𝑛𝑃𝑛𝑛  (7.10) 

Subject to: 

−𝑃𝑛 ≥ −𝑃𝑛
𝑚𝑎𝑥 , ∀𝑛 ∈ 𝑁           (𝛼𝑛) (7.11) 

∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛𝑛 − 𝐷𝑛) ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑎, ∀𝑘 ∈ 𝐾           (𝐹𝑘
−) (7.12) 

−∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛𝑛 − 𝐷𝑛) ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑎, ∀𝑘 ∈ 𝐾           (𝐹𝑘
+) (7.13) 

𝑃𝑛
𝑐 − 𝑃𝑛 − 𝐺𝐷𝐹𝑛′(𝑐),𝑛𝑃𝑛′(𝑐) = 0, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶

𝑔𝑐𝑟𝑡            (𝛽𝑛
𝑐) (7.14) 

∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛𝑛 + 𝐺𝐷𝐹𝑛′(𝑐),𝑛𝑃𝑛′(𝑐) − 𝐷𝑛) ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑐, ∀𝑘 ∈ 𝐾𝑐𝑟𝑡, 𝑐 ∈ 𝐶𝑔
𝑐𝑟𝑡

  

 (𝐹𝑘
𝑐−) (7.15) 

−∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛𝑛 +𝐺𝐷𝐹𝑛′(𝑐),𝑛𝑃𝑛′(𝑐) − 𝐷𝑛) ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑐, ∀𝑘 ∈ 𝐾𝑐𝑟𝑡, 𝑐 ∈ 𝐶𝑔
𝑐𝑟𝑡

  

 (𝐹𝑘
𝑐+) (7.16) 

∑ 𝑃𝑛𝑛 − 𝐷𝑛 = 0,           (𝛿) (7.17) 

𝐷𝑛 = 𝐷𝑛̅̅̅̅ , ∀𝑛 ∈ 𝑁           (𝜆𝑛) (7.18) 

𝑃𝑛 ≥ 0, 𝑃𝑛
𝑐 ≥ 0. 

where: 

𝐺𝐷𝐹𝑛′(𝑐),𝑛 =

{
 
 

 
 

−1, 𝑛 = 𝑛′(𝑐)

0, 𝑛 ≠ 𝑛′(𝑐) ⋏ 𝑛 ∉ 𝑆𝐹𝑅

𝑢𝑛𝑃𝑛
𝑚𝑎𝑥

∑ 𝑢𝑛𝑃𝑛
𝑚𝑎𝑥

𝑛∈𝑆𝐹𝑅

𝑛≠𝑛′(𝑐)

, 𝑛 ≠ 𝑛′(𝑐) ⋏ 𝑛 ∈ 𝑆𝐹𝑅
, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔

𝑐𝑟𝑡
. (7.19) 
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Note that, in this formulation, the generation loss is distributed across the system via 

GDFs and is presumed to be lossless in (7.14). Also, it is prorated based on the maximum 

online (frequency responsive) capacity, to approximate the actual system behavior, while 

ignoring capacity and ramp rate restrictions [31]. Equation (7.19) provides CAISO’s def-

inition for GDFs, which is proposed to estimate the effect of generation loss and the asso-

ciated system response on critical transmission assets in the post-contingency state. The 

post-contingency dc power flow (under a critical generator outage) on a critical transmis-

sion asset is restricted by its emergency rating (rate C) in (7.15) and (7.16) respectively. 

The remainder of the formulation is consistent with the standard DCOPF formulation. 

Note that GDF is constructed to denote the outage of generation at a specific node, not to 

distinguish between the outage of a single generator at a node with multiple generators. 

Finally, note that CAISO’s actual market model will be more complex than what is pre-

viously presented; that previously presented DCOPF does not include other modeling is-

sues like transmission contingency modeling, reserve requirements, ramp rate limits, etc. 

The formulation is kept in a simpler manner to focus on the key proposed change, which 

is related to the inclusion of the generator contingency modeling with the use of the 

GDFs. 

7.3.2. Dual Formulation for the Enhanced DCOPF Problem 

The corresponding dual problem formulation is described below. Note that, while the 

following dual is derived based on the formulation in Section 7.3.1, other primal formula-

tions are also possible, and the dual formulations will change as well. 
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Maximize
𝛼𝑛,𝐹𝑘

−,𝐹𝑘
+,𝛽𝑛

𝑐 ,𝐹𝑘
𝑐−,𝐹𝑘

𝑐+,𝛿,𝜆𝑛
: −∑ (𝑃𝑛

𝑚𝑎𝑥𝛼𝑛)𝑛 − ∑ (𝑃𝑘
𝑚𝑎𝑥,𝑎(𝐹𝑘

− + 𝐹𝑘
+))𝑘   

−∑ (𝑃𝑘
𝑚𝑎𝑥,𝑐(𝐹𝑘

𝑐− + 𝐹𝑘
𝑐+))𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

+ ∑ (𝐷𝑛̅̅̅̅ 𝜆𝑛)𝑛  (7.20) 

Subject to: 

−𝛼𝑛 + (∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

− − 𝐹𝑘
+)𝑘 ) − (∑ 𝛽𝑛

𝑐 + �̅�𝑛′(𝑐),𝑛𝑐∈𝐶𝑔
𝑐𝑟𝑡 ∑ 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝛽𝑠

𝑐
𝑠∈𝑁 )  

+(∑ (𝐹𝑘
𝑐− − 𝐹𝑘

𝑐+)(𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 + �̅�𝑛′(𝑐),𝑛 ∑ 𝑃𝑇𝐷𝐹𝑘,𝑠

𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑠∈𝑁 )𝑘∈𝐾𝑐𝑟𝑡 ,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

)  

+𝛿 ≤ 𝑐𝑛, ∀𝑛 ∈ 𝑁           (𝑃𝑛) (7.21) 

𝛽𝑛
𝑐 ≤ 0, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔

𝑐𝑟𝑡
           (𝑃𝑛

𝑐) (7.22) 

∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

+
𝑘 − 𝐹𝑘

−) + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

𝑐+
𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

− 𝐹𝑘
𝑐−) − 𝛿 + 𝜆𝑛 = 0, ∀𝑛 ∈ 𝑁   

 (𝐷𝑛) (7.23) 

𝛼𝑛 ≥ 0, 𝐹𝑘
− ≥ 0, 𝐹𝑘

+ ≥ 0, 𝛽𝑛
𝑐 free, 𝐹𝑘

𝑐− ≥ 0, 𝐹𝑘
𝑐+ ≥ 0, 𝛿 free, 𝜆𝑛 free .  

where: 

�̅�𝑛′(𝑐),𝑛 = {
0, 𝑛 ≠ 𝑛′(𝑐)

1, 𝑛 = 𝑛′(𝑐)
, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔

𝑐𝑟𝑡
.  (7.24) 

The dual objective now has an additional term, i.e., the third component in (7.20), 

which represents the post-contingency congestion rent resulting from generator contin-

gency modeling. Constraints (7.21), (7.22), and (7.23) represent the dual constraints cor-

responding to the generator production, the generator production under contingency c and 

the demand variables in the enhanced primal problem, respectively. The primary impact 

that the proposed changes will have on market pricing is how it affects the LMPs. Con-

straint (7.23) within the dual problem identifies λn as the LMP at node n. Thus, the LMP, 

which is now defined by (7.23a), is equal to the sum of the marginal energy component, 
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the marginal pre-contingency congestion component, and an additional marginal post-

contingency congestion component that comes from the modeling of critical generator 

contingencies. 

Note that, the enhanced primal problem defined by (7.10)–(7.18) differs from CAI-

SO’s primal problem in [31] with respect to the following aspects. 1) The demand is first 

treated as a variable following that is fixed to equal a parameter in (7.18) to enable the 

derivation of the LMP in a simpler manner. 2) The losses are ignored for simplification. 

3) Transmission contingency security constraints are ignored to allow the derivation in 

this dissertation to focus on generator contingency modeling in a clear and concise man-

ner. Furthermore, (7.23b) defines CAISO’s proposed LMP definition [31]. It can be seen 

that CAISO’s proposed LMP definition is consistent with (7.23a) for nodes that do not 

have critical generators (whose outages are modeled explicitly), i.e., γ = 0; however, 

there seems to be a discrepancy between the two LMP definitions for the nodes that do 

have critical generators i.e., γ = 1. More discussion is provided in the following sections, 

particularly, in Section 7.3.4. 

𝜆𝑛 = 𝛿 + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

−
𝑘 − 𝐹𝑘

+) + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

𝑐−
𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

− 𝐹𝑘
𝑐+), ∀𝑛 ∈ 𝑁  

 (𝐷𝑛) (7.23a) 

𝜆𝑛 = 𝛿 + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

−
𝑘 − 𝐹𝑘

+)  

+∑ [(𝐹𝑘
𝑐− − 𝐹𝑘

𝑐+)(𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 + �̅�𝑛′(𝑐),𝑛∑ 𝑃𝑇𝐷𝐹𝑘,𝑠

𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑠∈𝑁 )]𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

, ∀𝑛 ∈ 𝑁   

 (𝐷𝑛) (7.23b) 
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7.3.3. Analyzing the Dual Formulation 

To understand what is communicated by the dual problem presented in Section 7.3.2, 

first, start with the objective functions of the primal and the dual. Linear optimization 

theory includes strong duality, which guarantees that the objective of the primal problem 

equals the objective of the dual problem at optimality. Achieving strong duality means 

that there is no duality gap. Another way to interpret the strong duality relationship is 

through its expression of an exchange of money; payments and expenses resulting from 

the auction and the corresponding exchange of goods and services. There is the obvious 

piece from the objective of the primal problem, which is the total generation cost. The 

next obvious piece is the last term of the dual objective, which is the load payment, LMP 

times consumption. The second and third terms in the dual’s objective represent the 

system-wide congestion rent; this is to be expected as it relates the flowgate marginal 

price to the line flow, once complementary slackness is applied; more description to come. 

The first term of the dual objective is the short-term generator profit for a generator at 

node n, summed over all nodes, or the system-wide generation rent. 

Second, the system-wide generation rent is broken down for generators that are (and 

are not) contained in the critical generator contingency list, based on the proposed chang-

es by CAISO, to analyze the subsequent impact on prices and revenues for generators. 

Recall first that GDF reflects the anticipated system response from a specific node in the 

network and the way it is structured in (7.19) assumes that there is only one unit at most 

at a node (easily modifiable). Second, note the formula to define the GDF is based purely 

on the generator’s capacity relative to the rest of the fleet’s capacity (for units that are 

frequency responsive). One obvious drawback of the proposed GDF is that it ignores the 
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generator’s capacity, the generator’s ramp rate restrictions, and whether the ISO procured 

the necessary reserve product from the unit. As a result, this model assumes there is the 

capability to inject power at a node based on the definition of the GDF, not necessarily 

based on the actual ability for the generator to provide the needed reserve; for instance, a 

generator may be operating at its maximum capacity. The assumed GDF only accounts 

for capacity while not capturing the dispatch set point of the unit or whether the unit has 

been obligated to provide contingency reserve products (note that while the presented 

auction formulation does not include reserve procurement, the GDF itself does not reflect 

whatsoever on reserve and, as such, the impact of reserve is not captured anyway). Final-

ly, the GDF shows up only in (7.14)–(7.16) and is multiplied by the MW dispatch varia-

ble for the generator that is modeled to be under outage (contingency generator). This 

translates into the post-contingency dispatch and congestion for a generator outage, in the 

primal problem, to being directly related to the dispatch variable for the contingency gen-

erator only. The only functional relationship between the change in a responsive genera-

tor’s dispatch and a line’s flow between the pre- and post-contingency state is driven by 

the primal variable for the simulated contingency generator and the GDF (a fixed input 

parameter). Consequently, this proposed formulation and the proposed GDF mask the 

response that is provided by the frequency responsive units for generator contingencies. 

Thus, γ reduces to zero for generators that are not located at the nodes of the generators 

included in the critical generator contingency list. This has further implications on the 

short-term generator profit for generators. 

For generators that are not included in the critical list, substituting in the definition of 

γ from (7.24) and λ from (7.23a), (7.21) can be rewritten as (7.21a). It is then clearer to 
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see the comparison between (7.8a) and (7.21a). Next, complementary slackness can be 

applied to the constraint-dual variable pairs in (7.21a), (7.11), (7.14), and (7.22) to create 

(7.25), (7.26), (7.27), and (7.28), respectively. Note that if complementary slackness is 

applied to (7.8a), it again allows for the determination of the short-term generator profit, 

i.e., the rent for a generator in the standard DCOPF problem, which is equal to the gener-

ator revenue (LMP times production) minus the generator cost. Equation (7.27) can be 

rewritten as (7.27a) using (7.28). Then based on (7.25) and (7.26), the generator rent for a 

unit that is not in the assumed critical list, its generator profit equation is listed by (7.29). 

Equation (7.29) can be rewritten as (7.29a) using (7.27a). This now provides an under-

standing on the generator revenue and generator profit that will be earned for generators 

that are not within the critical list. The generator rent obtained is, therefore, different from 

the standard DCOPF problem: (i) the LMP, denoted by λn, in the first term of (7.29a) now 

captures an additional congestion component that reflects congestion in the post-

contingency operational state under a generator outage and (ii) the added last term in 

(7.29a), which is non-positive. Note that β is non-positive from (7.22). In addition, the 

last term in (7.29a) is zero if the generator does not respond to any outage in the critical 

list because then the GDF is zero in which case the generator rent is the same as the 

standard DCOPF (excepting the new LMP definition). 

−𝛼𝑛 + 𝜆𝑛 −∑ 𝛽𝑛
𝑐

𝑐∈𝐶𝑔
𝑐𝑟𝑡 ≤ 𝑐𝑛,           (𝑃𝑛) (7.21a) 

−𝛼𝑛𝑃𝑛 + 𝜆𝑛𝑃𝑛 − ∑ 𝛽𝑛
𝑐𝑃𝑛𝑐∈𝐶𝑔

𝑐𝑟𝑡 = 𝑐𝑛𝑃𝑛, (7.25) 

−𝑃𝑛𝛼𝑛 = −𝑃𝑛
𝑚𝑎𝑥𝛼𝑛, ∀𝑛 ∈ 𝑁 (7.26) 

𝑃𝑛
𝑐𝛽𝑛

𝑐 − 𝑃𝑛𝛽𝑛
𝑐 − 𝐺𝐷𝐹𝑛′(𝑐),𝑛𝑃𝑛′(𝑐)𝛽𝑛

𝑐 = 0, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔
𝑐𝑟𝑡

 (7.27) 

𝛽𝑛
𝑐𝑃𝑛

𝑐 = 0, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔
𝑐𝑟𝑡

 (7.28) 
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𝑃𝑛𝛽𝑛
𝑐 = −𝐺𝐷𝐹𝑛′(𝑐),𝑛𝑃𝑛′(𝑐)𝛽𝑛

𝑐, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔
𝑐𝑟𝑡

 (7.27a) 

𝑃𝑛
𝑚𝑎𝑥𝛼𝑛 = 𝜆𝑛𝑃𝑛 − 𝑐𝑛𝑃𝑛 −∑ 𝛽𝑛

𝑐
𝑐∈𝐶𝑔

𝑐𝑟𝑡 𝑃𝑛, (7.29) 

𝑃𝑛
𝑚𝑎𝑥𝛼𝑛 = 𝜆𝑛𝑃𝑛 − 𝑐𝑛𝑃𝑛 +∑ 𝐺𝐷𝐹𝑛′(𝑐),𝑛𝑃𝑛′(𝑐)𝛽𝑛

𝑐
𝑐∈𝐶𝑔

𝑐𝑟𝑡 . (7.29a) 

For the critical generators, substituting in the definition of γ from (7.24) and λ from 

(7.23a), (7.21) can be rewritten as (7.21b). Analogously, applying complementary slack-

ness to the constraint-dual variable pair in (7.21b) and based on (7.26) and (7.27a), the 

generator rent for a unit that is in the assumed critical list, its short-term generator profit 

is listed by (7.30). 

𝛼𝑛 + 𝜆𝑛 − (∑ 𝛽𝑛
𝑐 +

𝑐∈𝐶𝑔
𝑐𝑟𝑡 ∑ 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝛽𝑠

𝑐
𝑠∈𝑁 )  

+∑ [(𝐹𝑘
𝑐− − 𝐹𝑘

𝑐+)(∑ 𝑃𝑇𝐷𝐹𝑘,𝑠
𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑠∈𝑁 )]𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

≤ 𝑐𝑛,   (𝑃𝑛) (7.21b) 

𝑃𝑛
𝑚𝑎𝑥𝛼𝑛 = 𝜆𝑛𝑃𝑛 − 𝑐𝑛𝑃𝑛 + (∑ 𝐺𝐷𝐹𝑛′(𝑐),𝑛𝑃𝑛′(𝑐)𝛽𝑛

𝑐 − ∑ 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝛽𝑠
𝑐

𝑠∈𝑁 𝑃𝑠𝑐∈𝐶𝑔
𝑐𝑟𝑡 )  

+∑ [(𝐹𝑘
𝑐− − 𝐹𝑘

𝑐+)(∑ 𝑃𝑇𝐷𝐹𝑘,𝑠
𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑃𝑠𝑠∈𝑁 )]𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

  (7.30) 

Note that there is a resemblance in the last term (with GDFs: in square brackets) of 

(7.30) and the last term in CAISO’s definition of LMP in (7.23b), which indicates that 

they could potentially be accounting for this extra term’s payment to the critical genera-

tors via the LMP. However, it is important to bear in mind that such modifications can 

have associated implications, for instance, in financial transmission rights (FTR) markets. 

Furthermore, some of the other terms that are now present in (7.29a) and (7.30), which 

are components of the short-term generator profit for the non-critical and the critical gen-

erators respectively, are not accounted for in their proposed payment structure. Thus, Sec-

tion 7.3.4 proposes a variation of the primal auction (and the corresponding dual) formu-
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lation presented in Section 7.3.1 to examine the market implications of a different refor-

mulation to introduce corrective actions via the proposed GDFs and to investigate CAI-

SO’s newly proposed payment structure in greater detail. 

It is pertinent to note that the auction formulations, presented in this chapter, neglect 

various other constraints, most importantly the minimum production limit on a generator 

has been assumed to be zero for now, there are no ramping restrictions, inter-temporal 

restrictions, or reserve products in the formulations. The important piece of information is 

to compare the modified DCOPF with the inclusion of the GDF for generator contingen-

cies with the simpler DCOPF that lacks such security criteria. However, the difference 

can be extracted and related to the case where there is a more complicated SCED market 

model that is expanded to include generator contingencies with this GDF factor that ap-

proximates reserve deployment. 

7.3.4. A Different Reformulation of the Primal Problem 

This section proposes a variation of the primal auction formulation presented in 

Section 7.3.1 to examine the associated market implications of a different reformulation 

to introduce corrective actions (or GDFs). While this primal is different than the primal in 

Section 7.3.1, the two (linear programs) primal problems are still equivalent transfor-

mations of the other mathematical program. Based on duality theory, when two primal 

problems are equivalent, the dual programs must also be equivalent transformations of 

each other. The mathematical reformulation of the primal problem is detailed below. 

Minimize
𝑃𝑛,𝐷𝑛

: ∑ 𝑐𝑛𝑃𝑛𝑛  (7.31) 

Subject to: 
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−𝑃𝑛 ≥ −𝑃𝑛
𝑚𝑎𝑥 , ∀𝑛 ∈ 𝑁           (𝛼𝑛) (7.32) 

∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛𝑛 − 𝐷𝑛) ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑎, ∀𝑘 ∈ 𝐾           (𝐹𝑘
−) (7.33) 

−∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛𝑛 − 𝐷𝑛) ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑎, ∀𝑘 ∈ 𝐾           (𝐹𝑘
+) (7.34) 

∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛 + 𝐺𝐷𝐹𝑛′(𝑐),𝑛𝑃𝑛′(𝑐) − 𝐷𝑛)𝑛 ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑐, ∀𝑘 ∈ 𝐾𝑐𝑟𝑡, 𝑐 ∈ 𝐶𝑔
𝑐𝑟𝑡

  

 (𝐹𝑘
𝑐−) (7.35) 

−∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝑃𝑛+𝐺𝐷𝐹𝑛′(𝑐),𝑛𝑃𝑛′(𝑐) − 𝐷𝑛)𝑛 ≥ −𝑃𝑘

𝑚𝑎𝑥,𝑐, ∀𝑘 ∈ 𝐾𝑐𝑟𝑡, 𝑐 ∈ 𝐶𝑔
𝑐𝑟𝑡

  

 (𝐹𝑘
𝑐+) (7.36) 

∑ 𝑃𝑛𝑛 − 𝐷𝑛 = 0,           (𝛿) (7.37) 

𝐷𝑛 = 𝐷𝑛̅̅̅̅ , ∀𝑛 ∈ 𝑁           (𝜆𝑛) (7.38) 

𝑃𝑛 ≥ 0. 

where: 

𝐺𝐷𝐹𝑛′(𝑐),𝑛 =

{
 
 

 
 

−1, 𝑛 = 𝑛′(𝑐)

0, 𝑛 ≠ 𝑛′(𝑐) ⋏ 𝑛 ∉ 𝑆𝐹𝑅

𝑢𝑛𝑃𝑛
𝑚𝑎𝑥

∑ 𝑢𝑛𝑃𝑛
𝑚𝑎𝑥

𝑛∈𝑆𝐹𝑅

𝑛≠𝑛′(𝑐)

, 𝑛 ≠ 𝑛′(𝑐) ⋏ 𝑛 ∈ 𝑆𝐹𝑅
, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔

𝑐𝑟𝑡
. (7.39) 

Note that this primal reformulation does not include a separate primal variable (and a 

corresponding equality constraint) to model the post-contingency dispatch set point for a 

generating resource under a specific generator contingency. In this case, the primal varia-

bles include only the generator production variable and the demand variable respectively. 

The rest of the primal reformulation is consistent with the primal formulation presented 

in Section 7.3.1. 

The corresponding dual problem formulation for the aforesaid primal reformulation is 

described below. 



 

132 

 

Maximize
𝛼𝑛,𝐹𝑘

−,𝐹𝑘
+,𝐹𝑘

𝑐−,𝐹𝑘
𝑐+,𝛿,𝜆𝑛

: −∑ (𝑃𝑛
𝑚𝑎𝑥𝛼𝑛)𝑛 − ∑ (𝑃𝑘

𝑚𝑎𝑥,𝑎(𝐹𝑘
− + 𝐹𝑘

+))𝑘   

−∑ (𝑃𝑘
𝑚𝑎𝑥,𝑐(𝐹𝑘

𝑐− + 𝐹𝑘
𝑐+))𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

+ ∑ (𝐷𝑛̅̅̅̅ 𝜆𝑛)𝑛   (7.40) 

Subject to: 

−𝛼𝑛 + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

− − 𝐹𝑘
+)𝑘   

+(∑ (𝐹𝑘
𝑐− − 𝐹𝑘

𝑐+)(𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 + �̅�𝑛′(𝑐),𝑛 ∑ 𝑃𝑇𝐷𝐹𝑘,𝑠

𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑠∈𝑁 )𝑘∈𝐾𝑐𝑟𝑡 ,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

)  

+𝛿 ≤ 𝑐𝑛, ∀𝑛 ∈ 𝑁 (𝑃𝑛) (7. 41) 

∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝐾

+ − 𝐹𝑘
−)𝑘 + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛

𝑅 (𝐹𝐾
𝑐+ − 𝐹𝑘

𝑐−)𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

− 𝛿 + 𝜆𝑛 = 0, ∀𝑛 ∈ 𝑁  

 (𝐷𝑛) (7.42) 

𝛼𝑛 ≥ 0, 𝐹𝑘
− ≥ 0, 𝐹𝑘

+ ≥ 0, 𝐹𝑘
𝑐− ≥ 0, 𝐹𝑘

𝑐+ ≥ 0, 𝛿 free, 𝜆𝑛 free .  

where: 

�̅�𝑛′(𝑐),𝑛 = {
0, 𝑛 ≠ 𝑛′(𝑐)

1, 𝑛 = 𝑛′(𝑐)
, ∀𝑛 ∈ 𝑁, 𝑐 ∈ 𝐶𝑔

𝑐𝑟𝑡
.  (7.43) 

In addition, 

𝜆𝑛 = 𝛿 + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

−
𝑘 − 𝐹𝑘

+) + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

𝑐−
𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

− 𝐹𝑘
𝑐+), ∀𝑛 ∈ 𝑁.  

 (𝐷𝑛) (7.42a) 

The dual objective, (7.40), is consistent with (7.20). Constraints (7.41) and (7.42) rep-

resent the dual constraints corresponding to the generator production and the demand var-

iables in the primal reformulation respectively. Constraint (7.42) within the dual problem 

identifies λn as the LMP at node n, which is further defined in (7.42a) and is equal to the 

sum of the marginal energy component, the marginal pre-contingency congestion compo-



 

133 

 

nent, and the marginal post-contingency congestion component that comes from the 

modeling of critical generator contingencies. Note that (7.42a) is consistent with the LMP 

definition in (7.23a) for the enhanced primal formulation. 

The discussion that follows analyzes the corresponding impact on the rent and the 

revenue for generators that are and are not included in the assumed set of critical genera-

tor contingencies. To assist in understanding what is communicated within the aforesaid 

dual formulation in terms of the impact on prices and revenue for generators, it is helpful 

to go back to (7.35) and (7.36). It is noteworthy to emphasize that the GDF shows up on-

ly in (7.35) and (7.36) and it is multiplied by the MW dispatch variable for the generator 

that is lost. What this translates to is that the post-contingency congestion for a generator 

contingency is only directly related, in the primal reformulation, to the generator that is 

lost (i.e., its dispatch variable). For example, assume that generator 1 is lost, which is lo-

cated at bus 1. Assume that generator 2 is anticipated to completely pick up this entire 

loss of supply from generator 1 (so the ISO sets the GDF = 1 for generator 2) and genera-

tor 2 is at bus 2. Even though generator 2 is the unit anticipated to provide the needed in-

jection, the functional form in (7.35) and (7.36) relate the change in the injection at bus 2 

to be determined by the GDF (a fixed input parameter) and the output of generator 1. The 

GDF is basically masking the response that is provided by generator 2 for generator 1’s 

drop in supply. This is the reason that γ reduces to zero in (7.41) for generators that are 

not located at the nodes of the generators contained within the critical generator contin-

gency list. 

More importantly, the post-contingency congestion and the component of the LMPs 

that are reflective of this post-contingency state are driven by the cost of the generator 
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that is lost; it is not driven by the cost that is associated to the generators that would actu-

ally respond. From a power engineering perspective, capturing the costs of the units re-

sponding does not fully matter in regard to ensuring a secure system; the primal problem 

captures the change in injection for the buses that are anticipated to have an increase in 

production when responding to the outage. From a cost perspective, it definitely has an 

impact as the cost is only related to the generator that is lost and not the units that re-

spond. For instance, suppose that the only generator contingency that is explicitly mod-

eled is a large, baseload unit like a nuclear unit. Such baseload units are often cheaper in 

regard to their marginal cost, $/MWh. On the other hand, the units that are likely to re-

spond will be units that have fast ramping capabilities and are flexible; those are units 

that are generally more expensive. With this example it is clear that, at the very least, 

there is a high probability that the units that are chosen to be in the critical contingency 

list may be rather distinct in characteristics, and costs, than the units that are expected to 

respond. This is important since, again, the cost in the post-contingency state is not driv-

en by the units responding but by the unit that is lost. At the same time, the model does 

not acknowledge any costs due to re-dispatch of generators in the post-contingency state. 

Only the pre-contingency costs are considered, which makes the impact of the post-

contingency congestion a secondary influencing factor; the cost changes only by forcing 

a different pre-contingency dispatch set point that is secure rather than acknowledging the 

change in dispatch cost due to activation of reserve. Last, it is also equally important, if 

not more, to acknowledge the influence this has on the prices, via duality theory, that are 

then produced by this proposed reformulation by CAISO. This dissertation does not dive 
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deeper into this potential problematic issue since that is a topic that will require much 

more research and investigation, as identified in the future work section in Chapter 8. 

For those generators that are not in the critical list of generators, using the definition 

of γ from (7.43) and the LMP for that generator’s location (λn) from (7.42a), (7.41) can be 

rewritten as (7.41a). There is now a one to one correspondence between (7.8a) of the 

standard DCOPF primal problem and (7.41a) with the exception that the LMP is now 

capturing an added, new congestion component reflecting congestion in the post-

contingency operational state with the loss of a generator. Complementary slackness is 

then applied to the constraint-dual variable pair in (7.41a) to create (7.44). It is notewor-

thy to emphasize that (7.44) turns out to be identical to what would be obtained by apply-

ing complementary slackness to (7.8a), which again allows for the determination of the 

generator rent. Complementary slackness can also be applied to (7.32) to form (7.45). 

Then, based on (7.44) and (7.45), the generator rent for a generator that is not in the as-

sumed critical generator contingency list is given by (7.46). The short-term generator 

profit (or generator rent) that will be earned by the non-critical generators is equal to the 

generator revenue less the generator cost. This generator rent term is basically identical to 

what is seen from the standard DCOPF formulation excepting that the LMP has an addi-

tional congestion component. 

−𝛼𝑛 + 𝜆𝑛 ≤ 𝑐𝑛,           (𝑃𝑛) (7.41a) 

−𝛼𝑛𝑃𝑛 + 𝜆𝑛𝑃𝑛 = 𝑐𝑛𝑃𝑛, (7.44) 

−𝑃𝑛𝛼𝑛 = −𝑃𝑛
𝑚𝑎𝑥𝛼𝑛, ∀𝑛 ∈ 𝑁 (7.45) 

𝑃𝑛
𝑚𝑎𝑥𝛼𝑛 = 𝜆𝑛𝑃𝑛 − 𝑐𝑛𝑃𝑛. (7.46) 
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For those generators that are included in the critical list of generators, using the defi-

nition of γ from (7.43) and the LMP for that generator’s location (λn) from (7.42a), (7.41) 

can be rewritten as (7.41b). Complementary slackness is then applied to the constraint-

dual variable pair in (7.41b) to create (7.47). Then based on (7.47) and (7.45), the genera-

tor rent for a generator that is contained within the assumed critical generator contingen-

cy list is given by (7.48). 

−𝛼𝑛 + 𝜆𝑛 +∑ [(𝐹𝑘
𝑐− − 𝐹𝑘

𝑐+)(∑ 𝑃𝑇𝐷𝐹𝑘,𝑠
𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑠∈𝑁 )]𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

≤ 𝑐𝑛,  (𝑃𝑛)  (7.41b) 

−𝛼𝑛𝑃𝑛 + 𝜆𝑛𝑃𝑛 + ∑ [(𝐹𝑘
𝑐− − 𝐹𝑘

𝑐+)(∑ 𝑃𝑇𝐷𝐹𝑘,𝑠
𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑠∈𝑁 )]𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

𝑃𝑛 = 𝑐𝑛𝑃𝑛,  (7.47) 

𝑃𝑛
𝑚𝑎𝑥𝛼𝑛 = 𝜆𝑛𝑃𝑛 − 𝑐𝑛𝑃𝑛 +∑ [(𝐹𝑘

𝑐− − 𝐹𝑘
𝑐+)(∑ 𝑃𝑇𝐷𝐹𝑘,𝑠

𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑃𝑠𝑠∈𝑁 )]𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

.  (7.48) 

It is pertinent to note that the LMP defined in (7.42a) is consistent with CAISO’s 

LMP definition in [31] for the nodes that do not have critical generators. Furthermore, 

CAISO’s LMP definition for the nodes that do have critical generators, i.e., whose 

outages are modeled explicitly, is provided below in (7.23c). It is evident that there is a 

striking resemblance in the last term of the profit function (within square brackets) for the 

generators that are included in the critical contingency list in (7.48) and the last term of 

CAISO’s LMP definition in (7.23c). This entails a detailed investigation into the net rev-

enue stream for the generators that are contained within the assumed critical generator 

contingency list. 

𝜆𝑛 = 𝛿 + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛
𝑅 (𝐹𝑘

− − 𝐹𝑘
+)𝑘 + ∑ 𝑃𝑇𝐷𝐹𝑘,𝑛

𝑅 (𝐹𝑘
𝑐− − 𝐹𝑘

𝑐+)𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

  

+∑ [(𝐹𝑘
𝑐− − 𝐹𝑘

𝑐+)(∑ 𝑃𝑇𝐷𝐹𝑘,𝑠
𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑠∈𝑁 )]𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

 (7.23c) 
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There are a few key issues to consider here. First, note that despite the presence of the 

extra term in (7.48); (7.48) describes the profit that will be earned by the critical genera-

tors. In this specific primal reformulation of the DCOPF, described by (7.31)–(7.38), only 

a single linear operating cost component is considered for the production from the gener-

ator at node 𝑛. In addition, the generator production variable has no other restrictions 

other than a lower bound of zero and a real power maximum capacity restriction (upper 

bound). Analogous to the dual analysis provided for the standard DCOPF problem in Sec-

tion 7.2.2, three cases can potentially exist for the generators in this primal reformulation 

with single linear cost coefficients and only lower and upper bounds. (1) If a generator is 

not producing at its maximum capacity, the short-term marginal benefit (profit) to in-

crease its capacity beyond its existing capability is zero. (2) If it is operating at its maxi-

mum capacity, the short-term marginal benefit to increase its capacity by 1 MW is equal 

to the difference between what it is paid and its marginal cost. (3) If it is not producing 

anything, then what it is paid must be less than or equal to its marginal cost. Consequent-

ly, the penalty (shadow) price of (7.32), α, does completely capture the $/MWh rate for 

the corresponding unit’s profit or the marginal benefit of increasing its maximum capaci-

ty, which makes 𝛼𝑛𝑃𝑛 (or 𝛼𝑛𝑃𝑛
𝑚𝑎𝑥 by complementary slackness) its profit function. 

Therefore, the net revenue stream for a generator should equal the sum of its profit and 

cost. Equation (7.48a) defines the revenue for the generators that are contained within the 

assumed critical list of generators.  

𝑃𝑛
𝑚𝑎𝑥𝛼𝑛 + 𝑐𝑛𝑃𝑛 = 𝜆𝑛𝑃𝑛 +∑ [(𝐹𝑘

𝑐− − 𝐹𝑘
𝑐+)(∑ 𝑃𝑇𝐷𝐹𝑘,𝑠

𝑅 𝐺𝐷𝐹𝑛′(𝑐),𝑠𝑃𝑠𝑠∈𝑁 )]𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

.  (7.48a) 
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Second, if the short-term generator profit for a generator at node n, summed over all 

nodes, is equal to the total generation profit, then by strong duality, at optimality the fol-

lowing relationship, i.e., (7.49), holds. In other words, at optimality, the objective of the 

primal reformulation must equal the objective of the dual problem, or the load payment is 

equal to the sum of the total generation cost, the total generation profit, and the total con-

gestion rent. 

∑ 𝑐𝑛𝑃𝑛𝑛 = −∑ 𝑃𝑛
𝑚𝑎𝑥𝛼𝑛 − ∑ 𝑃𝑘

𝑚𝑎𝑥,𝑎(𝐹𝑘
− + 𝐹𝑘

+) − ∑ 𝑃𝑘
𝑚𝑎𝑥,𝑐(𝐹𝑘

𝑐−
𝑘∈𝐾𝑐𝑟𝑡,

𝑐∈𝐶𝑔
𝑐𝑟𝑡

+ 𝐹𝑘
𝑐+) +𝑘𝑛

∑ 𝐷𝑛̅̅̅̅𝑛 𝜆𝑛,  (7.49) 

If 𝛼𝑛𝑃𝑛
𝑚𝑎𝑥 is equal to the short-term generator profit for a generator then it implies 

that (7.48) describes the profit that will be earned by the critical generators, which means 

that a critical unit’s revenue is not just the LMP at its location (λn) times the production, 

but its revenue also includes the added extra (last) term in (7.48). 

On the contrary, if 𝛼𝑛𝑃𝑛
𝑚𝑎𝑥 is not equal to the short-term generator profit and instead 

a critical unit is only paid the LMP at its location (λn) times the production, then its profit 

is equal to LMP at its location (λn) times the production less the cost. In this case, the 

short-term generator profit for a generator at node n, summed over all nodes, will not 

equal the term in the dual objective that is supposed to represent the total generation prof-

it of the entire system. In other words, this would remove the added extra term from its 

revenue. Furthermore, since complementary slackness dictates that (7.48) should hold, 

which again is the short-term generator profit for a generator at node n summed over all 

nodes, will not equal the total generation profit of the entire system. To summarize, if 

𝛼𝑛𝑃𝑛
𝑚𝑎𝑥 does not denote the short-term generator profit for both the critical and the non-
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critical generators, it will result in an ISO that is not revenue neutral. The ISO will either 

have a revenue shortfall overall or surplus. This confirms and clarifies what the genera-

tors in the assumed critical list should be paid and explains the reasoning behind why 

CAISO is potentially including the added extra term in their definition of the LMP at the 

nodes of the critical generators in (7.23c). However, CAISO’s definition of the LMP at 

the nodes of the critical generators is not consistent with the traditional definition of the 

LMP or the LMP that is identified by the corresponding dual formulation. Yes, the critical 

generators should now be paid this extra term but that does not imply you include the ex-

tra term in the LMP since this will have associated implications in the FTR markets (note 

that this LMP is further used to settle the FTR payments in the FTR markets). Also, note 

that, in (7.49), the load pays the LMP identified by the dual formulation. Further exten-

sion of this work is necessary to evaluate more advanced reformulations to enhance gen-

erator contingency modeling (an example is detailed in Section 7.4) and its corresponding 

effect on market prices, settlements, and revenues. 

Third, it is necessary to understand the interpretation and the implications of the extra 

term in (7.48). If a critical generator is under an outage (or a contingency), the GDFs 

specify that the corresponding injections to compensate for the drop in its supply are de-

fined based on its value for its locations. Essentially, the extra term in the profit function, 

(7.48), is what the critical generator is paid by the ISO to compensate for the loss of its 

production. Now, if the extra term is combined with the fact that the unit is being paid the 

LMP at its location for its production, what this translates into is that the corresponding 

critical generator is basically paying a congestion charge for the difference between in-

jecting at its location and instead injecting at the locations identified by the GDFs. Thus, 
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the combination of the extra term and its LMP component corresponding to the outage is 

basically a congestion transfer cost. Another way to interpret this is that, for that particu-

lar contingency scenario, the critical generator will inject at the locations that are identi-

fied by the GDFs instead of injecting at its own location. The LMP already compensates 

for the expected injection at its location. The extra term is the transfer due to injections 

based on the pre-defined rules of the GDF. Another way to interpret this would be that the 

generator that is lost has storage at each node identified by the GDF definition and is ex-

pected to compensate for its own contingency by injecting at those locations. The model 

still acknowledges that the generator is producing; it is just producing now magically at 

different locations. As such, the dual formulation suggests that the unit should be com-

pensated exactly by that (invalid) assumption. The right way to make this work is to have 

the critical generator buy from the locations identified by the GDF instead or have some 

sort of a side contract with the generators at those locations. This section basically defines 

how this pricing structure would work if it is to follow the exact prescribed formulation 

proposed within the primal. 

To assist in understanding the implications, it is helpful to go back to (7.35) and 

(7.36). Recall that the GDF shows up only in (7.35) and (7.36) and it is multiplied by the 

MW dispatch variable for the generator that is lost. This basically simulates the cost of a 

critical generator backing up its loss based on its costs at other locations. The fact that the 

equations are driven based on its dispatch variable and not the dispatch variables of the 

responding generators implies that this critical generator’s cost influences the duals for 

this issue and not the cost of the responding generators. Thus, the responding generators 

do not affect the outcome for the generator that is lost. This is an important implication 
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because this is sensitive to which generators are chosen to be included in the list of criti-

cal generator contingencies. The California ISO acknowledges this concern by stating 

that analogous to how transmission security constraints are selectively enforced in con-

temporary markets, the ISO will decide which generators are critical and need to be ex-

plicitly modeled based on engineering analysis and outage studies [31]. 

Finally, the definition of congestion rent is the flowgate marginal price times the flow 

on the line, summed over all lines. Congestion rent can be also identified by the 

difference in load payment and the generation revenue; it is easy to confirm that these 

two approaches provide the same value for the congestion rent as strong duality provides 

a formula where generation cost (the primal objective) is equal to the load payment minus 

the generation rent (short-term generation profit) minus the congestion rent at optimality. 

This can be more easily identified by applying strong duality to the simplified DCOPF 

and its dual, (7.1) and (7.7). For the more complicated primal reformulation auction 

model, presented in this section, that includes security constraints associated to generator 

contingencies, it becomes more complex; the congestion rent can be identified by taking 

(7.33)-(7.36) and applying complementary slackness. Thus, the system-wide congestion 

rent in this case is equal to the second and third terms in the dual’s objective, (7.40); this 

is to be expected as it relates the flowgate marginal price to the line flow, once 

complementary slackness is applied. 

7.4. Conclusions and Future Research 

This chapter presents a comprehensive theoretical analysis of the recent industry 

movements, specifically, CAISO’s efforts, to model generator contingencies in market 

models more appropriately. The main intention is to examine (and question) and com-
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plement the movement in the industry to enhance generator contingency modeling and to 

analyze the market impact of the policies that are proposed in this realm of research. It is 

noteworthy to emphasize that if the primal (DCOPF problem in this context) is formulat-

ed differently, the dual will not be the same and may result in different interpretations of 

that different dual. As this dissertation has demonstrated, this is why it is very important 

to perform a rigorous evaluation via duality theory to investigate the potential implica-

tions of the proposed market change. 

Further extensions of the market auction formulation presented in Section 7.3.4 is es-

sential to evaluate more advanced reformulations to enhance generator contingency mod-

eling and its corresponding effect on market prices, settlements, and revenues. For in-

stance, it is pertinent to analyze a market auction reformulation that enhances generator 

contingency modeling by incorporating an explicit representation of post-contingency 

power balance in addition to the previously mentioned post-contingency transmission (or 

network) security for critical generator contingencies. The post-contingency power bal-

ance constraints will help in assuring system-wide power balance between post-

contingency generation and post-contingency demand. This essentially also provides an 

opportunity to model the expected post-contingency demand consumption under the dif-

ferent critical generator contingency states. However, the obvious setback with such an 

approach, i.e., the explicit inclusion of post-contingency power balance constraints, is the 

associated increase in the computational complexity of the corresponding problem. The 

anticipated impact that the corresponding change will have on market pricing is (again) 

how it affects the LMPs. This change will result in a LMP at a node for each of the mod-



 

143 

 

eled critical generator contingency states. In addition, it is also important to analyze the 

corresponding effect on the market settlements and revenues. 

The explicit consideration of credible generator contingencies in general is expected 

to result in fewer ex-post or OMCs (or adjustments), which is technologically and 

economically beneficial. The explicit consideration of credible generator contingencies 

(and fewer ex-post adjustments) enable the market auction to optimize more of the 

market, which, in turn, results in improvements in market efficiency and improved price 

signals. 

Future research should include implementing and testing the effectiveness of the 

proposed enhancements in improving the market surplus on a large-scale test system. 

Furthermore, to overcome the issues identified in this chapter, future work should exam-

ine the market implications of the generator contingency modeling approach proposed by 

MISO in [22] and identify a means to extend MISO’s approach to include both intra-

zonal and inter-zonal transmission assets in addition to modeling more than one critical 

generator contingencies per reserve zone. The next steps should also investigate new 

means to introduce corrective actions via different reformulations and the associated 

market impacts. 
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CHAPTER 8.  

CONCLUSIONS AND FUTURE RESEARCH TOPICS 

8.1. Conclusions 

Previous research has suggested stochastic programming approaches (or other similar 

approaches in this realm, e.g., robust optimization) to enhance scheduling models for 

many years. And yet the industry has not adopted what has been proposed. There is a 

clear gap that still exists that needs to be addressed. This dissertation’s contribution 

primarily stems from trying to come up with innovative ways that achieve efficiency 

gains while not disrupting existing practices in order to increase the likelihood of industry 

movement. There are three issues that adequately reflect this work’s contribution: 1) In 

March 2017, CAISO released a proposal to change their modeling of generator contin-

gencies (and RAS) in a way that is very similar to what is proposed in this work. This 

industry example helps support the next two claims: 2) the proposed approaches are scal-

able (similar in complexity with what CAISO is proposing in [31]). 3) The proposed ap-

proaches can overcome market pricing barriers (again, very similar to what CAISO is 

pursuing). 

The work done in this dissertation enhances generator contingency modeling without 

adding too much market complexity or computational complexity to the problem. Ar-

chival value and a contribution truly comes when a method can move industry. Work that 

artfully balances industrial barriers to adoption with advances in modeling and algorithms 

are the solution and this work is helping move the needle closer given the recent release 

from CAISO and how its pursuits align with the approaches proposed in Chapters 5 and 

6. Furthermore, one of the main motivations for this work stemmed from communication 
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with Dr. James E. Price from the Market Development and Analysis Department of CAI-

SO in the United States; they were of the same opinion that enhanced reserve modeling 

and ramp products capture majority of the savings compared to a market design overhaul 

that implements two-stage stochastic programs. The goal of this dissertation is to align its 

efforts in a direction that would assist the industry. More specific contribution of this dis-

sertation includes the following. 

Currently, ISO MMS (SCUC and SCED models) ensure that for the loss of a credible 

non-radial transmission element, all remaining system elements remain within their 

emergency ratings. However, the loss of a credible generating element is not explicitly 

modeled within market auction models – as communicated by Dr. Eugene Litvinov of 

ISO-NE, industry has an efficient way to handle and decompose the modeling of 

transmission contingencies but they do not have an effective way to handle generator 

contingencies within market models. Instead, system or zonal reserve requirements are 

formed to ensure the system is reliable against credible generator contingencies. For 

example, common industry practices, to approximate the 𝑁-1 reliability criterion for 

generator contingencies, include simplistic policies that require a MW level of 

contingency reserve to be acquired somewhere in the system for any particular generator 

contingency. Such policies are formulaic rules that do not assure reliable operations (or 

ensure reserve deliverability) because they only capture a quantitative aspect; thus, there 

is a push to include an explicit representation of generator contingencies in market 

models. Since the existing market auction models do not satisfy the minimum stipulated 

𝑁-1 contingency requirement adequately, this work (first) aims to improve upon such 

existing industry practices to handle the 𝑁-1 reliability criterion for generator 
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contingencies more appropriately in addition to other typical forms of uncertainties such 

as load uncertainty and renewable uncertainty. 

Mitigating uncertainty and maintaining system reliability is becoming progressively 

more difficult and more expensive in the wake of increasing levels of penetration of non-

dispatchable stochastic resources. While operating conditions change, so should the re-

serve policies. Relying on static reserve policies will increase operational costs and de-

grade reliability as the integration of uncertain resources increases. Network flow patterns 

are becoming, and will continue to become, harder to predict. The weakness of the exist-

ing contemporary approaches in handling reserve deliverability warrants the investigation 

of alternatives. This dissertation has proposed enhanced reserve policies to improve the 

allocation and deliverability (i.e., feasibility of deployment) of reserves. The joint charac-

terization of net load uncertainty and generator contingencies results in more effective 

scheduling and deployment of reserves. Existing approaches to respond to these chal-

lenges involve stochastic programming. It is possible that, in future, computational ad-

vancements would assist stochastic programs to address uncertainties more appropriately, 

thereby, outdating contemporary deterministic models. However, in the meantime, ap-

proaches based on proxy reserve requirements will continue to fill the gap between tradi-

tional deterministic and futuristic stochastic models. 

For policy-driven approaches, one common characteristic is that such approaches al-

most always entail some approximations and attempt to utilize the knowledge that is 

gained offline during a prior stage in order to improve the complicated decision-making 

process in real-time, thereby, shifting the computational burden to an offline stage. As 

market structures change to improve the management of stochastic resources, advances in 
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the design and development of ancillary services is needed. Currently, system operators 

and market designers are exploring new policy-driven approaches to accommodate sto-

chastic resources. This dissertation aims to complement the existing efforts to effectively 

and efficiently allocate reserves across the system by incorporating enhanced reserve pol-

icies in the current operational procedures. The proposed enhanced reserve models are 

computationally scalable for actual-size systems and have minimal added computational 

complexity compared to existing deterministic reserve models that are more susceptible 

to infeasible reserve deployment. 

In this dissertation, the effectiveness as well as the computational scalability was 

demonstrated on the Polish 2383-bus test system, which is an important contribution. The 

discussion that follows is with respect to the Polish test case. The average percent cost 

savings obtained with the approach proposed in Chapter 5 relative to the traditional re-

serve models are in the range of ~1.17%-2.86% for a sample test day. This translates into 

an average cost savings of $155,412-$385,198 correspondingly. Furthermore, the average 

percent cost savings of the approach proposed in Chapter 6 relative to the contemporary 

reserve models are in the range of ~3.3%-7.7% for a sample test day, which translates 

into an average cost savings of $456,860-$1,112,249 correspondingly. The average rela-

tive performance of the approach presented in Chapter 6, which is defined as the percent-

age of the highest cost savings that the proposed approach can potentially achieve, is in 

the range of ~26%-46% for the corresponding test day. 

The proposed approaches are compatible with today’s market structure and can be 

applied to address both intra- and inter-zonal congestion, whereas the existing zonal 

models cannot adequately represent and address intra-zonal congestion. The proposed 



 

148 

 

framework accommodates different response sets for each contingency and period to re-

flect the changing system requirements and congestion patterns. The proposed reserve 

models can be viewed as a means to identify units that need to be disqualified from 

providing reserves, which will reduce the need for uneconomical OMC procedures. 

In Chapter 4, two OMC procedures were developed to quantify the cost of security 

violations rather than using a purely subjective VOLL approach. In a typical VOLL 

approach, security violations are modeled as slack variables in the optimization model 

and are penalized using a set of pre-determined penalty prices (or VOLL). The main 

drawback of using such an approach is that the solution is sensitive to the choice of 

VOLL and may change if a different choice of VOLL is used. Also, the VOLL approach 

is not consistent with existing industry practices. The use of an OMC model provides a 

more appropriate and objective way to evaluate the cost to correct security violations. 

This is an important contribution of the dissertation since a more realistic approach is uti-

lized to evaluate the system security violations. 

Furthermore, due to the more appropriate consideration of credible generator 

contingencies and uncertainty introduced by stochastic resources, the approaches 

proposed in Chapters 5 and 6 results in a market SCUC solution that is closer to the de-

sired N-1 SCUC solution and requires fewer ex-post or ISO discretionary adjustments, 

which is technologically and economically beneficial. For instance, for the Polish test 

case, the average OMC cost for a sample test day is reduced from $2,960,410 for the my-

opic reserve policy to $1,797,353 with the approach presented in Chapter 5. In addition, 

the average OMC cost for a sample test day is reduced from $3,202,269 for the myopic 

reserve policy to $1,686,938 with the approached proposed in Chapter 6. By having 
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fewer ex-post or OMC adjustments, the proposed approaches are enabling the market 

auction to optimize more of the market. When more products and ancillary services are 

optimally handled within the market structure, you not only get an improvement in 

efficiency (and market surplus) but you also get improved price signals that are better re-

flections of actual system operational requirements. This translates into better market 

transparency (fairness) and reduced uplift payments. Right now all ISOs are being 

strongly encouraged by their stakeholders to limit as best as they can their out-of-market 

corrections. 

To sum up the contributions, the proposed approaches offer augmentation with mini-

mal added computational burden. They are designed to avoid practical (market, scalabil-

ity) barriers while still capturing most of the potential cost savings. In addition, they re-

quire fewer OMCs, thereby improving market transparency and pricing. The proposed 

approaches are successful in finding solutions that capture post-contingency congestion 

reasonably. Furthermore, the proposed approaches are aligned with existing market struc-

tures and are least disruptive (avoidance of market overhaul); therefore, they would face 

fewer implementation barriers from stakeholders/market participants. Thus, this work can 

find potential benefits to ISOs, non-market entities, stakeholders and vendors. Finally, the 

work done in this dissertation should find potential applications in EMS, MMS, market 

settlement policies, SCUC, SCED, residual unit commitment, SFT and FTR auctions. 

8.2. Future Research and Next Steps 

To implement the reserve policies proposed in Chapters 5 and 6 in a practical setting, 

such as within modern day MMS, further research is needed. The subsequent subsections 

summarize the next research steps. 
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8.2.1. Impact of Reformulations on Financial Transmission Rights Markets 

The financial transmission rights (FTR) revenue adequacy issue arises when there are 

discrepancies between the (convex) forward FTR allocation and auction models and the 

(convex) day-ahead market (DAM) model. Present-day DAM models produce a dispatch 

solution that respects network constraints, transmission flow constraints in specific, both 

in the pre- (or base) and post-transmission contingency cases. The congestion revenue 

right (CRR) process evaluates the simultaneous feasibility of the CRRs that are allocated 

and auctioned to confirm that the congestion rent that results from the corresponding 

dispatch solution is sufficient to compensate CRRs. Note that it is assumed that the DAM 

transmission topology is consistent with what is modeled within the FTR auction. In 

addition, for transmission contingencies, the transmission flow constraints included in the 

simultaneous feasibility test (SFT) are emergency ratings (rate C, post-transmission 

contingency) of transmission assets. The SFT for CRRs verifies that the scheduled 

injections (source/supply) and withdrawals (sink/consumption) corresponding to the 

CRRs produces flows that respect the transmission limitations (normal and emergency 

ratings) that are modeled in the pre- and post- transmission contingency cases in the FTR 

auction model. In other words, the FTR SFT maintains consistency and models the same 

set of transmission flow constraints that are included in the DAM model. Therefore, in 

the case of transmission contingencies, the congestion rent collected from the DAM 

model is sufficient to compensate the CRRs, thereby ensuring revenue adequacy.  

There is speculation that the explicit modeling of generator contingencies can poten-

tially lead to revenue inadequacy in the FTR markets. The key problem with respect to 

inconsistent modeling of generator contingencies between the FTR auction and the DAM 
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is potentially the same as the inherent inconsistent modeling of transmission 

contingencies. No second-stage recourse variables are introduced in the proposed 

approaches analogous to the way transmission contingencies are handled; however, the 

difference lies in the fact that a transmission contingency does not need a re-dispatch (or 

a corrective action, by choice), whereas a generator contingency needs a re-dispatch 

(when modeled explicitly). 

In the case of generator contingencies (the proposed cases), since the DAM model is 

enhanced to include the proposed post-generator contingency nodal reserve deployment 

transmission constraints, the DAM model accounts for the anticipated post-generator 

contingency effects on critical transmission paths by reserving transmission capacity (or 

reducing pre-contingency flows on the corresponding paths). However, to obtain a dis-

patch solution that is feasible for generator contingencies, the SFT for FTR auctions will 

also need to account for the anticipated post-generator contingency effects on critical 

transmission paths. This is possible by including the post-generator contingency trans-

mission constraints (of the same form as the constraints used in the enhanced DAM mod-

el) in the FTR allocation and auction models as well. As a result, when auctioning and 

allocating CRRs (that can be injected at all locations and withdrawn at the load) to mar-

ket participants, the FTR model will also reserve transmission capacity to account for the 

expected effects of generator contingencies. Thus, the only difference lies in the fact that 

the amount of CRRs cleared will now need to satisfy the proposed post-contingency nod-

al reserve deployment constraints. In other words, the CRRs will settle against the con-

gestion in the DAM model analogous to what is done today. To conclude, the constraint 

set in the FTR allocation and auction models will need to be augmented to include the 
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proposed post-generator contingency nodal reserve deployment transmission constraints 

(emergency limits, rate C); however, the objective function does not need to be modified. 

Therefore, the DAM model and the FTR model need to be aligned, i.e., consistently en-

force the generator contingencies, for revenue adequacy. 

It is noteworthy to emphasize that a similar revenue adequacy issue was raised by a 

few stakeholders in response to CAISO’s recent proposal to change their modeling of 

generator contingencies [31]. Reference [31] includes comprehensive revenue adequacy 

results based on simulations on CAISO’s MMS. In fact, in response to the stakeholders’ 

concerns, CAISO has proposed to adjust their CRR auction and allocation process to in-

clude the corresponding post-generator contingency transmission constraints, analogous 

to the earlier suggestion of maintaining consistency in the treatment of network transfers 

between the FTR auction model and the DAM model to maintain revenue adequacy. 

It is pertinent to note that, to avoid modeling complexity, many ISOs (including 

CAISO) currently use a minimalistic approach to handle transmission contingencies (or 

outages), wherein they simply apply a global scaling factor (manually based on 

operator’s engineering judgment) to all the transmission assets (in all periods) that are 

included in the FTR auction model [104]. Such an approach of manually adjusting 

transmission path limits is also used to account for the effects of expected loop flows. 

Reference [104] details CAISO’s current CRR allocation and auction process for han-

dling transmission contingencies. Such a simplistic conservative approach is adopted to 

account for the potential de-rates (reduced transmission capacity) that may occur due to 

the differences (inconsistencies) in the way contingencies are modeled in the FTR auction 

model versus the DAM model. In other words, such an approach is a workaround to 
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withhold the corresponding transmission capacity from being allocated or auctioned in 

the FTR markets, thereby attempting to avoid revenue inadequacy. This may not be the 

best (or the correct) way to handle (or resolve) this issue; however, the key point is that 

the state-of-the-art practices (or approximations) adopted in FTR auction models aren’t as 

precise as they should be. Such an approach can also potentially cause revenue 

inadequacy in the FTR market, which is usually dealt with by de-rating each FTR 

holder’s payment, implementing side payments (or wealth transfers), or by re-running a 

new auction to change the allocation of FTRs in the market. However, this does not serve 

the main purpose, which is to hedge against price risks. The right approach is to maintain 

consistency between the (convex) FTR auction model and the (convex) DAM model, and 

CAISO seems to be wanting to move in this direction as well. 

Finally, if the corrective actions are structured in a manner that does not cause non-

convexities and if the locational marginal prices are calculated appropriately, i.e., to 

include a marginal post-critical generator contingency congestion component, then 

revenue adequacy is guaranteed just as proposed by Hogan [105]. The proof of revenue 

adequacy for FTR markets, as proven by Hogan in [105], is driven based on the separat-

ing hyperplane theorem from convex optimization theory and the proof of revenue ade-

quacy for point-to-point FTRs hold as long as the auctions are convex. FTR market auc-

tions are not guaranteed to be revenue adequate today due to non-convexities. For in-

stance, FTR auctions can result in revenue inadequacy when the day-ahead market 

transmission topology is different than what is modeled within the FTR auction. Another 

way to illustrate this example, if the allocations of FTRs from the auction were actually 
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physically exercised, the solution would be feasible – if the topology changes, that is not 

guaranteed as the feasible space of injections changes. 

Future research is needed to analyze the implications of the newly proposed market 

modifications, e.g., the modeling of corrective actions, on FTR markets, including the 

modifications to SFT, and revenue adequacy of FTR auctions. 

8.2.2. Overall Market Evaluation and Implications 

Modern day market structures have complemented the increased reliance on renewa-

ble energy resources with accompanying modifications in electric energy markets. These 

modifications include, but are not restricted to, new products, such as flexible ramping 

product [106], and market reformulations, such as contingency modeling enhancements 

[31], [107], to accommodate the variability and uncertainty introduced by stochastic re-

sources and to represent contingencies in the presence of such resources more appropri-

ately. Consequently, such market adjustments have an associated impact on market pric-

ing and efficiency. 

Chapter 7 investigates the market implications of the recently proposed and imple-

mented market model enhancements, i.e., the inclusion of generator contingencies, by 

CAISO in [31]. This includes a thorough theoretical analysis, by leveraging duality theo-

ry from linear optimization, of the influence of the newly proposed changes by CAISO 

on market prices, settlements and revenues. It is pertinent to note that this work comple-

ments CAISO’s efforts, which does not include the corresponding market assessment. 

The enhancements to traditional SCUC and SCED formulations proposed in Chapters 

5 and 6 also apply to vertically integrated (regulated) utilities. The value of the work is 

not limited to only market environments. However, since it is primarily the market envi-
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ronments that are initially moving in the direction of enhanced SCUC and SCED models, 

it is imperative to understand and address the market related issues. Further research is 

needed, analogous to the research in Chapter 7, to examine the market implications of the 

approaches presented in Chapters 5 and 6; particularly, a detailed investigation into the 

pricing mechanisms that correspond to the proposed market changes. The main impact 

that the proposed approaches will have on market pricing is how it affects the LMPs. 

Currently, LMPs already have a congestion component that comes from a critical trans-

mission contingency. The LMPs will now have a congestion component that will result 

from a critical generator contingency. The proposed approaches are not intrusive to exist-

ing markets so that massive market redesigns are not necessary. 

The next steps can also include an investigation on the system-wide price volatility. In 

addition, further research should also include a study of the impact of the proposed 

changes (reserve models) on ancillary services prices and analyze the associated impacts 

on market participants. Furthermore, since Chapter 5 and 6 enhance the DAM SCUC by 

better capturing post-contingency congestion, it will naturally lead to more accurate pric-

es for ancillary services. Those generators that are valued more are expected to get paid 

(relative to competition) a better price since the proposed approaches, in Chapters 5 and 

6, are providing another factor of system conditions that affect actual operations (but are 

not currently acknowledged in market auctions). The ancillary service pricing structure 

should aim to reward locations that provide a higher quality of reserves, thereby, reflect-

ing the value of service provided by resources at critical locations where backup capacity 

is actually needed. 
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It is pertinent to note that the main deciding factor for implementing innovative tech-

nologies is whether the proposed approach enhances social welfare (also referred to as 

market surplus). ISOs are mandated to be independent and pursue an objective that max-

imizes social welfare so, while interesting, individual impacts on market participants (or a 

subgroup) is not the main driver, instead, one should show that it has a sizeable impact on 

the main driver, social welfare, which was done in Chapters 5 and 6. Implementation of 

smart, well-defined reserve policies in grid technologies, which enhances the social wel-

fare, will be both vital and beneficial in future market structures. However, further re-

search is needed for a comprehensive economic assessment, such as the impact of the 

proposed changes on generator rent, generator revenue, load payment, congestion rent, 

uplift/make-whole payments and incentives for participants. 

Further work necessary to conduct a comprehensive investigation of the market im-

plications is also not limited to how the proposed approaches affect prices but also how 

the proposed formulations relate to stochastic programs and clearing a market in a sto-

chastic environment. 

8.2.3. Investigate Techniques to Determine Generator Participation Factors 

Future research should examine identifying more systematic and suitable ways to 

determine participation factors and response sets for each modeled contingency event to 

enhance market efficiency, maintain fair and accurate prices, and maintain a transparent 

market environment. The primary goal is to develop and evaluate reserve procurement 

policies that can be applied to day-ahead or real-time deterministic operations in order to 

accommodate stochastic operations. Further research should examine the potential use of 

inertia and/or synchronizing power coefficients based participation factors, potentially in 
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combination with data-mining algorithms. Furthermore, generator response sets that are 

determined based on the generators’ proximity (i.e., electrical distance) to the uncertain 

realization should be investigated. 

Lastly, with the state-of-the-art computational advancements, the scope of solving ad-

vanced stochastic look-ahead commitment and dispatch models (via decomposition ap-

proaches, e.g., progressive hedging) to determine reserve procurement strategies, includ-

ing generator participation factors and deployment factors, should be explored. Assuming 

that the corresponding stochastic program can be solved within required timeframes, fu-

ture research is needed to translate the output of the corresponding stochastic programs to 

design and develop appropriate reserve procurement strategies that can be potentially uti-

lized in a deterministic market environment. 

The proposed future changes should be accompanied with a corresponding investiga-

tion of the market implications of the various proposed techniques to determine the par-

ticipation factors and different reformulations to introduce corrective actions. 

8.2.4. Identifying Critical Power Systems Elements 

The computational performance of the approaches presented in this dissertation is de-

pendent upon the size of the critical subsets that include the critical generator contingen-

cies and the critical transmission assets respectively. The solution time of the enhanced 

SCUC model is expected to increase with an increase in the size of the critical subsets; 

thus, future work is needed to address the computational performance. The sizes of these 

subsets were defined after discussing common industry practices associated to the num-

ber of critical post-contingency constraints that are modeled as well as weighing a trade-

off between model accuracy and model complexity. Note that such a practice to limit the 
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number of transmission assets that are modeled with the post-contingency transmission 

constraints is also adopted by MISO in [22], where only ten frequently congested lines 

(designated as IROL constraints or critical SOL constraints) were chosen for enforcing 

the post-contingency zonal deployment constraints. 

Market operators typically have an approximate notion of the critical transmission as-

sets and contingencies that generally result in deliverability issues for their system [108], 

[109]. Therefore, the subset of critical transmission assets can vary from system to sys-

tem. Furthermore, the utilization of such approximations is already evident in existing 

industry practices. The removal of inconsequential lines, which regularly have flows that 

are less than their normal rates, from the full network model in order to enhance the solv-

ability of SCUC and SCED models, is a common industry practice. 

Analogously, determining which contingencies to protect against is also a relevant is-

sue. Market operators employ well-established practices (or offline procedures) to decide 

which contingencies are the most critical. There are three choices that exist. a) Not in-

clude any contingency scenarios (inefficient and doesn’t meet NERC’s N-1 mandate). b) 

Model the exhaustive list of contingencies (ideal choice but impractical with existing 

computational capabilities). c) Scenario reduction (what’s being done today). For in-

stance, it is apparent via communication with a leading software vendor of the MMS 

(ALSTOM, who was also recently purchased by General Electric) and other ISOs that 

their tools within MMS only consider a subset of contingencies. While the selection pro-

cess is not perfectly transparent, it takes a holistic view of criticality/credibility that in-

cludes engineering studies/simulations/assessment of “what-if” tests, analyzing past 

events/trends and operator’s engineering judgment/experience/expertise. For instance, the 
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industry has significant experience in tracking generator reliability through the NERC 

generator availability data system [108]. It is pertinent to note that existing practices 

aren’t perfect, but the proposed approaches can add on top of those practices (option c) 

instead of redefining them. Further research is needed in this realm to help identify and 

explore more appropriate means of defining critical transmission assets and generator and 

transmission contingencies. 

8.2.5. Hybrid Approach of Policy Functions Combined with Stochastic Programming 

The development and integration of proxy reserve policies within stochastic pro-

gramming algorithms, such as progressive hedging and Benders’ decompositions, may 

enhance the convergence and scalability of such programs by using a hybrid approach of 

policy functions combined with stochastic programming [34]. 

In particular, future research should focus on the scope of incorporating the proposed 

dynamic reserve policies within stochastic programs, e.g., stochastic unit commitment, to 

improve its performance. Such an approach can reduce the number of initial scenarios 

that are needed in stochastic programs by improving the offline mechanism to produce 

the reserve policies. Furthermore, since the embedded enhanced reserve policies do not 

increase the number of variables, such an approach has a tendency to reduce the size of 

the master problem. In addition, the hybrid approach has the potential of reducing the 

overall problem size and the number of iterations to achieve convergence, which will im-

prove the computational performance while maintaining similar solution qualities. Addi-

tional research is necessary to further develop and test this hybrid concept. 
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8.2.6. Reserve Bidding 

Contemporary market auction models incorporate numerous approximations to model 

discrete disturbances, such as generator and transmission contingencies, and continuous 

disturbances, such as demand and renewable uncertainty. Existing deterministic market 

structures inadequately reflect what resource is actually the best to provide reserve. For 

instance, the approach of reserve zones generalizes every generator in a specific zone as 

to having the same deliverability of reserve but that is not the actual case (industry exam-

ple: MISO and their reserve disqualification process after closing their DAM). The gen-

erators that provide a reserve product that can be deployed when needed (a higher quality 

of service) should be better compensated for the corresponding service. 

One common argument is that the reserve bid should incorporate the risk premium of 

carrying the reserve for deployment. Such an argument is flawed because the determinis-

tic auction models to begin with do not capture the congestion patterns in the event of an 

uncertain realization appropriately. This inherently leads to inaccurate prices for energy 

and ancillary services. 

Further research is needed to provide an insight whether an adjusted reserve bid can 

capture the value of providing reserve. Future work is necessary to demonstrate that a 

strategic reserve bid does not adequately capture the value of security in comparison to 

when contingencies are modeled explicitly. 
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